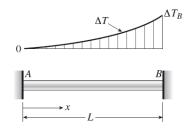
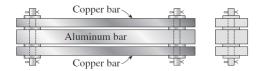

Mechanics of Solids

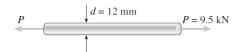
Home Work No.3


Problem 2.4-4 A bar ACB having two different cross-sectional areas A_1 and A_2 is held between rigid supports at A and B (see figure). A load P acts at point C, which is distance b_1 from end A and distance b_2 from end B

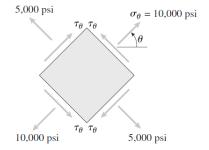
- (a) Obtain formulas for the reactions R_A and R_B at supports A and B, respectively, due to the load P.
- (b) Obtain a formula for the displacement δ_C of point C.
- (c) What is the ratio of the stress σ_1 in region AC to the stress σ_2 in region CB?


Problem 2.5-5 A bar AB of length L is held between rigid supports and heated nonuniformly in such a manner that the temperature increase ΔT at distance x from end A is given by the expression $\Delta T = \Delta T_B x^3/L^3$, where ΔT_B is the increase in temperature at end B of the bar (see figure).

Derive a formula for the compressive stress σ_c in the bar. (Assume that the material has modulus of elasticity E and coefficient of thermal expansion α .)


Problem 2.5-9 Rectangular bars of copper and aluminum are held by pins at their ends, as shown in the figure. Thin spacers provide a separation between the bars. The copper bars have cross-sectional dimensions 0.5 in. \times 2.0 in., and the aluminum bar has dimensions 1.0 in. \times 2.0 in.

Determine the shear stress in the 7/16 in. diameter pins if the temperature is raised by 100°F. (For copper, $E_c=18,000$ ksi and $\alpha_c=9.5\times10^{-6}$ /°F; for aluminum, $E_a=10,000$ ksi and $\alpha_a=13\times10^{-6}$ /°F.) Suggestion: Use the results of Example 2-8.


Problem 2.6-6 A steel bar with diameter d = 12 mm is subjected to a tensile load P = 9.5 kN (see figure).

- (a) What is the maximum normal stress σ_{\max} in the bar?
- (b) What is the maximum shear stress $au_{\rm max}$?
- (c) Draw a stress element oriented at 45° to the axis of the bar and show all stresses acting on the faces of this element.

Problem 2.6-15 Acting on the sides of a stress element cut from a bar in uniaxial stress are tensile stresses of 10,000 psi and 5,000 psi, as shown in the figure.

- (a) Determine the angle θ and the shear stress τ_{θ} and show all stresses on a sketch of the element.
- (b) Determine the maximum normal stress σ_{\max} and the maximum shear stress τ_{\max} in the material.

Problem 2.6-9 A compression member in a bridge truss is fabricated from a wide-flange steel section (see figure). The cross-sectional area A = 7.5 in.² and the axial load P = 90 k.

Determine the normal and shear stresses acting on all faces of stress elements located in the web of the beam and oriented at (a) an angle $\theta = 0^{\circ}$, (b) an angle $\theta = 30^{\circ}$, and (c) an angle $\theta = 45^{\circ}$. In each case, show the stresses on a sketch of a properly oriented element.

