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Abstract. Fault tolerance is an essential requirement in systems running 
applications which need a technique to continue execution where some system 
components are subject to failure. In this paper, a fault tolerant task scheduling 
algorithm is proposed for mapping task graphs to heterogeneous processing 
nodes in cluster computing systems. The starting point of the algorithm is a 
DAG representing an application with information about the tasks. This 
information consists of the execution time of the tasks on the target system 
processors, communication times between the tasks having data dependencies, 
and the number of the processor failures (ε) which should be tolerated by the 
scheduling algorithm. The algorithm is based on the active replication scheme, 
and it schedules ε+1 replicas of each task to achieve the required fault tolerance. 
Simulation results show the efficiency of the proposed algorithm in spite of its 
lower complexity.  

Keywords: Cluster Environment, Task Scheduling Algorithms, DAG Tasks, 
Fault Tolerance. 

1   Introduction 

Cluster environments consist of an array of diverse computers connected by high-
speed networks to achieve powerful platforms. Cluster computing systems are widely 
deployed for executing computationally intensive parallel applications with various 
computing requirements  [1]. Although the field of parallel computing has existed for 
many years, programming a parallel system to execute a single application is still a 
challenging problem, strongly more challenging than programming a single processor, 
or a sequential system . Allocation of the tasks to the processors and specifying the 
order of the execution is one of the most important steps in parallel programming. 
This step, named scheduling, fundamentally determines the efficiency of the 
application’s parallelization. The parallelization in parallel programming shows the 
speedup of the execution in comparison to a single processor system  [2]. 

There are two well-known types of scheduling algorithms; dynamic and static 
scheduling. In dynamic scheduling, the decision as to which processor executes a task 
and when is controlled by the runtime system. This is mostly practical for 
independent tasks. In contrast, static scheduling means that the processor allocation, 
often called mapping, and the ordering of the tasks are determined at compile time. 
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The advantage of static scheduling is that it can include the dependences and 
communications among the tasks in its scheduling decisions. Furthermore, since the 
scheduling is done at compile time, the execution is not burdened with the scheduling 
overhead   [3]. The main goal of most scheduling strategies is to minimize the 
scheduling length, which is the total completion time of the application tasks. An 
alternative designation for schedule length, which is quite common in the literature, is 
makespan  [4] and  [5]. 

Resource failures may frequently occur in distributed computing systems and have 
undesired effects on applications. Consequently, there is an increasing need for 
developing techniques to achieve fault tolerance  [6] and  [7]. Fault tolerance is an 
important property in distributed computing as the dependability of individual 
resources may not be guaranteed. A fault tolerant approach may therefore be useful in 
order to potentially prevent a malicious node affecting the overall performance of the 
application. This subject is very important in distributed computing systems because 
the size and complexity of the applications are increased dramatically to take 
advantage of such system resources. Actually, the probability of error occurrence may 
be increased by the fact that many cluster applications will perform long tasks that 
may require several days of computation. Hence, the cost and difficulty of recovering 
from faults in distributed applications are higher than those of traditional applications 
 [6]. If fault tolerance is not provided, the system cannot survive to continue when one 
or several processors fail. In such situation, the entire program crashes. Therefore, a 
technique is needed to enable a system to execute critical applications even in the 
presence of one or more processor failures. Both the task scheduling and fault 
tolerance within distributed systems are difficult problems in their own, and solving 
them together makes the problem even harder. Concretely, the main goal of fault 
tolerant task scheduling algorithms is to find a static schedule of application tasks on 
the processing elements of a cluster computing system and tolerate a given number of 
processor failures. The input of the fault tolerant scheduling algorithm is a 
specification of the application tasks, the computation power of the processing 
elements, and some information about the execution times of the tasks on the system 
processors and the communication times between the tasks. In this paper, a fault 
tolerant task scheduling algorithm is proposed, which aims at tolerating multiple 
processor failures and tries to achieve a minimum possible makespan. The proposed 
algorithm uses active replication scheme to mask failures. 

The remainder of this paper is organized as follows. Section 2 presents a review of 
the related works. A brief description of the task graph and the multiprocessor models 
is given in Section 3. Section 4 presents the proposed algorithm. The simulation 
results are presented in Section 5. Finally, Section 6 concludes the paper and presents 
future work. 

2   Related Works 

A large number of task scheduling algorithms for DAG applications have been 
proposed in the literature. But most of the available algorithms assume that the 
processors of the system are completely safe, so they do not tolerate any failure in the 
system components. Fault tolerance can be achieved in distributed computing systems 
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by scheduling multiple copies of each task on different processors. In the follow, a 
brief survey of two well-known types of fault tolerant task scheduling algorithms 
named primary/backup scheduling and active replication scheduling are presented. 

Oh et al.  [7] have proposed an algorithm in which each of the submitted tasks are 
assumed to be independent and non-preemptive. The algorithm considers the case 
where the backup copies are allowed to be overlapped in time of their execution on a 
processor; if the primary copies are scheduled on different processors. Ghosh et al.  [8] 
present techniques to provide fault tolerance for non-preemptive, aperiodic and real-
time tasks having deadline. The goal of the presented techniques is to achieve high 
acceptance ratio, percentage of accepted arriving tasks. Manimaran et al.  [9] have 
presented an algorithm to dynamically schedule real-time tasks. This algorithm 
handles resource constraints, where a task might need some resources, such as data 
structures, variables, and communication buffers for its execution. Al-Omari et al. 
 [10] have proposed an algorithm which uses the Primary-Backup (PB) overloading 
technique to be as an alternative to the usually used Backup-Backup overloading. The 
algorithm is presented to improve schedulability and achieve fault tolerant scheduling 
of real-time tasks in multiprocessor systems. Zheng et al.  [11] and  [12] have proposed 
two techniques, called the Minimum Replication Cost with Early Completion Time 
(MRC-ECT) and the Minimum Completion Time with Less Replication Cost (MCT-
LRC), to schedule backups of independent and dependent jobs, respectively. 

The main disadvantage of all of the previous algorithms is that only two copies of 
the task are scheduled on different processors. Based on this assumption, the task can 
be completed only when one processor fails. So, these algorithms cannot tolerate 
more than one failure at a time. 

In active replication scheme, multiple copies of each task are mapped on different 
processors, which are run in parallel to tolerate a given number of failures. Hashimito 
et al.  [13] have proposed  a new approach to achieve fault tolerance by scheduling 
DAG applications on identical processing elements. This algorithm exploits implicit 
redundancy, which is originally introduced by task duplication to reduce the 
execution times of parallel programs. Girault et al.  [14] have presented an algorithm 
with the goal of automatically obtain a distributed and fault tolerant task scheduling in 
embedded systems. The proposed algorithm considers timing constraints on tasks 
execution, and indicates whether or not the real-time constraints are satisfied. In order 
to tolerate N failures, the algorithm allows at least N+1 replicas of a task to be 
scheduled on different processors. 

3   The Directed Acyclic Graph Scheduling Problem 

The objective of Directed Acyclic Graph (DAG) scheduling is to minimize the overall 
program finish-time by proper allocation of the tasks to the processors and 
arrangement of execution sequence of the tasks. Scheduling is done in such a manner 
that the precedence constraints among the program components are preserved. 

3.1   The DAG Model  

A parallel program can be represented by DAG, G = (V, E), where V is a set of v 
nodes and E is a set of e directed edges. Each node ni in the DAG denotes a task, and 
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its weight represents the computation cost and is indicated by w(ni). The edges in the 
DAG, each of which is denoted by (ni, nj), correspond to the communication messages 
and precedence constraints between the nodes. The weight of an edge is called the 
communication cost and is indicated by c(ni, nj). The communication has no cost if 
two nodes are mapped to the same processor. For a node ni in G, pred(ni) is the set of 
immediate predecessors and succ(ni) denotes its immediate successors. A node having 
no parent is called an entry node and a node having no child is called an exit node [3]. 
The precedence constraints of a DAG dictate that a node cannot start execution before 
it gathers all of the messages from its parent nodes. A critical path (CP) of a DAG is a 
longest path traversed from an entry node to an exit node. Obviously, a DAG can 
have more than one CP. Consider the task graph shown in Fig. 1. In this task graph, 
nodes n1, n7, and n9 are the nodes of the only CP. The edges on the CP are shown with 
thick arrows. The communication-to-computation-ratio (CCR) of a parallel program is 
defined as its average edge weight divided by its average node weight [15]. Hereafter, 
the terms node and task are used interchangeably. 

 

 

Fig. 1. Directed Acyclic Graph 

3.2   The Multiprocessor Model 

In DAG scheduling, the target system is represented by a finite processor set P = {P1, 
P2, …, Pm}. The processors may be heterogeneous or homogeneous. The 
heterogeneity of the processors means that they have different speeds or processing 
capabilities. However, it is assumed that every task of the application can be executed 
on any processor even though the completion times on different processors may be 
different. The heterogeneity of processing capability is modeled by a function 
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C:P→R+, so the completion time of task ni on processor Pk equals to C(Pk)×w(ni) [15]. 
The processors are assumed to be fully connected.  

4   The Proposed Algorithm 

The objective of the proposed algorithm is to map the tasks of DAG represented 
application to processors with diverse capabilities in a cluster computing system. The 
algorithm aims to minimize the schedule length while tolerating a given number of ε 
fail-silent (fail-stop) processor failures. To achieve this, active replication scheme is 
used to allocate ε +1 copies of each task to different processors. 

4.1   Scheduling Heuristic 

The proposed algorithm mainly uses the well-known heuristic technique encountered 
in scheduling algorithms that is called list scheduling. In its general form, the first part 
of list scheduling sorts the nodes of the application graph to be scheduled depending 
on a priority scheme, while respecting the precedence constraints of the nodes. In the 
second part, each node of the list is consecutively scheduled to a processor chosen for 
the node [3]. In our algorithm each node is scheduled to multiple processors to 
achieve the required fault tolerance. An important characteristic of list scheduling is 
that it guarantees the feasibility of all partial schedules, and the final schedule, by 
scheduling only free nodes and choosing an appropriate start time for each node [3]. 
The nodes are processed in precedence order (i.e., in topological order), so at the time 
a node is scheduled all ancestor nodes have already been processed. 

4.2   Priority Scheme 

List scheduling algorithms establish the scheduling order of the nodes before the 
scheduling process. During the node scheduling in the second part, this order remains 
unchanged, so the node priorities are static. To achieve most efficient schedules, it is 
better to consider the state of the partial schedule when the order of the remaining 
nodes is established. In this case, the priorities of the nodes are considered to be 
dynamic. Additionally, the node order must be compatible with the precedence 
constraints of the application graph, which is achieved if only free nodes are 
scheduled. 

In the proposed algorithm free nodes are ordered by a priority value equals to 
tlevel+blevel of the node, where tlevel and blevel denote the dynamic top level and the 
static bottom level of the node respectively. The word dynamic implies that the value 
tlevel depends upon the nodes which have already been mapped, and the word static 
implies that the value blevel remains unchanged during the scheduling process. 

Taking the computational heterogeneity of the system into account, the average 
execution time of a node on all processors can be used when calculating blevel, since 
the processor on which a node will be assigned is not known. So blevel can be 
computed using (1). 
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Where )( inw  is the average execution time of node ni and c(ni, nj) is the 

communication cost between node ni and node nj (a successor of ni). 
The tlevel is calculated dynamically for each of the free nodes at each step by (2). 
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Where FT(nj,Proc(nj)) is the finish time of node nj (a predecessor of ni) which has 
been previously scheduled on processor Proc(nj). 

This priority value provides a good measure of the node importance, since the 
nodes that have the maximum value of tlevel+blevel compose the critical path of the 
application graph. The greater the priority, the more work is to be performed along 
the path containing that node. 

4.3   Processor Choice 

At each step the scheduling process selects the free node n that has the highest priority 
and tries to schedule it on all processors to calculate its expected finish time on each 
processor using (3) 
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Where r(Pl) is the ready time of the processor Pl, and the predecessor nodes are 
already scheduled onto ε +1 processors, and nj

k denotes the replicas of node nj. 
Then, the node n is scheduled on the ε +1 processors which deliver the minimum 

finish time for that node using (3). Actually, (3) determines the finish time of the node 
n if no processor fails during the execution of the application, since the minimum of 
all replicas is used. In this case, the lower bound of the schedule length SLmin can be 
computed using (4). 
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While for the worst case, in the presence of ε failures, the finish time would be 
given by (5). 
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Then, to compute the upper bound of the schedule length SLmax, (6) can be used. 
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4.4   The Algorithm 

The main steps of the proposed scheduling algorithm can be written as follows: 
 
1) Compute blevel for each task in the graph, 
2) Mark all entry tasks as free tasks, 
3) While still have unscheduled tasks do 
4)    Compute tlevel for each free task, 
5)    Update the priorities of all free tasks, 
6)    Select a free task n with highest priority, 
7)    Compute the finish time FT(n, Pl) of the task n on all of the processors, 
8)    Schedule the task n on ε + 1 processors that allow the minimum finish time, 
9)    Add free successors of n to the free tasks, 

10) End while 

5   Simulation Results 

To evaluate the proposed fault tolerant scheduling algorithm, this algorithm is 
simulated and compared to the FTBAR algorithm [14] which is the closest to our 
algorithm found in the literature. The goal of our simulations is to evaluate the fault 
tolerance overhead of the proposed algorithm and compare it with the overhead of 
FTBAR algorithm. 

The proposed algorithm and FTBAR are simulated with a set of randomly 
generated graphs. Different methods of generating random DAGs for simulation can 
be found in [16]. In this paper, the method of Layer-by-Layer is used in simulation 
phase. A random graph is generated as follows: given the total number of tasks, we 
randomly generated a set of levels with a random number of tasks such that the sum 
of the number of tasks in all of the levels is equal to the total number of tasks. 
Consequently, the tasks at a given level are randomly connected to the tasks at higher 
levels. The execution times of the tasks and communication times between them are 
randomly selected from uniform distributions with chosen ranges. The number of 
processors is set to 10 and each point in the shown figures in this paper represents an 
average over 60 random graphs. The most important metric of the performance of the 
algorithm is the fault tolerance overhead caused by the active replication scheme. The 
overhead is computed using the following formula. 

100×−=
FTSL

nonFTSLFTSL
overhead  . (7)

Where FTSL is the fault tolerant schedule length and the nonFTSL is the schedule 
length produced when the number of failures ε is set to zero. 

The average fault tolerance overhead is plotted in Fig. 2 as a function of the 
number of tasks which is varied uniformly in the range [20, 200]. The communication 
to computation ratio (CCR) is set to 1 and the number of failures ε is set to 2 and 5. 
This figure shows that the average overhead increases with the number of tasks. This 
is due to the replication of all tasks and communications. 
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Fig. 2. Average overhead for CCR=1 
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Fig. 3. Average overhead for Number of Tasks=100 

In Fig. 3 the average fault tolerance overhead is plotted as a function of the CCR 
which is varied uniformly in the range [0.2, 5]. The number of tasks is set to 100 
and the number of failures ε is set to 2 and 5. One can see in this figure that the 
average overhead decreases when the CCR increases, since the replication of tasks 
has a positive effect in withdrawing many of the communications required among 
the tasks. 

Fig. 4 and Fig. 5 show the comparison of the overhead between the proposed 
algorithm and the FTBAR algorithm as a function of the number of tasks which is 
varied uniformly in the range [20, 200]. The CCR is set to 1 and the number of 
failures ε is set to 2 and 5 in Fig. 4 and Fig. 5, respectively. It can be seen that the 
proposed algorithm shows better results compared to FTBAR algorithm for any 
number of tasks. 
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Fig. 4. Average overhead for CCR=1 and ε =2 
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Fig. 5. Average overhead for CCR=1 and ε =5 
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Fig. 6. Average overhead for Number of Tasks=100 and ε =2 
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Fig. 7. Average overhead for Number of Tasks=100 and ε =5 

In Fig. 6 and Fig. 7 the comparison of the overhead is shown as a function of the 
CCR which is varied uniformly in the range [0.2, 5]. The number of tasks is set to 100 
and the number of failures ε is set to 2 and 5 in Fig. 6 and Fig. 7, respectively. We can 
see that for small values of CCR there is a little difference between the proposed 
algorithm and the FTBAR. But for higher values of CCR, the proposed algorithm 
performs significantly better than FTBAR algorithm. 

6   Conclusions and Future Work 

A large number of algorithms for scheduling and partitioning DAGs have been 
proposed in the literature, either with an unbounded or with a limited number of 
processors. Most of these algorithms assume that the processors in the systems are 
completely safe, so they do not achieve fault tolerance. Some techniques for 
supporting fault tolerant systems have been proposed, but only few of them are able to 
tolerate multiple failures at a time. In this paper, a fault tolerant task scheduling 
algorithm is proposed for mapping DAG tasks on cluster computing systems with 
heterogeneous processor capabilities. The algorithm is based on active replication, 
and it schedules ε+1 replicas of each task on different processors to tolerate a given 
number ε of processor failures. Despite its lower complexity, simulation results 
demonstrate that the proposed algorithm has an efficient performance in the term of 
schedule length overhead. It outperforms the closest available algorithm FTBAR, 
especially in the case of high communication to computation ratio. 

Scheduling ε+1 replicas of each task on different processors results in replicating 
the communications between tasks (ε+1)2 times. This is due to the fact that each of 
ε+1 replicas of each task will receive the same message from the ε+1 replicas of each 
one of its predecessors. Future work on this algorithm might try to reduce the total 
number of communications. Additionally, in the proposed algorithm, the processors 
are considered fully connected with non-faulty links. While this can be appropriate in 
cluster environments, extensions might be added to this algorithm to take 
communication link failures into account, and make it relevant to other distributed 
computing systems such as grid environments. 
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