Introduction to Elementary Particle Physics

Néda Sadooghi
Department of Physics
Sharif University of Technology
Tehran - Iran

Elementary Particle Physics
Lecture 6 and 7: Esfand 6 and 11, 1397 1397-98-II

Bosons and Fermions in Relativistic Quantum Mechanics

Particle Classification:

- Bosons: Particles with integer spin

They obey Bose-Einstein statistics

- Fermions: Particles with half-integer spin They obey Fermi-Dirac statistics

Def.: The statistics obeyed by a particle \rightarrow
How does the wave function describing an ensemble of identical particles behave under interchange of any pair of particles?

Lecture 6 and 7

In QM: N noninteracting and identical particles:
Hamiltonian= Sum of N identical one-particle Hamiltonian H_{i}

$$
H=\sum_{i=1}^{N} H_{i}
$$

Eigenvalue equation for one-particle states $\varphi_{\alpha_{i}}(i), i=1, \cdots, N$

$$
H_{i} \varphi_{\alpha_{i}}(i)=E_{\alpha_{i}} \varphi_{\alpha_{i}}(i) .
$$

For $H \Phi=E \Phi$, we obtain the energy eigenvalue

$$
E=E_{\alpha_{1}}+\cdots+E_{\alpha_{N}}
$$

For eigenfunctions Φ, bosons and fermions are to be considered separately:

Lecture 6 and 7

- Bosons:

$$
\Phi(1, \cdots, N)=\varphi_{\alpha_{1}}(1) \cdots \varphi_{\alpha_{N}}(N)
$$

- Fermions:

$$
\begin{aligned}
\Phi(1, \cdots, N) & =\frac{1}{\sqrt{N}} \sum_{P}(-1)^{P} P \varphi_{\alpha_{1}}(1) \cdots \varphi_{\alpha_{N}}(N) \\
& =\frac{1}{\sqrt{N}}\left|\begin{array}{ccc}
\varphi_{\alpha_{1}}(1) & \cdots & \varphi_{\alpha_{1}}(N) \\
\cdot & \cdots & \vdots \\
\varphi_{\alpha_{N}}(1) & \cdots & \varphi_{\alpha_{N}}(N)
\end{array}\right|
\end{aligned}
$$

- Slater-determinant (interchange of any two columns leads to a -1)
- For even (odd) permutations (-1$)^{P}= \pm 1$
- For $\varphi_{\alpha_{i}}(i)=\varphi_{\alpha_{j}}(j)$, we have $\Phi(1, \cdots, N)=0$
[Pauli exclusion principle]

Lecture 6 and 7

Bosons in relativistic QM (Klein-Gordon equation):

- Schrödinger equation in non-relativistic QM (in one space dimension):

$$
E=\frac{p_{x}^{2}}{2 m}+V(x)
$$

Using ($c=\hbar=1$)

we obtain the non-relativistic Schrödinger equation

$$
i \partial_{0} \psi(x, t)=\left(-\frac{\partial_{x}^{2}}{2 m}+V(x)\right) \psi(x, t)
$$

Lecture 6 and 7

Bosons in relativistic QM (Klein-Gordon equation):

- To arrive at the "relativistic Schrödinger equation" (the KG equation), we start with (one-dimensional) relativistic energy dispersion relation $(c=\hbar=1)$

$$
E^{2}=p_{x}^{2}+m^{2}
$$

Using $E \rightarrow i \partial_{0}$ and $p_{x} \rightarrow-i \partial_{x}$, we obtain

$$
\left(\partial_{0}^{2}-\partial_{x}^{2}+m^{2}\right) \varphi(x, t)=0
$$

or in general $\left(\square+m^{2}\right) \varphi(\boldsymbol{x}, t)=0 \quad$ with $\quad \square \equiv \partial_{0}^{2}-\nabla^{2}$

- $\varphi(\boldsymbol{x}, t)$ is a scalar field and in QFT it describes a spin-0 and electrically neutral particle
- In contrast to Schrödinger equation, the KG equation is second order in space and time \rightarrow Relativistic covariance

Lecture 6 and 7

Fermions in relativistic QM (Dirac equation):

- Dirac equation is first order in space and time
- For massless (Weyl) fermions (spinors), it reads

$$
\partial_{0} \psi(\boldsymbol{x}, t)= \pm \boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \psi(\boldsymbol{x}, t)
$$

$\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are three Pauli-matrices with $\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j}$ and $\left[\sigma_{i}, \sigma_{j}\right]=2 \epsilon_{i j k} \sigma_{k}[S U(2)$ algebra]

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- $\psi(\boldsymbol{x}, t)$ is a two component spinor field: $\psi=\binom{\chi}{\varphi}$

$$
\begin{equation*}
\partial_{0} \psi_{\alpha}=\left(\sigma_{i}\right)_{\alpha \beta} \partial_{i} \psi_{\beta}, \quad \alpha, \beta=1,2 \tag{1}
\end{equation*}
$$

Lecture 6 and 7

Fermions in relativistic QM (Dirac equation):

- ψ satisfies at the same time a three-dimensional massless KG equation

$$
\square \psi(\boldsymbol{x}, t)=0
$$

Proof: We start with $\partial_{0} \psi= \pm \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \psi$ and build

$$
\begin{aligned}
\partial_{0}^{2} \psi & = \pm \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \partial_{0} \psi=\sigma_{i} \sigma_{j} \partial_{i} \partial_{j} \psi \\
& =\frac{1}{2}\left(\left\{\sigma_{i}, \sigma_{j}\right\}+\left[\sigma_{i}, \sigma_{j}\right]\right) \partial_{i} \partial_{j} \psi=\frac{1}{2}\left(2 \delta_{i j}\right) \partial_{i} \partial_{j} \psi \\
\partial_{0}^{2} \psi & =\partial_{i}^{2} \psi
\end{aligned}
$$

which means $\square \psi=0$ q.e.d.

- This is important, because it shows that (massless) Dirac particles satisfy the same dispersion relation as KG particles

$$
p^{2}=p_{0}^{2}-\boldsymbol{p}^{2}=0, \quad \text { or } \quad E^{2}=\boldsymbol{p}^{2}
$$

Lecture 6 and 7

Spectrum of Dirac particles

Lecture 6 and 7

Dirac Sea (Hole theory)

$$
\gamma+\text { (Full) Negative E particle } \rightarrow \text { Positive E particle }
$$

$$
\gamma \rightarrow e^{+}+e^{-}
$$

