Introduction to Elementary Particle Physics

Néda Sadooghi

Department of Physics
Sharif University of Technology
Tehran - Iran

Elementary Particle Physics
Lecture 13: Farvardin 19, 1398
1397-98-II

Radiative Corrections of QED

Remark 1: Important one-loop corrections to QED

- Fermion self-energy diagram (Order g^{2})

- Vacuum polarization or photon self-energy diagram (Order g^{2})

- Vertex function (Order $g \times g^{2}$)

Remark 2: Perturbative series in QED

- Perturbative corrections to fermion propagator (including one-loop fermion self-energy) \rightarrow Effective (constituent) mass of fermions

- Perturbative corrections to photon propagator (including one-loop vacuum polarization tensor) \rightarrow Running coupling of QED

$$
\begin{aligned}
& \text { wn + n Onn + n Onomon+ n (} \\
& +m(m) m+\cdots m+\ldots
\end{aligned}
$$

- Perturbative corrections to vertex (including one-loop vertex function) \rightarrow Anomalous magnetic moment of fermions

Remark 3: Photon propagator; Radiative corrections
Summation of all one-particle irreducible (1PI) diagrams

Summation of all orders

$$
\alpha\left(q^{2}\right)=\frac{\alpha(0)}{1-\Pi_{\gamma}\left(q^{2}\right)}
$$

Taylor Expansion [Geometric series]

Remark 3: Screening of the electric charge (Running coupling)

- Classical Electrodynamics
- Effective coupling depends on how far you are from the source
- In a dielectric medium $q_{\text {eff }}=\frac{q}{\epsilon}$ with ϵ the dielectric constant
- The closer we are to the positive charge, the more we see the full charge q
- Quantum Electrodynamics
- Vacuum itself behaves like a dielectric medium \rightarrow vacuum polarization

Uehling potential ($r \gg \frac{1}{m_{e}}$ with m_{e} the electron mass)

$$
V(r)=-\frac{\alpha}{r}\left(1+\frac{\alpha}{4 \sqrt{\pi}} \frac{e^{-2 m_{e} r}}{\left(m_{e} r\right)^{3 / 2}}+\cdots\right)
$$

Note: Compton wavelength $\lambda_{c}=\frac{\hbar}{m_{e} c}=2.43 \times 10^{-12} \mathrm{~m}$.
For $\hbar=c=1$, we have $r \sim \frac{1}{m_{e}}=\lambda_{c} \sim 4 \times 10^{-3} \mathrm{~A}^{\circ}$

- At $r<\frac{1}{m_{e}}$, we begin to penetrate the polarization cloud and see the bare charge

Lecture 13

Remark 4: β-function of QED

For $\hbar=c=1$, Energy scale $=\mu=\frac{1}{\text { Length scale }}=\frac{1}{r}$

- Definition: β-function

$$
\beta(e(\mu)) \equiv \mu \frac{\partial e}{\partial \mu}
$$

- One-loop β-function of QED

$$
\beta(e(\mu))=\mu \frac{\partial e(\mu)}{\partial \mu}=\frac{e^{3}}{12 \pi^{2}} \rightarrow e^{2}(\mu)=\frac{e^{2}\left(\mu_{0}\right)}{1-\frac{e^{2}\left(\mu_{0}\right)}{6 \pi^{2}} \ln \frac{\mu}{\mu_{0}}}
$$

The four (three) forces
B. Quantum Chromodynamics (QCD)

Lecture 13

Remark 1: Primitive vertices of QCD

$\mathcal{L}_{1}=+g_{s} \bar{\psi} \gamma^{\mu} A_{\mu} \psi$
$\mathcal{L}_{2}=-g_{s}\left(\partial_{\mu} A_{\lambda}\right)\left[A^{\mu}, A^{\lambda}\right]$
$\mathcal{L}_{3}=-g_{s}^{2}\left[A_{\mu}, A_{\nu}\right]\left[A^{\mu}, A^{\nu}\right]$
$\mathcal{L}_{4}=-g_{s} \bar{c}\left[\partial^{\mu} A_{\mu}, c\right]$

with $\quad A_{\mu}=A_{\mu}^{a} t^{a}$
$t^{a}, a=1, \cdots, 8$ are Gell-Mann matrices

Gell-Mann matrices are generators of $\operatorname{SU}(3)$ gauge group

Lecture 13

Remark 2: Important one-loop corrections to QCD

- Fermion (quark) self-energy diagram (Order g_{s}^{2})

- Vacuum polarization or gluon self-energy diagram (Order g_{s}^{2})

- Vertex function (Order g_{s}^{2})

\rightarrow Running coupling of QCD

Lecture 13

Remark 3: Antiscreening, β-function of QCD [1974] (Nobel prize 2004)

- One-loop β-function of QCD

$$
\beta\left(g_{s}(\mu)\right) \equiv \mu \frac{\partial g_{s}}{\partial \mu}
$$

- One-loop β-function of QED

$$
\begin{gathered}
\beta\left(g_{s}(\mu)\right)=\mu \frac{\partial g_{s}(\mu)}{\partial \mu}=-\frac{g_{s}^{3}}{16 \pi^{2}}\left(\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right) \Longrightarrow \\
g_{s}^{2}(\mu)=\frac{g_{s}^{2}\left(\mu_{0}\right)}{1+\frac{g_{s}^{2}\left(\mu_{0}\right)}{8 \pi^{2}}\left(\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right) \ln \frac{\mu}{\mu_{0}}}
\end{gathered}
$$

$\underset{\text { [Bethke 2006 }\}}{\text { Summary }} a_{s}$

