Homework \#9

Problem 5.11-8 A beam of T cross section is formed by nailing together two boards having the dimensions shown in the figure.

If the total shear force V acting on the cross section is 1600 N and each nail may carry 750 N in shear, what is the maximum allowable nail spacing s ?

Problem 5.11-10 A steel beam is built up from a W 16×77 wideflange beam and two $10 \mathrm{in} . \times 1 / 2 \mathrm{in}$. cover plates (see figure on the next page). The allowable load in shear on each bolt is 2.1 kips.

What is the required bolt spacing s in the longitudinal direction if the shear force $V=30 \mathrm{kips}$? (Note: Obtain the dimensions and moment of inertia of the W shape from Table E-1.)

Problem 5.12-9 A cylindrical brick chimney of height H weighs $w=825 \mathrm{lb} / \mathrm{ft}$ of height (see figure). The inner and outer diameters are $d_{1}=3 \mathrm{ft}$ and $d_{2}=4 \mathrm{ft}$, respectively. The wind pressure against the side of the chimney is $p=10 \mathrm{lb} / \mathrm{ft}^{2}$ of projected area.

Determine the maximum height H if there is to be no tension in the brickwork.

Problem 7.4-7 An element in pure shear is subjected to stresses $\tau_{x y}=3000 \mathrm{psi}$, as shown in the figure.

Using Mohr's circle, determine (a) the stresses acting on an element oriented at a counterclockwise angle $\theta=70^{\circ}$ from the x axis and (b) the principal stresses. Show all results on sketches of properly oriented elements.

Problems 7.4-10
An element in plane stress is subjected to stresses σ_{x}, σ_{y}, and $\tau_{x y}$ (see figure).

Using Mohr's circle, determine the stresses acting on an element oriented at an angle θ from the x axis. Show these stresses on a sketch of an element oriented at the angle θ. (Note: The angle θ is positive when counterclockwise and negative when clockwise.)

$$
\sigma_{x}=21 \mathrm{MPa}, \sigma_{y}=11 \mathrm{MPa}, \tau_{x y}=8 \mathrm{MPa}, \theta=50^{\circ}
$$

