Sharif University of Technology - Department of Physics
 Quantum Field Theory 1 - Midterm Exam - Take Home - Fall 2022
 Due: Saturday Azar 19, 1401

Submit your responses to sadooghi@physics.sharif.ir in a PDF format. Be sure that your scans are readable. Do not forget your names on the answer sheets

Exercise 1 = Problem 12.2 Peskin-Schroeder (5 pts):

Compute the one-loop $\beta(g)$ in the two-dimensional Gross-Neveu model

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}_{i}(i \gamma \cdot \partial) \psi_{i}+\frac{1}{g^{2}}\left(\bar{\psi}_{i} \psi_{i}\right)^{2}, \tag{1}
\end{equation*}
$$

with $i=1, \cdots, N$.

Exercise 2 = Part of Problem 10.1 Peskin-Schroeder (10 pts)

Exercise 3 = Part of Problem 10.2 Peskin-Schroeder (10 pts)

Exercise 4 = Part of Problem 11.2 Peskin-Schroeder (10 pts):

Consider the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi^{i}\right)^{2}+\frac{1}{2} \mu^{2}\left(\phi^{i}\right)^{2}-\frac{\lambda}{4}\left(\left(\phi^{i}\right)^{2}\right)^{2}+\bar{\psi}(i \gamma \cdot \partial) \psi-g \bar{\psi}\left(\phi^{1}+i \gamma^{5} \phi^{2}\right) \psi, \tag{2}
\end{equation*}
$$

where ϕ^{i} is a two-component field $\mathrm{i}=1,2$.
a) Denote the vacuum expection value (VEV) of ϕ^{i} by v and make the change of variables

$$
\begin{equation*}
\phi^{i}(x)=(v+\sigma(x), \pi(x)) . \tag{3}
\end{equation*}
$$

Write out the Lagrangian in these new variables, and show that the fermion aquires a mass given by

$$
\begin{equation*}
m_{f}=g v . \tag{4}
\end{equation*}
$$

b) Compute the one-loop radiative correction to m_{f}, choosing renormalization conditions so that v and g (defined as the vertex $\bar{\psi} \psi \pi$ vertex at zero momentum transfer) receive no radiative corrections. Show that relation (4) receives nonzero corrections, but these corrections are finite.

Exercise 5 [See Pokorski Chapter 2] (15 pts):
a) Prove the relation

$$
\begin{equation*}
\int d z_{1} d z_{1}^{\star} \cdots d z_{n} d z_{n}^{\star} \exp \left(i\left(z^{\star}, A z\right)\right)=\frac{(2 \pi)^{n} i^{n}}{\operatorname{det} A} \tag{5}
\end{equation*}
$$

for complex vector $\mathbf{z}=\left(z_{1}, \cdots, z_{n}\right)$ and a generic $(n \times n)$ dimensional complex matrix A. Here, $\left(z^{\star}, A z\right) \equiv \sum_{i, j} z_{i}^{\star} A_{i j} z_{j}$.
b) For a real Grassmann variables η_{i} prove the formula

$$
\begin{equation*}
\int d \eta_{1} \cdots d \eta_{n} \exp \left(\frac{1}{2}(\eta, A \eta)\right)=(\operatorname{det} A)^{1 / 2} \tag{6}
\end{equation*}
$$

for an antisymmetric matrix A, where $(\eta, A \eta)=\sum_{i, j} \eta_{i} A_{i j} \eta_{j}$.
c) Show that for complex Grassmann variables, Eq. (9) is generalized by

$$
\begin{equation*}
\int d \eta_{1} d \eta_{1}^{\star} \cdots d \eta_{n} d \eta_{n}^{\star} \exp \left(\left(\eta^{\star}, A \eta\right)\right)=\operatorname{det} A \tag{7}
\end{equation*}
$$

where $\left(\eta^{\star}, A \eta\right)=\sum_{i, j} \eta_{i}^{\star} A_{i j} \eta_{j}$.

Exercise 6 (25 pts):

Consider the derivative expansion of the effective action $\Gamma[\Phi]$ for $\Phi=\left(\varphi_{0}, \cdots, \varphi_{N-1}\right)$

$$
\begin{equation*}
\Gamma[\Phi]=\Gamma\left[\Phi_{0}\right]+\int d^{d} x \frac{\delta \Gamma\left[\Phi_{0}\right]}{\delta \varphi_{i}(x)} \bar{\varphi}_{i}(x)+\frac{1}{2} \int d^{d} x d^{d} y \frac{\delta^{2} \Gamma\left[\Phi_{0}\right]}{\delta \varphi_{i}(x) \delta \varphi_{j}(y)} \bar{\varphi}_{i}(x) \bar{\varphi}_{j}(y)+\cdots, \tag{8}
\end{equation*}
$$

where $\Phi(x)=\Phi_{0}+\bar{\Phi}(x)$ is used.
a) Assuming that Φ_{0} describes a configuration that minimizes the effective action, and using the Taylor expansion $\Phi(y)=\Phi(x)+z^{\mu} \partial_{\mu} \Phi(x)+\frac{1}{2} z^{\mu} z^{\nu} \partial_{\mu} \partial_{\mu} \Phi(x)+\cdots$, with $z=y-x$, show that $\Gamma[\Phi]$ can be written as

$$
\begin{equation*}
\Gamma[\Phi]=\Gamma\left[\Phi_{0}\right]-\frac{1}{2} \int d^{d} x \mathcal{M}_{i j}^{2}\left[\Phi_{0}\right] \bar{\varphi}_{i}(x) \bar{\varphi}_{j}(x)+\frac{1}{2} \int d^{d} x \chi_{i j}^{\mu \nu}\left[\Phi_{0}\right] \partial_{\mu} \bar{\varphi}_{i}(x) \partial_{\nu} \bar{\varphi}_{j}(x)+\cdots, \tag{9}
\end{equation*}
$$

with
$\mathcal{M}_{i j}^{2}\left[\Phi_{0}\right]=-\int d^{d} z \frac{\delta^{2} \Gamma\left[\Phi_{0}\right]}{\delta \varphi_{i}(0) \delta \varphi_{j}(z)}, \quad$ and $\quad \chi_{i j}^{\mu \nu}\left[\Phi_{0}\right]=-\frac{1}{2} \int d^{d} z z^{\mu} z^{\nu} \frac{\delta^{2} \Gamma\left[\Phi_{0}\right]}{\delta \varphi_{i}(0) \delta \varphi_{j}(z)} .(10)$
As we have mentioned in the class, the above derivative expansion of $\Gamma[\Phi]$ can alternatively be given as

$$
\begin{equation*}
\Gamma[\Phi]=\int d^{d} x\left(-V[\Phi]+\frac{1}{2} \chi_{i j}^{\mu \nu}[\Phi] \partial_{\mu} \varphi_{i} \partial_{\nu} \varphi_{j}(x)+\cdots\right) . \tag{11}
\end{equation*}
$$

b) Let us now break the $O(N)$ symmetry of the original action by choosing a constant field configuration for $\Phi_{0}=\left(\sigma_{0}, 0, \cdots, 0\right)$. To determine the kinetic part of the effective action, we use the ansatz

$$
\begin{equation*}
\chi_{i j}^{\mu \nu}[\Phi]=\left(F_{1}^{\mu \nu}\right)_{i j}+2 F_{2}^{\mu \nu} \frac{\varphi_{i} \varphi_{j}}{\Phi^{2}} \tag{12}
\end{equation*}
$$

where $i, j=0, \cdots, N-1$ and $\Phi^{2}=\sum_{i=0}^{N-1} \varphi_{i}^{2}$. Show that the "kinetic" part of the effective Lagrangian density including two derivatives is then given by

$$
\begin{equation*}
\mathcal{L}_{k}=\frac{1}{2}\left(F_{1}^{\mu \nu}\right)_{i j} \partial_{\mu} \varphi_{i} \partial_{\nu} \varphi_{j}+\frac{F_{2}^{\mu \nu}}{\Phi^{2}}\left(\varphi_{i} \partial_{\mu} \varphi_{i}\right)\left(\varphi_{j} \partial_{\nu} \varphi_{j}\right) . \tag{13}
\end{equation*}
$$

c) To determine the "form factors" $F_{1}^{\mu \nu}$ and $F_{2}^{\mu \nu}$, or at least a combination of them, let us use the definition $\Gamma_{k} \equiv \int d^{d} x \mathcal{L}_{k}$ as a part of the effective action including only two derivatives. Show that

$$
\begin{align*}
\frac{\delta^{2} \Gamma_{k}\left[\phi_{0}\right]}{\delta \varphi_{0}(x) \delta \varphi_{0}(0)} & =-\mathcal{G}^{\mu \nu}\left[\Phi_{0}\right] \partial_{\mu} \partial_{\nu} \delta^{d}(x) \\
\frac{\delta^{2} \Gamma_{k}\left[\phi_{0}\right]}{\delta \varphi_{\ell}(x) \delta \varphi_{m}(0)} & =-\mathcal{F}_{\ell m}^{\mu \nu}\left[\Phi_{0}\right] \partial_{\mu} \partial_{\nu} \delta^{d}(x), \quad \forall \ell, m \geq 1 \tag{1}
\end{align*}
$$

with $\mathcal{G}_{\mu \nu}=\left[\left(F_{1}^{\mu \nu}\right)_{00}+2 F_{2}^{\mu \nu}\right]$ and $\mathcal{F}_{\ell m}^{\mu \nu}=\frac{1}{2}\left[\left(F_{1}^{\mu \nu}\right)_{\ell m}+\left(F_{1}^{\mu \nu}\right)_{\ell m}\right]$.
d) Assuming that $\mathcal{M}_{\ell m}^{2}=-\mathcal{M}_{m \ell}^{2}$ and $\mathcal{F}_{\ell m}^{\mu \nu}=-\mathcal{F}_{m \ell}^{\mu \nu}$, for all $\ell \neq m$ and $\ell, m \geq 1$, and denoting $\mathcal{M}_{a a}^{2}$ by M_{a}^{2} for all $a=0, \cdots, N-1$, show that the effective action is given by

$$
\begin{align*}
\Gamma[\Phi]= & \Gamma\left[\Phi_{0}\right]-\frac{1}{2} \int d^{d} x \bar{\varphi}_{0}(x)\left(M_{0}^{2}+\mathcal{G}^{\mu \mu} \partial_{\mu}^{2}\right) \bar{\varphi}_{0}(x) \\
& -\frac{1}{2} \sum_{\ell=1}^{N-1} \int d^{d} x \bar{\varphi}_{\ell}(x)\left(M_{\ell}^{2}+\mathcal{F}_{\ell \ell}^{\mu \mu} \partial_{\mu}^{2}\right) \bar{\varphi}_{\ell}(x), \tag{15}
\end{align*}
$$

where $\mathcal{G}^{\mu \nu}=\mathcal{G}^{\mu \mu} g^{\mu \nu}$ and $\mathcal{F}_{\ell m}^{\mu \nu}=\mathcal{F}_{\ell m}^{\mu \mu} g^{\mu \nu}$ is also assumed.
e) Show finally that the energy dispersion relations for φ_{0} and $\varphi_{\ell}, \ell=1, \cdots, N-1$ are given by

$$
\begin{align*}
& \omega_{0}^{2}=u_{0}^{(1) 2} p_{1}^{2}+u_{0}^{(2) 2} p_{1}^{2}+u_{0}^{(2) 2} p_{1}^{2}+m_{0}^{2}, \\
& \omega_{\ell}^{2}=u_{\ell}^{(1) 2} p_{1}^{2}+u_{\ell}^{(2) 2} p_{1}^{2}+u_{\ell}^{(2) 2} p_{1}^{2}+m_{\ell}^{2}, \quad \forall \ell \geq 1, \tag{16}
\end{align*}
$$

with the pole masses

$$
\begin{equation*}
m_{0}^{2}=\frac{M_{0}^{2}}{\mathcal{G}^{00}}, \quad \text { and } \quad m_{\ell}^{2}=\frac{M_{\ell}^{2}}{\mathcal{F}_{\ell \ell}^{00}} \tag{17}
\end{equation*}
$$

and the refraction indices

$$
\begin{equation*}
u_{0}^{(i) 2}=\frac{\mathcal{G}^{i i}}{\mathcal{G}^{00}}, \quad \text { and } \quad u_{\ell}^{(i) 2}=\frac{\mathcal{F}_{\ell \ell}^{i i}}{\mathcal{F}_{\ell \ell}^{00}} \tag{18}
\end{equation*}
$$

