Problem 3.2-3 A circular aluminum tube subjected to pure torsion by torques T (see figure) has an outer radius r_{2} equal to twice the inner radius r_{1}.
(a) If the maximum shear strain in the tube is measured as $400 \times 10^{-6} \mathrm{rad}$, what is the shear strain γ_{1} at the inner surface?
(b) If the maximum allowable rate of twist is 0.15 degrees per foot and the maximum shear strain is to be kept at $400 \times 10^{-6} \mathrm{rad}$ by adjusting the torque T, what is the minimum required outer radius $\left(r_{2}\right)_{\text {min }}$?

Problems 3.2-3, 3.2-4, and 3.2-5

Problem 3.3-7 A circular tube of aluminum is subjected to torsion by torques T applied at the ends (see figure). The bar is 20 in . long, and the inside and outside diameters are 1.2 in . and 1.6 in., respectively. It is determined by measurement that the angle of twist is 3.63° when the torque is $5800 \mathrm{lb}-\mathrm{in}$.

Calculate the maximum shear stress $\tau_{\max }$ in the tube, the shear modulus of elasticity G, and the maximum shear strain $\gamma_{\text {max }}$ (in radians).

Problem 3.3-13 A vertical pole of solid circular cross section is twisted by horizontal forces $P=1100 \mathrm{lb}$ acting at the ends of a horizontal arm $A B$ (see figure). The distance from the outside of the pole to the line of action of each force is $c=5.0 \mathrm{in}$.

If the allowable shear stress in the pole is 4500 psi , what is the minimum required diameter $d_{\text {min }}$ of the pole?

Problem 3.4-1 A stepped shaft $A B C$ consisting of two solid circular segments is subjected to torques T_{1} and T_{2} acting in opposite directions, as shown in the figure. The larger segment of the shaft has diameter $d_{1}=2.25 \mathrm{in}$. and length $L_{1}=30 \mathrm{in}$.; the smaller segment has diameter $d_{2}=1.75 \mathrm{in}$. and length $L_{2}=20 \mathrm{in}$. The material is steel with shear modulus $G=11 \times 10^{6} \mathrm{psi}$, and the torques are $T_{1}=20,000 \mathrm{lb}-\mathrm{in}$. and $T_{2}=8,000 \mathrm{lb}-\mathrm{in}$.

Calculate the following quantities: (a) the maximum shear stress $\tau_{\text {max }}$ in the shaft, and (b) the angle of twist ϕ_{C} (in degrees) at end C.

