
A non-perturbative definition of fluctuating hydrodynamics,

based on Zubarev hydrodynamics and Crooks theorem

G.Torrieri

Ongoing work with Francesco Becattini



This is an unpublished stuff me and Francesco are still discussing.

Dont take any of my answers too seriously, for they could be wrong.

But think about the issues I am rasing, for they are important!

• The necessity to redefine hydro

• A possible answer: Zubarev and Crooks!

• Discussion



Some experimental data warmup
(2004) Matter in heavy ion collisions seems to behave as a perfect fluid,
characterized by a very rapid thermalization



The technical details
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A "fluid"
Particles continuously
interact.  Expansion
determined by density
gradient (shape)

A "dust"
Particles ignore each
other, their path
is independent of
initial shape
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Calculations
using ideal
hydrodynamics

P.Kolb and U.Heinz,Nucl.Phys.A702:269,2002. P.Romatschke,PRL99:172301,2007



The conventional widsom
Hydrodynamics is an ”effective theory”, built around coarse-graining and
”fast thermalization”. Fast w.r.t. Gradients of coarse-grained variables
If thermalization instantaneus, then isotropy,EoS enough to close evolution

Tµν = (e+ P (e))uµuν + P (e)gµν

In rest-frame at rest w.r.t. uµ

Tµν = Diag (e(p), p, p, p)

(NB: For simplicity we assume no conserved charges, µB = 0 )



If thermalization not instantaneus,

Tµν = T eq
µν +Πµν , uµΠ

µν = 0

∑

n

τnΠ∂
n
τΠµν = −Πµν +O (∂u) +O

(
(∂u)2

)
+ ...

A series whose ”small parameter” (Barring phase transitions/critical
points/... all of these these same order):

K ∼ lmicro

lmacro
∼ η

sT
∇u ∼ DetΠµν

DetTµν
∼ ...

and the transport coefficients calculable from asymptotic correlators of
microscopic theory

Navier-Stokes ∼ K , Israel-Stewart ∼ K2 etc.



So hydrodynamics is an EFT in terms of K and correlators

η = lim
k→0

1

k

∫
dx

〈
T̂xy(x)T̂xy(y)

〉
exp [ik(x− y)] , τπ ∼

∫
eikx 〈TTT 〉 , ...

This is a classical theory , T̂µν → 〈Tµν〉 Higher order correlators
〈Tµν(x)...Tµν〉 play role in transport coefficients, not in EoM (if you
know equation and initial conditions, you know the whole evolution!)

As is the case with 99% of physics we know how to calculate rigorously
mostly in perturbative limit. But 2nd law of thermodynamics tells us
that A Knudsen number of some sort can be defined in any limit as a
thermalization timescale can always be defined Strong coupling → lots
of interaction → ”fast” thermalization → ”low” K



e.g. “Lower limits” on viscosity
Danielewicz and Gyulassy used the uncertainity principle and Boltzmann
equation

η ∼ 1

5
〈p〉nlmfp , lmfp ∼ 〈p〉−1 → η

s
=

1

15

KSS and extensions from AdS/CFT (actually any Gauge/gravity):
Viscosity≡ Black hole graviton scattering → η

s = 1
4π



but both theories not realistic

Danielewitz+Gyulassy In strongly coupled system the Boltzmann
equation is inappropriate

KSS UV-completion is conformal,planar, strong

Is there a general and intuitive way of thinking about these things? e.g.
minimal viscosity calculable just from hydrodynamics and, e.g., Lorentz
symmetry and Quantum mechanics? after all,

χ(w) =

∫
dx

〈
T̂xy(x)T̂xy(y)

〉
exp [ik(x− y)] ,

{
c2s
η

}
∼ lim

w→0
w−1

[
Re[χ
Im[χ

and Kramers-Konig

{
Re
Im

}
χ = 1

π

∫
dw′

w−w′

{
Im
−Re

}
χ



2011-2013 FLuid-like behavior has been observed down to very small sizes,
p− p collisions of 50 particles



CMS  1606.06198

BSchenke 1603.04349

H.W.Lin 1106.1608

1606.06198 (CMS) : When you consider geometry differences, hydro with
O (20) particles ”just as collective” as for 1000.



Hydrodynamics in small systems: “hydrodynamization”/”fake equilibrium”
A lot more work in both AdS/CFT and transport theory about
”hydrodynamization”/”Hydrodynamic attractors”

Kurkela et al
1907.08101.

Fluid-like systems far from equilibrium (large gradients )! Usually from 1D
solution of Boltzmann AdS/CFT equations!

But I have a basic question: ensemble averaging!



• What is hydrodynamics if N ∼ 50 ...

– Ensemble averaging , 〈F ({xi} , t)〉 6= F ({〈xi〉} , t)
suspect for any non-linear theory. molecular chaos in Boltzmann,
Large Nc in AdS/CFT, all assumed . But for O (50) particles?!?!

– For water, a cube of length η/(sT ) has O
(
109

)
molecules,

P (N 6= 〈N〉) ∼ exp
[
−〈N〉−1

(N − 〈N〉)2
]
≪ 1

.

• How do microscopic, macroscopic and quantum corrections talk to eac
other? EoS is given by p = T lnZ but ∂2 lnZ/∂T 2, dP/dV ??

NB: nothing to do with equilibration timescale . Even ”things born in
equilibrium” locally via Eigenstate thermalization have fluctuations!



And there is more... How does dissipation work in such a “semi-microscopic
system”?

• What does local and global equilibrium mean there?

• If Tµν → T̂µν what is Π̂µν Second law fluctuations? Sometimes because
of a fluctuation entropy decreases!



Bottom line: Either hydrodynamics is not the right explanation for these
observables (possible! ) or we are not understanding something basic about
what fluctuations do!



Landau and Lifshitz (also D.Rishke,B Betz et al): Hydrodynamics has three
length scales

lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

Weakly coupled: Ensemble averaging in Boltzmann equation good up to
O
(
(1/ρ)1/3∂µf(...)

)

Strongly coupled: classical supergravity requires λ ≫ 1 but λN−1
c =

gY M ≪ 1 so

1

TN
2/3
c

≪ η

sT

(
or

1√
λT

)
≪ Lmacro

QGP: Nc = 3 ≪ ∞ ,so lmicro ∼ η
sT . Cold atoms: lmicro ∼ n−1/3 > η

sT ?



Why is lmicro ≪ lmfp necessary? Without it, microscopic fluctuations
(which come from the finite number of DoFs and have nothing to do with
viscosity ) will drive fluid evolution.

∆ρ/ρ ∼ C−1
V ∼ N−2

c , thermal fluctuations “too small” to be important!

Kovtun, Moore, Romatschke, 1104.1586 As η → 0 “infinite propagation of
soundwaves” inpacts “IR limit of Kubo formula”

lim
η,k→0

∫
d3xeikx 〈T xyxy(x)T xyxy(0)〉 ≃ −iω

7Tpmax

60π2γη
+ (i+ 1)ω

3
2

7T

240πγ
3
2
η

where pmax is the maximum momentum scale and γη = η/(e+ p)



Kovtun,Moore and Romatschke plug in pmax into viscosity

η−1 ∼ η−1
bare +

pmax

T
≥ T

pmax
≥ T

s1/3

G.Moore,P.Romatschke

Phys.Rev.D84:025006,2011arXiv:1104.1586 

s=KSSη/Nc=3, 

This however, “assumes what you are trying to prove”: If there is a
“microscopic length”, you will eventually get a viscosity. What happens
when macro and micro talk to each other in a strongly coupled/turbulent
regime?



System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes via sound and vortex emission (phase space
looks more ”fractal”). Classically

η/(sT ) ≪ Leddy ≪ Lboundary , E(k) ∼
(
dE

dt

)2/3

k−5/3

For a classical ideal fluid, no limit! since limδρ→0,k→∞ δE(k) ∼ δρkcs → 0
but for quantum perturbations, E ≥ k so conservation of energy has to cap
cascade. A quantum viscosity!



My previous attempt Continuus mechanics (fluids, solids, jellies,...) is
written in terms of 3-coordinates φI(x

µ), I = 1...3 of the position of a fluid
cell originally at φI(t = 0, xi), I = 1...3 .

φ

φ

1

3φ

φ

φ

1

3
φ

φ

φ

1

3
φ

2
2

2

The system is a Fluid if it’s Lagrangian obeys some symmetries (Ideal
hydrodynamics ↔ Isotropy in comoving frame)

L → lnZ Z =

∫
Dφi exp

[
−T 4

0

∫
F (B(φI))d

4x

]
, 〈O〉 ∼ ∂lnZ

∂...



A lot of work on this 1903.08729

Some accomplishments EFT techniques, insights from Ostrogradski’s
theorem

Some limitations no clear way to incorporate microscopic fluctuations,
functional integral hard , lattice regularization possible but limited to
hydrostatic case (1502.05421 )

Using a volume cell as a DoF makes it hard to understand fluctuations
within it!



More fundamentally: Let us take a stationary slab of fluid at local
equilibrium.

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

Statistical mechanics: This is a system in global equilibrium, described by
a partition function Z(T, V, µ) , whose derivatives give expectation values
〈E〉 ,fluctuations

〈
(∆E)2

〉
etc. in terms of parameters representing

conserved charges

Fluid dynamics: This is the state of a field in local equilibrium which can
be perturbed in an infinity of ways. The perturbations will then interact
and dissipate according to the Euler/N-S equations



More fundamentally: Let us take a stationary slab of fluid at local
equilibrium.

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

To what extent are these two pictures the same?

• Global equilibrium is also local equilibrium, if you forget fluctuations

• Dissipation scale in local equilibrium η/(Ts) , global equilibration
timescale (Ts)/η



Some insight from maths
Millenium problem: existence and smoothness of the Navier-Stokes
equations

Important tool are “weak solutions” , similar to what we call “coarse-
graining”.

F

(
d

dx
, f(x)

)
= 0 ⇒ F

(∫
d

dx
φ(x)..., f(x)

)
= 0

φ(x) “test function”, similar to coarse-graining!



Existance of Wild/Nightmare solutions and non-uniqueness of weak solutions
shows this tension is non-trivial, coarse-graining “dangerous”

I am a physicist so I care little about the ”existence of ethernal solutions” to
an approximate equation, Turbulent regime and microscopic local equilibria
need to be consistent

Thermal fluctuations could both ”stabilize” hydrodynamics and
”accellerate” local thermalization



Our proposal



Every statistical theory needs a ”state space” and an ”evolution dynamics”
The ingredients

State space:Zubarev hydrodynamics Mixes micro and macro DoFs

Dynamics: Crooks fluctuation theorem provides the dynamics via a
definition of Πµν from fluctuations

T̂µν is an operator, so any decomposition, such as T̂µν
0 + Π̂µν must be

too!



Zubarev: A partition function for local equilibrium
Let us generalize the GC ensemble to a co-moving frame E/T → βµT

µ
ν

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

Z is a partition function with a field of Lagrange multiplies βµ , with
microscopic and quantum fluctuations included.

Effective action from lnTr[Z] . Correction to Lagrangian picture?



But....

• Dynamics is not clear. Gradient expansion in βµ but...

– 2nd order Gradient expansion (Navier stokes) non-causal perhaps...
– Use Israel-Stewart, Πµν arbitrary perhaps...
– Foliation dΣµ arbitrary but not clear how to link to Arbitrary Πµν

• What about fluctuations? Coarse-graining and fluctuations mix? How
does one truncate?



An operator formulation

T̂µν = T̂µν
0 + Π̂µν

and T̂µν
0 truly in equilibrium!

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

describes all cumulants and probabilities

〈Tµν
0 (x1)T

µν
0 (x2)...T

µν
0 (xn)〉 =

∏

i

δn

δβµ(xi)
lnZ



and also the full energy-momentum tensor

〈Tµν(x1)T
µν(x2)...T

µν(xn)〉 =
∏

i

δn

δgµν(xi)
lnZ

What this means

• Equilibrium at ”probabilistic” level

T̂µν = T̂µν
0 + Π̂µν

• KMS Condition obeyed by ”part of density matrix” in equilibrium,
“expand” around that! An operator constrained by KMS condition is
still an operator! ≡ time dependence in interaction picture



Does this make sense

T̂µν
0 + Π̂µν , ρ̂Tµν =

ρ̂T0 + ρ̂Π0

Tr (ρ̂T0 + ρ̂Π0)
≃ ρ̂T0 (1 + δρ̂)

For any flow field βµ and lagrangian we can define

ZT0(J(y)) =

∫
Dφ exp

[
−
∫ T−1(x

µ
i )

0

dτ ′
∫

d3x (L(φ) + J(y)φ)

]
∝

∝ exp
[
−β0T̂00

]∣∣∣
βµ=(T−1(x,t),~0)



E.g. Nishioka, 1801.10352 〈x| ρ |x′〉 =

=
1

Z

∫ τ=∞

τ=−∞

∫
[Dφ,Dy(τ)Dy′(τ)] e−iS(φy,y′)·δ

[
y(0+)− x′

]
δ
[
y′(0−)− x

]
︸ ︷︷ ︸

δJi(y(0
+))

δJi(x
′)

δJj(y(0
−))

δJj(x)

⇒ δ2

δJi(x)δJj(x′)
ln [ZT0(T

µν, J)× ZΠ(J)]J=J1(x)+J2(x′)

J1(x) + J2(x
′) chosen to respect Matsubara conditions!

Any ρ can be separated like this for any βµ . The question is, is this a
good approximation? Is dynamics given by Crooks theorem?

The source J related to the smearing in “weak solutions”. Pure maths
angle?



Entropy/Deviations from equilibrium

• In quantum mechanics Entropy function of density matrix

s = Tr(ρ̂ ln ρ̂) =
d

dT
(T lnZ)

Conserved in quantum evolution, not coarse-graining/gradient expansion

• In IS entropy function of the dissipative part of E-M tensor

nν∂ν (su
µ) = nµΠ

αβ

T
∂αββ , ≥ 0

nµ = dΣµ/|dΣµ|,Πµν arbitrary. How to combine coarse-graining? if
vorticity non-zero nµu

µ 6= 0



What about fluctuations

nν∂ν (su
µ) = nµΠ

αβ

T
∂αββ , ≥ 0

• If nµ arbitrary cannot be true for “any” choice

• 2nd law is true for “averages” anyways, sometimes entropy can decrease

We need a fluctuating formulation!

• “Statistical” (probability depends on “local microstates”)

• Dynamics with fluctuations, time evolution of βµ distribution



So we need

• a similarly probabilistic definition of Π̂µν = T̂µν − T̂µν
0 as an operator!!

• Probabilistic dynamics, to update Π̂µν, T̂µν !

Crooks fluctuation theorem!

Relates fluctuations, entropy in small fluctuating systems (Nano,proteins )



Crooks fluctuation theorem!

P (W )/P (−W ) = exp [∆S]

P(W) Probability of a system doing some work in its usual thermal
evolution

P(-W) Probability of the same system “running in reverse” and decreasing
entropy due to a thermal fluctuation

∆S Entropy produced by P (W )



Looks obvious but...

Is valid for systems very far from equilibrium (nano-machines, protein
folding and so on)

Proven for Markovian processes and fluctuating systems in contact with
thermal bath

Leads to irreducible fluctuation/dissipation: TUR (more later!)

Applying it to locally equilibrium systems within Zubarev’s formalism is
straight-forward



How is Crooks theorem useful for what we did? Guarnieri et al,
arXiv:1901.10428 (PRX) derive Thermodynamic uncertainity relations from

ρ̂ness ≃ ρ̂les(λ)e
Σ̂ Zles

Zness
, ρ̂les =

1

Zles
exp

[
−Ĥ

T

]

ρ̂les is Zubarev operator while Σ is calculated with a Kubo-like formula

Σ̂ = δβ∆Ĥ+ , Ĥ+ = lim
ǫ→0+

ǫ

∫
dteǫte−Ĥt∆ĤeĤt

Relies on

lim
w→0

〈[
Σ̂, Ĥ

]〉
→ 0 ≡ lim

t→∞

〈[
ˆΣ(t), Ĥ(0)

]〉
→ 0

This “infinite” is “small” w.r.t. hydro gradients. ≡ Markovian as in Hydro
with lmfp → ∂ but with operators→ carries all fluctuations with it!



P (W )/P (−W ) = exp [∆S] Vs Seff = lnZ

KMS condition reduces the functional integral to a Metropolis type
weighting, ≡ periodic time at rest with βµ

Markovian systems exhibit Crooks theorem, two adjacent cells interaction
outcome probability proportional to number of ways of reaching outcome
Same hyerarchy as normal gradient expansion, but operator level

Crooks theorem’s computation of lnZzubarev like “lattice weighting” by
Wilson lines.
Equivalent to Jarzynski’s theorem, used on lattice (Caselle et al, 1604.05544)



Applying Crooks theorem to Zubarev hydrodynamics: Stokes theorem

Wσ∼ Ω

−W

−
∫

Σ(τ0)

dΣµ

(
T̂µνβν

)
= −

∫

Σ(τ ′)

dΣµ

(
T̂µνβν

)
+

∫

Ω

dΩ
(
T̂µν∇µβν

)
,

true for “any” fluctuating configuration.



Wσ∼ Ω

−W

Let us now invert one foliation so it goes “backwards in time” assuming
Crooks theorem means

exp
[
−
∫
σ(τ)

dΣµβνT̂
µν
]

exp
[
−
∫
−σ(τ)

dΣµβνT̂µν
] = exp

[
1

2

∫

Ω

dΩµ
µ

[
Π̂αβ

T

]
∂ββα

]



Small loop limit

〈
exp

[∮
dΣµω

µνβαT̂αν

]〉
=

〈
exp

[∫
1

2
dΣµβ

µΠ̂αβ∂αββ

]〉

A non-perturbative operator equation...

Π̂µν

T

∣∣∣∣∣
σ

=

(
1

∂µβν

)
δ

δσ

[∫

σ(τ)

dΣµβνT̂
µν −

∫

−σ(τ)

dΣµβνT̂
µν

]

Similar to a Wilson line in Gauge theory!



Ω

t

dV

A sanity check: For a an equilibrium spacelike dΣµ = (dV,~0) (left-panel)
we recover Boltzmann’s

Πµν ⇒ ∆S =
dQ

T
= ln

(
N1

N2

)



Crooks theorem: thermodynamic uncertainity relations
Andr M. Timpanaro, Giacomo Guarnieri, John Goold, and Gabriel T. Landi
Phys. Rev. Lett. 123, 090604

〈
(∆Q)2

〉

〈Q〉2
≥ 2

∆S(W )

Valid locally in time!
d

dτ
∆S ≥ 1

2

d

dτ

〈Q〉2
〈(∆Q)2〉

Relates thermal fluctuations and dissipation, producing an irreducible
uncertainity



COnsequences: Hydro-TUR? Separate flow into potential and vortical part

βµ = ∂µφ+ ζµ , nµ → T∂µφ , ωµν = gµν

A likely TUR is

〈[Tµγ, T
γ
ν ]〉

〈Tµν〉2
≥ Cǫµγκ 〈T γκ〉 βµ

Παβ∂βζα
, C ∼ O (1)



Ω

t

dV

Deform the equilibrium contour and get Kubo formula! (right panel)

C = lim
w→0

Re [F (w)]

Im [F (w)]
, F (w) =

∫
d3xdt 〈T xy(x)T xy(0)〉 ei(kx−wt)



−dissipation does not vanish at
zero viscosity

"will be proven by
a different generation!"

Vlad Vicol (talk)

〈[Tµγ, T
γ
ν ]〉

〈Tµν〉2
≥ O (1) ǫµγκ 〈T γκ〉βµ

Παβ∂βζα

Fluctuations+Low viscosity ⇒ Turbulence ⇒ high vorticity ⇒ dissipation!
(usually mathematicians consider incompressible fluids, non-relativistic!)



Towards equations: Gravitational Ward identity!

∂α
{〈[

T̂µν(x), T̂αβ(x
′)
]〉

−

−δ(x− x′)
(
gβµ

〈
T̂αν(x

′)
〉
+ gβν

〈
T̂αµ(x

′)
〉
− gβα

〈
T̂µν(x

′)
〉)}

= 0

Small change in Tµν related to infinitesimal shift! Conservation of
momentum!

Can be used to fix one component of βµ = uµ/T , so uµu
µ = −1 and

(βµβ
µ)−1/2 = T weights Π̂µν in a way that conserves Π̂µν + T̂µν

0



Putting everything together: Dynamics at Z level

〈Tµν〉 =
2√−g

δ lnZ

δgµν
= 〈T0〉µν +Πµν

〈Tµν
0 〉 = δ2 lnZ

δβµdnν
, 〈Πµν〉 = 1

∂µβν
∂γ

d

d ln(βαβα)
[βγ lnZ]

∂α

[
2√−g

δ2 lnZ

δgµνδgαβ
− δ(x− x′)

2√−g

(
gβµ

δ lnZ

δgαν
+ gβν

δ lnZ

δgαµ
− gβα

δ lnZ

δgνµ

)]
= 0

and, finally, Crook’s theorem

δ2

δgµνδgαβ
lnZ =

√−g

2

βκ

2ωµνβα
∂βn

κ∂γ
d

d ln(βαβα)
[βγ lnZ]



Ito process

T̂µν(t) = T̂µν(t0) +

∫
∆αβ

[
T̂µαT̂βν

]
+

∫
1

2
dΣµβνΠ̂αβ∂

αββ

lnZ|t+dt =

∫
Dgµν(x)T

µν|t+dt , βµ|t+dt =
δ lnZ|t+dt

δTµν
nν

At every point in a foliation, dynamics is regulated by a stochastic term
and a dissipation term. Can be done numerically with montecarlo with an
ensemble of configurations at every point in time...



A numerical formulation

Define a field βµ field and nµ

Generate an ensemble of

lnZ|t+dt =

∫
Dgµν(x)T

µν|t+dt , βµ|t+dt =
δ lnZ|t+dt

δTµν
nν

According to a Metropolis algorithm ran via Crooks theorem

Reconstruct the new β and Πµν . The Ward identity will make sure
βµβ

µ = −1/T 2



A semiclassical limit?

∂µ

〈
T̂µν

〉
= 0 , ∂µ

〈
T̂µν
0

〉
= −∂µ

〈
Π̂µν

〉

Integrating by parts the second term over a time scale of many ∆µν gives,
in a frame comoving with dΣµ

∫ τ

0

dτ ′
〈
Π̂µν

〉
∂µβν ∼ βµ∂µ

〈
Π̂µν

〉
+
〈
Π̂µν

〉
= F (∂n≥1βµ, ...)

where F (βµ) is independent of Πµν . (Because local entropy is maximized
at vanishing viscosity F () depends on gradients. Israel-Stewart

However , results of, e.g., Gavassino 2006.09843 and Shokri 2002.04719
suggest that fluctuations with decreasing entropy have a role at first order
in gradient!



Polarization,Chemical potential and gauge symmetries

βµT
µν → βµT

µν + µNµ +WJ µ

Approach changes very little! but

• WJ µ might need relaxation, with Sµ → J µ

• Gauge potentials will lead to non-local correlations, Nµ → Nµ+U∂µU

Was motivation to look for this work, 1810.12468,1807.02796



Wild speculations



General relativity/Theory of everything T.Jacobson,gr-qc/9504004

dS ∝ dA , + , dQ = TdS ⇒ Gµν ∝ Tµν

a

a

a

https://en.wikipedia.org/wiki/Entropic_gravity

T.Jacobson, gr−qc/9504004

T.Padmanabhan  0911.5004

E.Verlinde, 1001.0785

a

a



a

a

a

https://en.wikipedia.org/wiki/Entropic_gravity

T.Jacobson, gr−qc/9504004

T.Padmanabhan  0911.5004

E.Verlinde, 1001.0785

a

a

Started the field of “entropic gravity”

• gravity is emergent and spacetime is a thermalized state

• ”Quantum dynamics” is actually fluctuating equilibrium state

• Difficoulty of quantizing gravity makes it an interesting idea, but nothing
concrete



Combining Crooks theorem with relativistic field theory

S =

∫
dA+ Tr [ρ ln ρ]

Dynamics of the geometry given by

exp [∆S] = P (W )/P (−W )

P (W ) given by the density matrix , P (W ) = Tr[W.ρ̂]

ρ̂ =
1

Z

∫
Dφ < φ|Ψ >< Ψ|φ >

Could lead to self-consistent way to update density matrix. Substitution
time-horizon and fluctuation/dissipation could ensure general covariance
(1501.00435 )



The theory of everything...Is the universe governed by Crooks?

Many authors and lots of experimental evidence!
a

a



Seriously... some conclusions

Riassumindo
issos 5 anos

• Fluctuations force us to go beyond transport and perturbation theory

• Zubarev hydrodynamics and Crooks fluctuation theorem naturally provide
us with a way!

• Lots to do but lots of potential!


