Problem 1. The rigid pole and cross-arm assembly is supported by the three cables shown. A turnbuckle at D is tightened until it induces a tension T in CD of 1.2 kN . Express T as a vector. Does it make any difference in the result which coordinate system is used?

Problem 2. Determine the $x-, y$-, and z-components of force F which acts on the tetrahedron as shown. The quantities a, b, c, and F are known, and M is the midpoint of edge $A B$.

Problem 3. Two forces are applied to the construction bracket as shown. Determine the angle θ which makes the resultant of the two forces vertical. Determine the magnitude R of the resultant.

Problem 4. Determine the resultant R of the three forces acting on the simple truss. Specify the points on the x - and y-axes through which R must pass.

Problem 5. The thin rectangular plate is subjected to the four forces shown. Determine the equivalent force-couple system at 0 .

