Introduction to Elementary Particle Physics

Néda Sadooghi

Department of Physics Sharif University of Technology Tehran - Iran

Elementary Particle Physics

Lecture 23: 30 Ordibehesht 1398

1397-98-II

Scattering Part I: Introduction

Reference:

B. Povh et al, Particles and Nuclei, 6th Edition, Springer Verlag, 2008

Scattering: General observations about scattering processes

Scattering experiments are used

- to study the details of the interactions between different particles
- to obtain information about the internal structure of atomic nuclei and their constituents
- In general
 - In the reaction $a + b \rightarrow c + d$, a is the **projectile** and b is the **target**
 - c and d are the **products** of the reaction
 - We use detectors to determine
 - the rate of the reactions
 - the energy and mass of the reaction products
 - the relative angle to the beam direction

Elastic Scattering: $a + b \rightarrow a' + b'$

- Same particles are presented before and after the scattering
- > They are identical up to their momenta and energies

$$E_a + E_b = E_{a'} + E_{b'}$$
$$\mathbf{p}_a + \mathbf{p}_b = \mathbf{p}_{a'} + \mathbf{p}_{b'}$$

Moreover

$$E_{kin}^{before} = E_{kin}^{after} \longrightarrow m_a + m_b = m_{a'} + m_{b'}$$

Inelastic Scattering: $a + b \rightarrow a' + b^*$, $b^* \rightarrow c + d$

- In inelastic reactions, part of the kinetic energy transferred from a to b excites it into b*
- The excited state will afterwards return to the ground state by emitting a light particle (e.g. a photon or a π meson) or it may decay into two or more different particles

Inelastic Scattering

- Inclusive measurement: A measurement of a reaction in which only the scattered particle a' is observed and the other reaction products are not is called an <u>inclusive</u> measurement
- Exclusive measurement: If all reaction products are detected, we speak of an <u>exclusive</u> measurement

Inelastic Scattering

- In some processes the beam particles (a) may completely disappear in the reaction.
- Its total energy then goes into the excitation of the target or into the production of new particles.

Such inelastic reactions represent the basis of nuclear and particle spectroscopy

Geometric reaction cross-section

Projectile

- Point-like particles $\rightarrow a$
- Monoenergetic beam of *a* with velocity $\rightarrow v_a$
- Number of beam particles $\rightarrow N_a$
- Particle density $\rightarrow n_a$
- Beam particle rate $\rightarrow \dot{N}_a$

Beam cross-sectional area $\rightarrow A$

Target

- Thickness of the target $\rightarrow d$
- Number of scattering center (b) $\rightarrow N_b = n_b A d$
- ► Particle density → n_b
- Cross-sectional area of each target particle $\rightarrow \sigma_b$ (to be determined)

Geometric reaction cross-section

We assume:

- After the collision the beam particle is removed from the beam
- We do not distinguish between elastic and inelastic scattering

Then

The area presented by a single scattering center to the incoming projectile a is called the **geometric reaction cross-section**

$$\Phi_a = \frac{\dot{N}_a}{A} = n_a v_a$$

Total number of target particles with the beam area

$$N_b = n_b A d$$

Total reaction rate

$$\dot{N} = \Phi_a N_b \sigma_b$$

Geometric reaction cross-section

If we assume a homogeneous constant beam (e.g. neutrons from a reactor)

$$\sigma_b = \frac{\dot{N}}{\Phi_a N_b}$$

$$= \frac{\# \text{ of reactions per unit time}}{\# \text{ of beam particles per unit time per unit area } \times \# \text{ scattering centers}}$$

In high energy physics experiments, since the beam is generally not homogeneous but the area density of the scattering centers is homogeneous, we use

of reactions per unit time

 $\sigma_b = \frac{1}{\# \text{ of beam particles per unit time } \times \# \text{ scattering centers per unit area}}$

Total cross-section

So far we have neglected

- Energy dependence
- Shape, strength and range of the interaction potential (e.g. neutrinos feel only the weak interaction, electrons feel the electromagnetic interaction, and we have σ_μ ≪ σ_e)

But, we nevertheless use the former definition

of reactions per unit time

 $\sigma_{\textit{total}} = \frac{1}{\textit{\# of beam particles per unit time} \times \textit{\# scattering centers per unit area}}$

 $\sigma_{total} = \sigma_{elastic} + \sigma_{inelastic}$

Its unit: 1 barn = $1b = 10^{-28}m^2$

Typical cross-sections

 $\sigma_{pp}(10 \text{GeV}) \approx 40 \text{mb}$

 $\sigma_{\nu\rho}(10 {\rm GeV}) \approx 70 {\rm fb}$

Luminosity

$$\mathcal{L} \equiv \Phi_a N_b = \frac{\dot{N}_a}{A} N_b = n_a v_a N_b = \dot{N}_a n_b d$$

 $[\mathcal{L}]=(\text{Area}\times\text{time})^{-1}$

Another definition for luminosity in a storage ring

$$\mathcal{L} = \frac{N_a N_b j v / U}{A}$$

- Number of particle packets $\rightarrow j$
- Velocity of N_a or N_b particles (in two opposite directions) $\rightarrow v$
- Circumference of the ring $\rightarrow U$
- ▶ Beam cross-section at the collision point → A

Assuming a Gaussian distribution of the beam particles around the beam center with horizontal and vertical standard deviations σ_x and σ_y

$$A = 4\pi\sigma_x\sigma_y$$

• Typical beam diameter
$$\lesssim 10^{-4} m$$

Integrated luminosity

$$\int \mathcal{L} dt, \qquad \left[\int \mathcal{L} dt\right] = (\operatorname{Area} \times \operatorname{time})^{-1} \times \operatorname{time} = \operatorname{Area}^{-1} = \operatorname{barn}^{-1}$$

> The number of reactions which can be observed in a given reaction time

= Integrated luminosity \times the cross-section

$$=$$
 100 pb⁻¹ × 1 nb $=$ 10²⁺¹²⁻⁹ $=$ 10⁵ reactions

Differential cross-section

• Detector area A_D • Distance r• Angle with respect to the beam direction θ • Covered solid angle $\Delta \Omega = A_D/r^2$ The rate of the reaction $\dot{N}(E, \theta, \Delta \Omega) = \mathcal{L} \frac{d\sigma(E, \theta)}{d\Omega} \Delta \Omega$

Double differential cross-section

$$\sigma_{tot}(E) = \int_0^E \int_{4\pi} \frac{d^2 \sigma(E', \theta)}{dE' d\Omega} d\Omega dE'$$

E' is the energy of the scattered particles