

Composite Materials: Analysis and Design

Vahab Toufigh, Ph.D., P.E.

Composite Materials: Analysis and Design

Chapter 1:

Introduction to Composite Materials

Outline

- ✓ Definition of Composite Materials
- ✓ FRP Composite Constituent Materials
 - Fibers
 - Matrices
- ✓ Characteristics of FRP Materials
- ✓ Application of FRP Composites
- ✓ Type of Composites

I Environmental Effects on Mechanical Properties of FRP

				Designation	Orientation	Fiber type
1 The	nan managana Kanan managana		四门		Unidirectional	Glass
	Accession of the second second		這意西		Unidirectional	Glass
GL-U	G-U	C-U	GC-U		Unidirectional	Carbor
60011					Unidirectional	Glass/ carbor
					Bidirectional	Glass
	B GC	-в	GA-B		Bidirectional	Glass/ carbor
0	-	105807 V3			Bidirectional	Glass/ aramic

Designation	Temperature	Humidity	pН	ASTM*
W-S- ALK	Ambient	NA		C581
W-W-ALK	Ambient	NA		C581
W- NEUT	Ambient	NA		C581
W-S-ACID	Ambient	NA	-	C581
OCIEN	Ambient	NA		D1141
SOIL^\dagger	Ambient	NA		D3083

c) Fresh Water Solution (pH = 7.0)

□ Application of FRP Composites

D Post Strengthening using Steel Strips:

D Post Strengthening using CFRP Strips:

Utility Tunnels Tucson Electric Power Pull Box, Tucson, Arizona.

Salt Pond Road Bridge No. 484: (Provience Rhodeisland)

Repair of Steel Pipe Based on the Requirements of ASME PCC/2/2006, Phoenix, Arizona.

□ Repair of Pipes with Wet Layup Carbon FRP (CFRP), NM, USA.

Blast Retrofit:

GFRP Bridge,VA:

Bridge Decks

Storch Bridge 1996, Winterthur, Switzerland:

Span: 124m, 2 Lanes

Mechanical Advantage of Composites:

Specific Modulus

- Axial Deflection $u = \frac{PL}{EA}$ - Mass $M = \rho AL$
- ✓ This implies that the lightest beam for specified deflection under a specified load is one with the highest (*E*/ρ) value.
 <u>Specific Modulus</u>:
 <u>Specific Modulus</u>:

Specific strength as a function of time of use of materials:

Specific Modulus and Specific Strength of Typical Fibers, Composites, and Bulk Metals.

Material Units	Specific gravity	Young's modulus (GPa)	Ultimate strength (MPa)	Specific modulus (GPa-m³/kg)	Specific strength (MPa-m³/kg
System of Units: SI					
Graphite fiber	1.8	230.00	2067	0.1278	1.148
Aramid fiber	1.4	1 24.0 0	1379	0.08857	0.9850
Glass fiber	2.5	85.00	1550	0.0340	0.6200
Unidirectional graphite/epoxy	1.6	181.00	1500	0.1131	0.9377
Unidirectional glass/epoxy	1.8	38.60	1062	0.02144	0.5900
Cross-ply graphite/epoxy	1.6	95.98	373.0	0.06000	0.2331
Cross-ply glass/epoxy	1.8	23.58	88.25	0.01310	0.0490
Quasi-isotropic graphite/epoxy	1.6	69.64	276.48	0.04353	0.1728
Quasi-isotropic glass/epoxy	1.8	18.96	73.08	0.01053	0.0406
Steel	7.8	206.84	648.1	0.02652	0.08309
Aluminum	2.6	68.95	275.8	0.02652	0.1061

5000 Specific strength Ο as a function of 4000 0 specific modulus Specific strength (Ksi-in³/lb) 3000 for: 2000 -Metals -Fibers 1000 Quasi-isotropic O_{Cross-ply} graphite/epoxy -Composites 0 graphite/epoxy þ 0 200 300 500 100 600 400 0

Specific modulus (Msi-in3/lb)

- Disadvantage of Composite?
- High
- Complex
- Repair of
- Composites do not have a high
- Composites do not necessarily

Fracture Toughness of Composite

For an infinite plate with a crack of

length 2a under a uniaxial load σ :

• Fracture toughness as a function of yield strength:

Primary material selection parameters for a hypothetical situation for:

Metals

Ceramics

Metal-ceramic composites

□ Factors vs. Mechanical Performance:

a) Fiber Factors

-L	-0
-S	-M

- **b)** Matrix Factors
- c) Fiber-Matrix Interface -C -N -T -R

Type of Composites:

- Particulate composites
- Flake composites
- Fiber composites

Particulate Composites

Advantage: improved strength, increased operating temperature and oxidation resistance

□ Flake Composites

Advantage: high out-of-plane flexural modulus, higher strength, and low cost.

General Fiber Composites

