Introduction to Elementary Particle Physics

Néda Sadooghi

Department of Physics Sharif University of Technology Tehran - Iran

Elementary Particle Physics Lecture 5: Esfand 04, 1397 1397-98-II

Symmetries

Symmetries:

- Space-time symmetries
 - Continuous Lorentz transformation: Rotation and boost Lorentz+translation invariance → Poincaré invariance
 - Discrete Lorentz transformation: C (Parity), T (Time reversal)
- Internal symmetries
 - Global transformation: Global $U(1_{em})$, $SU(N_f)$ and $SU(N_c)$ \sim Conservation of (electric) charge
 - Local transformation: Local $U(1_{em})$, $SU(N_f)$ and $SU(N_c) \sim$ Gauge fields (force carriers)

For **continuous** global and local symmetries, there are various **mechanisms of symmetry breaking**

Explicit symmetry breaking: A term is added in the Lagrangian (*L*) of the model that breaks explicitly the symmetry →
Example: Explicit chiral (left-right) symmetry breaking by adding a mass term in *L*

2. Spontaneous symmetry breaking (SSB):

Lagrangian of the model is invariant under certain symmetry, but the vacuum does not respect this symmetry \rightarrow

Mexican hat potential

For $m^2 > 0$ and $\lambda > 0$

$$V(\varphi) = -\frac{1}{2}m^{2}\varphi^{2} + \frac{1}{4}\lambda\varphi^{4}$$
$$\frac{dV(\varphi)}{d\varphi} = 0 \Longrightarrow \varphi = 0 \text{ (max)} \text{ and } \varphi = \pm\sqrt{\frac{m^{2}}{\lambda}} \text{ (min)}$$

2. Spontaneous symmetry breaking (SSB):

Lagrangian of the model is invariant under certain symmetry, but the vacuum does not respect this symmetry \rightarrow

Mexican hat potential

Two categories of SSB:

 a) Spontaneous breaking of global symmetries: Goldstone mechanism Example: Spontaneous chiral symmetry breaking (SχSB) Consequence: <u>Massless</u> Goldstone modes → Example: Pions (π⁰, π[±]) are Goldstone modes of spontaneous SU(2_L) × SU(2_R) breaking [QCD phase transition]

b) Spontaneous breaking of local (gauge) symmetries:
Higgs mechanism
Example: Spontaneous symmetry breaking of SU(2_f) × U(1_{em})
[Electroweak symmetry breaking]

Consequence: <u>Massive</u> gauge particles W^{\pm}, Z^{0}

Superconductivity (Meissner Effect)

QED (U(1)) photons become massive because of the **Higgs** mechanism of SSB of local U(1) symmetry

- Dynamical symmetry breaking: Classical model is invariant under certain symmetry, but the symmetry is broken by quantum corrections (external parameters *T*, *B* etc) →
 Example: Dynamical mass generation
- 4. Anomalous symmetry breaking: A (global) charge that was conserved at classical level is not conserved at quantum level \rightarrow Example: Quantum anomaly Consequence: Pion decay $\pi^0 \rightarrow 2\gamma$

Related to: Baryogenesis [Baryon-Antibaryon asymmetry]

QCD Phase Transition

Phase diagram of Water

Phase diagram of Quark Matter

Net Baryon Density