Sharif University of Technology - Department of Physics
 Quantum Mechanics II - Fall 2021

Problem Set 6
Due Saturday 1400/09/27

Problem 1 (10 pts): Dynamics of a driven two-level system

(a) Let us consider a generic time-dependent Hamiltonian $\hat{H}=\hat{H}_{0}+V(t)$. Suppose timeindependent states satisfy $\hat{H}_{0}|n\rangle=E_{n}|n\rangle$. As you know, in the interaction picture we have $i \hbar \partial_{t}|\psi(t)\rangle_{I}=V_{I}|\psi(t)\rangle_{I}$, with $V_{I}(t)=e^{i \hat{H}_{0} t / \hbar} V(t) e^{-i \hat{H}_{0} t / \hbar}$. If $|\psi(t)\rangle_{I}=\sum_{n} c_{n}(t)|n\rangle$, then show that

$$
\begin{equation*}
i \hbar \dot{c}_{m}(t)=\sum_{n} V_{m n}(t) e^{i \omega_{m n} t} c_{n}(t) \tag{1}
\end{equation*}
$$

with $V_{m n}(t) \equiv\langle m| V(t)|n\rangle$ and $\omega_{m n} \equiv\left(E_{m}-E_{n}\right) / \hbar$ (3 points).
(b) Let us consider a two-state system with

$$
\hat{H}_{0}=\left(\begin{array}{cc}
E_{1} & 0 \tag{2}\\
0 & E_{2}
\end{array}\right), \quad V(t)=\left(\begin{array}{cc}
0 & \delta e^{i \omega t} \\
\delta e^{-i \omega t} & 0
\end{array}\right) .
$$

Show that for the two-component vector $\boldsymbol{c}(t)=\left(c_{1}(t), c_{2}(t)\right)$, Eq. (1) translates into

$$
i \hbar \partial_{t} \boldsymbol{c}=\delta\left(\begin{array}{cc}
0 & e^{i\left(\omega-\omega_{21}\right) t} \\
e^{-i\left(\omega-\omega_{21}\right) t} & 0
\end{array}\right) \boldsymbol{c}(t) . \quad \text { (3 points) }
$$

(c) Show that for the initial condition $c_{1}(0)=1$ and $c_{2}(0)=0$, this equation has the solution

$$
\left|c_{2}(t)\right|^{2}=\frac{\delta^{2}}{\delta^{2}+\hbar^{2}\left(\omega-\omega_{21}\right)^{2} / 4} \sin ^{2} \Omega t, \quad \text { and } \quad\left|c_{1}(t)\right|^{2}=1-\left|c_{2}(t)\right|^{2}
$$

with $\Omega \equiv\left[(\delta / \hbar)^{2}+\left(\omega-\omega_{21}\right)^{2} / 4\right]^{1 / 2}$. Here, Ω is known as the Rabi frequency (3 points).
(d) Show that the maximum probability of occupying state 2 has the value of unity at resonance $\omega=\omega_{21}$ (1 point).

Problem 2 (10 pts): The kicked oscillator

(a) Let us again consider a generic time-dependent Hamiltonian $\hat{H}=\hat{H}_{0}+V(t)$. Suppose time-independent states satisfy $\hat{H}_{0}|n\rangle=E_{n}|n\rangle$. Consider a system which is prepared in an initial state $|i\rangle$ at time $t=t_{0}$. As you know, its final state, $|f\rangle$, at a subsequent time, t, is given by $|f\rangle=U_{I}\left(t, t_{0}\right)|i\rangle$, where the time-evolution operator $U_{I}\left(t, t_{0}\right)$ satisfies $i \hbar \partial_{t} U_{I}\left(t, t_{0}\right)=V_{I}(t) U_{I}\left(t, t_{0}\right)$. Show that for $U_{I}\left(t_{0}, t_{0}\right)=1$, we have

$$
\begin{equation*}
U_{I}\left(t, t_{0}\right)=\sum_{n=0}^{\infty}\left(-\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} d t_{1} \cdots \int_{t_{0}}^{t_{n-1}} d t_{n} V_{I}\left(t_{1}\right) V_{I}\left(t_{2}\right) \cdots V_{I}\left(t_{n}\right) . \tag{1}
\end{equation*}
$$

(b) Using $1=\sum_{n}|n\rangle\langle n|$, we obtain $|f\rangle=\sum_{n} c_{n}(t)|n\rangle$ with $c_{n}(t)=\langle n| U_{I}\left(t, t_{0}\right)|i\rangle$. Making use of (1) show that $c_{n}(t)=\sum_{j=0}^{\infty} c_{n}^{(j)}(t)$, with

$$
\begin{align*}
c_{n}^{(0)} & =\delta_{n i}, \\
c_{n}^{(1)}(t) & =-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} e^{i \omega_{n i} t^{\prime}} V_{n i}\left(t^{\prime}\right), \\
c_{n}^{(2)}(t) & =-\frac{1}{\hbar^{2}} \int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} e^{i \omega_{n m} t^{\prime}+i \omega_{m i} t^{\prime \prime}} V_{n m}\left(t^{\prime}\right) V_{m i}\left(t^{\prime \prime}\right), \tag{2}
\end{align*}
$$

with $V_{m n}(t) \equiv\langle m| V(t)|n\rangle$ and $\omega_{m n} \equiv\left(E_{m}-E_{n}\right) / \hbar$ (3 points).
(c) Suppose a simple harmonic oscillator is prepared in its ground state $|0\rangle$ at time $t=-\infty$. If it is perturbed by a small time dependent potential $V(t)=-e E x e^{-t^{2} / \tau^{2}}$. use second order perturbation theory, and determine the probability of finding it in the second excited state (4 points).

Problem 3 (10 pts): Alternative derivation of the Golden Rule

(a) Consider $c_{n}^{(2)}(t)$ from Eq. (2) in problem 2. Suppose that a harmonic potential perturbation $V(t)=e^{\epsilon t} V e^{-i \omega t}$ with the initial time $t_{0} \rightarrow-\infty$ is gradually switched on. Show that $c_{n}^{(2)}$ is given by

$$
\begin{equation*}
c_{n}^{(2)}(t)=-\frac{1}{\hbar^{2}} e^{i\left(\omega_{n i}-2 \omega\right) t} \frac{e^{2 \epsilon t}}{\left(\omega_{n i}-2 \omega-2 i \epsilon\right)} \sum_{m} \frac{\langle n| V|m\rangle\langle m| V|i\rangle}{\omega_{m}-\omega_{i}-\omega-i \epsilon} . \tag{2points}
\end{equation*}
$$

(b) Using $\lim _{\epsilon \rightarrow 0} \frac{2 \epsilon}{\left(\omega_{n i}-\omega\right)^{2}+\epsilon^{2}}=2 \pi \delta\left(\omega_{n i}-\omega\right)$, show that the transition rate in the limit of $\epsilon \rightarrow 0$ is given by

$$
\begin{equation*}
\Gamma_{i \rightarrow n}=\lim _{\epsilon \rightarrow 0} \frac{d\left|c_{n}^{(2)}\right|^{2}}{d t}=\frac{2 \pi}{\hbar^{4}}\left|\sum_{m} \frac{\langle n| V|m\rangle\langle m| V|i\rangle}{\omega_{m}-\omega_{i}-\omega}\right|^{2} \delta\left(\omega_{n i}-2 \omega\right) . \tag{2points}
\end{equation*}
$$

(c) Describe your interpretation of this result. Do you miss any energy conservation in this transition? (1 points)

