Homework #7

Problem 4.5-25 A beam of length \(L \) is being designed to support a uniform load of intensity \(q \) (see figure). If the supports of the beam are placed at the ends, creating a simple beam, the maximum bending moment in the beam is \(qL^3/8 \). However, if the supports of the beam are moved symmetrically toward the middle of the beam (as pictured), the maximum bending moment is reduced.

Determine the distance \(a \) between the supports so that the maximum bending moment in the beam has the smallest possible numerical value.

Draw the shear-force and bending-moment diagrams for this condition.

Problem 4.5-28 The shear-force diagram for a simple beam is shown in the figure.

Determine the loading on the beam and draw the bending-moment diagram, assuming that no couples act as loads on the beam.

Problem 4.5-27 The compound beam \(ABCDE \) shown in the figure consists of two beams (\(AD \) and \(DE \)) joined by a hinged connection at \(D \). The hinge can transmit a shear force but not a bending moment. A force \(P \) acts upward at \(A \) and a uniform load of intensity \(q \) acts downward on beam \(DE \).

Draw the shear-force and bending-moment diagrams for this compound beam.