Introduction to Elementary Particle Physics

Néda Sadooghi

Department of Physics
Sharif University of Technology Tehran - Iran

Elementary Particle Physics
Lecture 11: Esfand 25, 1397
1397-98-II

Elementary particle dynamics
The four forces

Remarks

- Classically: Interaction at a distance is described in term of a potential or field
- Another idea: Exchange interaction, where the force carriers (intermediate vector bosons, quanta of force, virtual gauge bosons) carry energy and momentum from one charge to another
- Note: Although classical mechanics helps us to visualize events but must never be taken literally as representing quantum phenomena (e.g. a photon does not possess a classical trajectory)
- Energy conservation dictates that the process takes place within a time-scale Δt limited by the uncertainty principle

$$
\Delta E \Delta t \sim \hbar
$$

The four (three) forces
A. Quantum Electrodynamics (QED)

Lecture 11

Feynman diagrams: Elementary process in QED

- Emission or absorption of a photon by an electron or in general charged lepton/quark

- The time flows horizontally from left to right
- Arrows forwards in time = charged leptons (e.g. electrons) or quarks going forwards in time
- The interaction point is the so called vertex
- The interaction (vertex) arises from the following term in the interaction part of the Lagrangian density of QED $\left(\mathcal{L}_{Q E D}^{\text {int }}\right)$

$$
\mathcal{L}_{Q E D}^{\text {int }}=-e \bar{\psi} \gamma^{\mu} A_{\mu} \psi
$$

- No other primitive vertex exists in $\mathcal{L}_{\text {QED }}$

Lecture 11

Møller Scattering: $e^{-}+e^{-} \rightarrow e^{-}+e^{-}$

- Interaction between two electron
- Classically: Coulomb repulsion of similar charges
a. Two electrons enter
b. A photon passes between them (the diagram represents both ordering)
c. Two electrons exit

Note: Arrows forwards in time = charged leptons going forwards in time Arrows backwards in time = charged anti-leptons going forwards in time

Lecture 11

Bhabha Scattering: $e^{-}+e^{+} \rightarrow e^{-}+e^{+}$

- Interaction between an electron and a positron
- Classically: Coulomb attraction between opposite charges
a. An electron-positron pair annihilate to create a photon, which in turn creates a new electron-positron pair
b. We say: An electron-positron pair comes in, and an electron-positron pair goes out

$$
\text { incoming }\left(e^{-}, e^{+}\right) \text {pair } \leftrightarrow \text { outgoing }\left(e^{-}, e^{+}\right) \text {pair }
$$

Bhabha Scattering: $e^{-}+e^{+} \rightarrow e^{-}+e^{+}$

- Two different channels (s and t channels)

Note: Both diagrams are necessary to compute the scattering amplitude and eventually the differential and total cross-sections of the Bhabha scattering

Other important QED processes:

1. Pair annihilation $e^{-}+e^{+} \rightarrow 2 \gamma$
2. Pair production $2 \gamma \rightarrow e^{-}+e^{+}$
3. Compton scattering $e^{-}+\gamma \rightarrow e^{-}+\gamma$

Note: All the above Feynman diagrams are in the order

$$
\alpha=\frac{e^{2}}{4 \pi}
$$

We say: They are first order processes (tree level diagrams)

- External lines represent real (observable) particles, whose momentum and energy are related through $E^{2}=\mathbf{p}^{2}+m^{2}$ (the on mass-shell condition)
- Internal lines represent particles that cannot be observed (virtual particles). Their energy and momentum do not satisfy the on mass-shell condition, $E^{2}=\mathbf{p}^{2}+m^{2}$. They are off mass-shell

Lecture 11

Loop diagrams:

Example: Higher order contributions to Møller scattering $e^{-}+e^{-} \rightarrow e^{-}+e^{-}$

All the above diagrams are of order $\alpha^{2} \sim e^{4}$
Perturbative series in α

$$
\text { Scattering amplitude } \mathcal{M}=\alpha \mathcal{M}_{1}+\alpha^{2} \mathcal{M}_{2}+\alpha^{3} \mathcal{M}_{3}+\mathcal{O}\left(\alpha^{4}\right)
$$

with the fine structure constant

$$
\alpha=\frac{e^{2}}{4 \pi}
$$

Perturbative computation of \mathcal{M}

$$
\text { Scattering amplitude } \mathcal{M}=\sum_{n=1}^{\infty} \alpha^{n} \mathcal{M}_{n}
$$

- Perturbaive series is an infinite polynomial series in the orders of α
- Perturbative calcuation of \mathcal{M} is only valid if $\alpha \sim e^{2}$ is small enough
- For QED, $\alpha=\frac{1}{137}$ and is small enough
- Because α is such a small number, diagrams with more and more vertices contribute less and less to the final result !!

Question: How to compute \mathcal{M}_{n} 's?

