Introduction to Elementary Particle Physics

Néda Sadooghi
Department of Physics
Sharif University of Technology
Tehran - Iran

Elementary Particle Physics
Lecture 8: Esfand 13, 1397
1397-98-II

Bosons and Fermions in Relativistic Quantum Mechanics

Lecture 8

Review of lecture 6 and some remarks:

- Schrödinger equation for a free particle in non-relativistic QM:

$$
i \partial_{0} \psi=-\frac{\nabla^{2}}{2 m} \psi
$$

- Klein-Gordon equation for a free (massive) relativistic boson (spin 0 and electrically neutral):

$$
\left(\square+m^{2}\right) \varphi=0, \quad \text { with } \quad \square \equiv \partial_{0}^{2}-\nabla^{2}
$$

- Dirac equation for a free (massive) relativistic fermion (spin 1/2 and electrically charged):

$$
\left[i\left(\gamma^{0} \partial_{0}+\gamma^{i} \partial_{i}\right)-m\right] \psi=0
$$

Lecture 8

with γ 's satisfying the Clifford-algebra ($\mu, \nu=0,1,2,3$)

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}, \quad \text { with } \quad g^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)
$$

and

$$
\left\{\gamma^{5}, \gamma^{\mu}\right\}=0
$$

Remark 1:

- Dirac-representation (from lecture 6):

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Weyl-representation

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Lecture 8

In general: $i\left(\gamma^{0} \partial_{0}+\gamma^{i} \partial_{i}\right) \psi(\mathbf{x}, t)=0$

- Dirac γ matrices:

$$
\gamma^{0}=\left(\begin{array}{cc}
+1 & 0 \\
0 & -1
\end{array}\right)_{4 \times 4}, \quad \gamma^{i}=\left(\begin{array}{cc}
0 & +\sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)_{4 \times 4}
$$

In addition, we define $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$

$$
\gamma^{5}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)_{4 \times 4}
$$

- γ^{5} matrix satisfies the following eigenvalue equation:

$$
\begin{aligned}
\gamma^{5} \psi_{R} & =+\psi_{R}, & & \text { Right-handed particles } \\
\gamma^{5} \psi_{L} & =-\psi_{L} & & \text { Left-handed particles }
\end{aligned}
$$

- γ^{5} is the generator of chirality (space-time transformation) !!!

Lecture 8

Helicity:

- We start with Dirac equation for massless fermions

$$
\gamma^{0} \partial_{0} \psi(\mathbf{x}, t)=-\gamma^{i} \partial_{i} \psi(\mathbf{x}, t)=-\gamma \cdot \nabla \psi(\mathbf{x}, t)
$$

$\times \gamma^{5} \gamma^{0}$ and use

$$
\left(\gamma^{0}\right)^{2}=1, \quad \text { and } \quad \gamma^{5} \gamma^{0} \gamma^{i} \equiv \Sigma^{i}=\left(\begin{array}{cc}
\sigma^{i} & 0 \\
0 & \sigma^{i}
\end{array}\right)_{4 \times 4}
$$

to arrive at

$$
\gamma^{5} \partial_{0} \psi(\mathbf{x}, t)=\boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \psi(\mathbf{x}, t), \quad \text { or } \quad \quad \gamma^{5} p_{0} \psi=\boldsymbol{\sigma} \cdot \mathbf{p} \psi
$$

- For massless particles $p_{0}=E= \pm|\mathbf{p}|$
- Using $\frac{\mathbf{p}}{p_{0}}= \pm \frac{\mathbf{p}}{|\mathbf{p}|} \equiv \pm \widehat{\mathbf{p}}$, we obtain \curvearrowright

Lecture 8

$$
\mathcal{H} \psi= \pm \gamma^{5} \psi, \quad \text { with } \quad \mathcal{H} \equiv \boldsymbol{\sigma} \cdot \widehat{\mathbf{p}}
$$

Definition: $\mathcal{H} \equiv \sigma \cdot \widehat{\mathbf{p}}$ is the helicity operator
The above relation means

$$
\text { Helicity }=\operatorname{sgn}(E) \times \text { Chirality } \rightarrow \begin{cases}\text { Particles } & \operatorname{sgn}(E)>0 \\ \text { Anti-Particles } & \operatorname{sgn}(E)<0\end{cases}
$$

For Particles: Helicity=Chirality

Lecture 8

- Chirality/Helicity:

Right-handed:
Left-handed:

Lecture 8

Remark 2:

- Using Weyl-representation for γ-matrices, the Dirac-equation for massless fermions $\psi=\binom{\chi}{\varphi}$ reduces to

$$
\left(\begin{array}{cc}
0 & E-\boldsymbol{\sigma} \cdot \mathbf{p} \\
E+\boldsymbol{\sigma} \cdot \mathbf{p} & 0
\end{array}\right)\binom{\chi}{\varphi}=\binom{0}{0}
$$

or

- On the other hand

$$
\gamma^{5} \psi=\left(\begin{array}{cc}
-1 & 0 \\
0 & +1
\end{array}\right)\binom{\chi}{\varphi}=\binom{-\chi}{+\varphi}
$$

$\Longrightarrow\left\{\begin{array}{l}\chi \text { is a LH particle or antiparticle } \\ \varphi \text { is a RH particle or antiparticle }\end{array}\right.$
Particles and antiparticles have opposite chirality

Lecture 8

Remark 3: New interpretation for $E<0 \rightarrow$ Antiparticle

- Energy dispersion relation of a relativistic free boson or fermion

$$
E^{2}=\mathbf{p}^{2}+m^{2} \Longrightarrow E= \pm \sqrt{\mathbf{p}^{2}+m^{2}}, \quad \text { Dirac sea } \curvearrowright \gamma \rightarrow e^{+}+e^{-}
$$

- Feynman-Stueckelberg interpretation:

$$
\psi=A e^{i E t-i \mathbf{p} \cdot \mathbf{x}}
$$

- Wave function ψ represents a particle with postive energy $(+|E|)$ and momentum $+\mathbf{p}$ traveling in positive \mathbf{x} direction forwards in time ($t>0$).
- Same wave function ψ represents a particle with negative energy ($-|E|$) and momentum $-\mathbf{p}$ traveling in negative \mathbf{x} direction backwards in time $(t<0) \longrightarrow$ An antiparticle

$$
\psi=A e^{i(-E)(-t)-i(-\mathbf{p}) \cdot(-\mathbf{x})}=A e^{i E t-i \mathbf{p} \cdot \mathbf{x}}
$$

Lecture 8

Feynman-Stueckelberg interpretation of $\mathrm{E}<0$

- Pair creation is related to conservation of electric charge (for bosons and fermions): Bosons ($W^{ \pm}$), fermions (quarks and leptons)
- The total fermion number should be conserved
- Question: Other conservation laws?
- Lepton flavor number conservation
- Quark flavor number conservation

