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Approach Definition

Previous Methods

Till now, we use the following procedure to evaluate the output y given input
vector x:

o Considering a parameterized model with parameter vector 6

o Estimating parameters using dataset {(@,,yn)} (5)
o Plug-in approximation
o Posterior distribution calculation

o Evaluating y using assumed model

o Evaluating using plug-in approximation (1 model)
o Evaluating using posterior predictive distribution (All possible models)
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Approach Definition

Kernel Method

Assume we have dataset {(x,,y,)} and unknown function f that y = f(=),
then in kernel method, the procedure is:

e Evaluate a similarity between query vector &, and all of input training
vectors {z;} N,

o Use the measures similarity as weights to generate f(x,) based on
{f(®) 1L,
Note that Kernels are special functions that determine the similarity used for
f(zq) estimation.

Kernel Methods

| \

o Kernel methods are nonparametric

o In model based methods, we compress the dataset information into a fixed
length vector 0, while in kernel method we need dataset to estimate f(x,)

v
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Mercer Kernel
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Mercer Kernel [1]

Assume an abstract space X. Then function £ : X x X — R is called a kernel
function. Kernel function usually (not necessarily) have the following properties:
Symmetry: Ve, z': K(z,z') = K(z', x)
Positivity: Ve, 2’ : K(z,2') >0, (x # 2')

Mercer (positive definite) Kernel
A symmetric kernel K : X x X — RT is Mercer (PSD) kernel if:

N N
E E (i, zj)cic; >0
i=1 j=1

for any finite set of N distinct samples from X O X = {x;,...,xx} and any
choice of numbers ¢; € R.

v
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Mercer Kernel

Gram matrix for N Datapoints

Given N datapoints X = {x1,...,zy} and symmetric kernel £ : X x X — R,
the Gram matrix is:

K(xi,z1) ... K(xi,xn)
K — ) . :

Klxy,z1) ... Klxy,zN)

Mercer Kernel and Gram Matrix

Symmetric positive kernel £ : X x X — R is Mercer iff the Gram matrix
is positive definite for any finite set of N distinct samples from X O X =
{z1,...,xzN}.
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Hilbert Space

Let H be a vector space over R. A function (-,-)3 : H x H — R is said to be
an inner product on H if:

Q (aufi +azfa, g)u = ar(f1, 9)n + a2(f2, 9)n

O (f,.9)u=1(9,f)n

Q@ (f,f)n>0and (f, f)y =0if and only if f =0

Using inner product, we can define norm as: || f|lx = /{f, f)n

A Hilbert space is a vector space on which an inner product is defines (along
with other technical conditions)
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Checking Positive Definiteness of Kernel

Mercer (positive definite) Kernel

Let H be any Hilbert space, X a non-empty set and ¢ : X — H. Then kernel
K(x,x') = (¢p(x), p(x'))3 is positive definite.

Proof:
N N N N N 2
D> K@i wj)cic; = > > (eid(@), cid(@)hn = || > cid(@:)| >0
i=1 j=1 i=1 j=1 i=1 H

Simple Mercer Kernel

| \

Show that kernel K(z,z') = 7', £ € R™ is Mercer.

Solution: We can introduce Hilbert space H = R™ with the definition (z, z’) =
Tz’ for inner product and mapping ¢(x) = . Thus K(z,z’) = azT:I; is a
Mercer kernel.
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r’'s Theorem

Theorem

Assume Gram matrix K to be positive definite. Then from eigen decomposition
we have K = UT AU where:

A =diag(A,...,An), A >0fori=1,...,N
U= [ul,...,uN]

~T ~ &

We can rewrite K = (A%U)T(A%U) =U U where U = [uy,...,uy]. Thus:

7
B N |

K = : U - un| = kij = ﬁiTaj = <ai7ﬁj>
- Fr _ \ |
N

So ¢(x;) = u; and we can write the entries in form of inner product.
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Popular Mercer Kernel [2]

Stationary Kernels

Kernels of the form K(z,z') = K(||z — «’||) are called stationary kernels.

Gaussian (exponentiated quadratic) kernel

|z —

/(|2
Ky(z,x') = exp (— T I ) , | : bandwidth

Gaussian Kernel
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lercer Kernel 2]

Rational quadratic kernel

_ 2\ ¢ : dth
Ko (@, ') = (1 +M> {z bandwids

2002 o : scale

Rational quadratic Kernel

— (=1l,a=1

0.75 — (=5 a=1
SR — r=02a=1
3%0‘50 — (=1, a=0.1

(=1, a= 1000

00077 3 ) ) 0 i 2 3 4

[lx — x|
ad Amini
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lercer Kernel 2]

Periodic kernel

2 —a I : bandwidth
Ky(x,z') = exp <_l_2$in2 <7r||w z ||)> ’ { andwi

D « : period
Periodic Kernel (Bandwidth effect)

1.00 — t-1p-1 g

0.7 —~ f=2rp51
? N = 0A5, p= 1
Z0.50

0.25

0‘092.0 —1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 2.0

Il

Ix — x
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lercer Kernel 2]

Periodic kernel

2 —a I : bandwidth
Ky(x,z') = exp <_l_2$in2 <7r||w z ||>> ’ { andwi

D « : period

Periodic Kernel (Period effect)

1.00 — t=1p-17
— =1,p=05
075 P7F
x»
Z0.50
0.2
00055 ~15 ~10 —05 0.0 05 10 15 2.0
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Gaussian Processes
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Gaussian Processes

Gaussian Processes

Gaussian processes (GP) are an approach to defining distribution over functions
of the form f: X — R. To this end, we assume f = [f(x1),..., f(za)]T to be
jointly Gaussian for any M > 0 and with:

o u=[m(x),...,m(xp)]T

o ¥,; = K(x;,x;) or equivalently ¥ = K
To use the above distrinution, we can consider the special case M = N + 1 and
joint distribution p([f(z1),..., f(zN), f(z4)]T) and infer f(x,).

.

Covariance matrix

A valid covariance matrix must be symmtric and positive semi-definite. These
conditions are already met in K for a Mercer kernel.

Prior Information

| \

We can assume the mean function m(-) and covariance generative kernel (-, )
to be the prior information.
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Sampling from Prior Information

Sampling from Prior Information

Consider € RP, m(x) and a Mercer kernel K(-,-). Then for sampling from
the prior we have the following steps:

o Assume a set of x values where we want to evaluate the sample as
X ={xy,...,zs}.

o Generate the mean vector and covariance matrix as:

m(a1)

m(azg) /C(whwl) ce K:((I!l.,ilts)
K= ? = : :

m(zxg) K(xs,z1) ... K(zs,xzs)

o Sample vector y = [y1,...,ys] € RS

@ The realization of the function at evaluation points is
{(171, y1)7 ($27 92)7 RO (mSa yS)}
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Sampling from Zero Mean and Gaussian Kernel [2]

Samples from ¢ =1 4 (=1 Lo
-2 2
=0 0.5%
2 )
Y20 o 4
X
— 05
im0 g
-2 g
<0 0.5%
2 =)
—4 -3 -2 -1 0 1 2 3 4 4
T
Samples from ¢ = 2




Sampling from Zero Mean and Rationale Kernel |2]

Samples from /=1, a =1 10

GJ
\
X
o e o b &
|
=
(X, X)

—4 -2 0 2 4 5 -3 0 3 5
x X
(=5 o — f— 5 o —
Samples from £ =5, a =1 : 5 (=5 a=1 - 1.00
) -
3 =
0.75™%
= =0 =
3 050
-2 5
—4 -2 0 2 4 5 -3 0 3 5
X
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Sampling from Zero Mean and Rationale K

Samples from /=1, a =1

Samples from £ =1, a = 0.1

Samples from ¢ =1, a = 1000

54
5 -3 0 3 5

1.0

=
K, (X, X)

1.0




Sampling from Zero Mean and Periodic Kernel [2]

Samples from f =1, p=1




Sampling from 7 [ean and Periodic Kernel [2]

Samples from f =1, p=1

KX, X)

Samples from £ =1, p=0.5 ) {=1,p=05 Lo

R N
Y - -
x
o 055
S\l

LN
2 -1 0 1 2
X

Samples from (=1, p=2 5 (=1,p=2 Lo
1 ‘ .
e
=0 0.5—

—2.0 —15 —1.0 —0.5 0.0 0.5 1.0 1.5 2.0 2 -1 0 1 2
T X




Posterior for Noise Free Observations

Noise Free Observations

Suppose we observe training dataset D = {(z,,,yn)}_; where y, = f(zx,) is
noise-free observation and we have queries {:cz(»e)}fv_*l. Assume:
=] 2" (1) m(z;”)
X = 5 X, = , Mx = ) My = :
f(wl) f(mge)) KX,X ZIC(X,X) e RVxN
fX: ) f*: ) KX,*:’C(XyX*)eRNXN*
f(@w) @) (K= KXo, X,) e RN
Sajjad Amini IML-S13
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Prior Information

Prior Based on GP
Based on GP, we have joint distribution p(f ., f,|X, X) as:

f Bel [Kxx Kxax
v (] [ &)

Posterior By MVN Conditionals

Assuming we have observe fy, we can compute the posterior over f, using
MVN conditionals.

o

MVN Conditionals

Y| . .. . . Hq 211 212
Suppose y = is jointly Gaussian with p = , X = Then
PP Y [yz] J Y H Ko [221 222]

the posterior conditional is given by p(y:|ys) = N (y1|p1)2, X1)2) where:

Pz = i+ T10T5 (Yo — Ha), Tz = Ti1 — a5, B
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Posterior for Noise Free Observ:

Calculating Posterior

Using prior distribution and MVN conditionals, we conclue p(f,|D,X,) =
N(F|p2", Z2°") where:

IJ/€OSt =p, + K;{,*K)_(}X(fX - IJ’X)
B = Koy — K K Kx
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Training Data Interpolator

Training Data Interpolator

Suppose we use zero mean prior (m(x) = 0) and kernel IC(,-). Assume the
following case:

Then we can show that:

@Kx)*:nyx(l,i)éK KXX_KXX( )KXX—ez
Using above equality, we have:
pLest :U*+K§,*K;(,1X(fX_HX):O+ei(fX_ 0) = fx(i) = f(zi)

srost |, L — KQ*K;(}XKX,* = K(zi,z;) — e; K x
:]C(CB“ZBZ) - ]C(mlaxz) =0
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Kernel Introduction

Gaussian Kernel

2
Assume Gussian kernel with unit bandwith as: ICqy(x, ") = exp (—M)

Covariance using Gaussian kernel (¢ =1 Lo Covariance of z with 2’ =0
’ 1.0
0.8 0.8
065 806
s 2
= g
04§04
0.2 0.2
0.0
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Example: Prior Samples [3]

Samples from Prior (m(x) = 0)
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Prior Low Dimensional Samples [3]

2D marginal: y ~ N(0, k(X, X))

X =10.0,0.2] X =100,2]
5| K(00,02)=098 o] K0.2=014 0.72
0.60
g ! = 1 =
i B )y 0.48 =
! S 2
< 0 = 0 =
= = 0.36
I L 2
=
! -1 0247
L]
Lo o] . 0.12
2 1. 0 1 0.0
-2 0 1 2 - - :
& o n=r(X=0
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Posterior Dist

Posterior Distribution

Posterior Samples
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Posterior for Noisey Observations

Noisy Observations

Suppose we observe training dataset D = {(x,,, yn)}Y_; where y,, = f(z,) +€n
(én ~ N(0,07)) is noisy observation and we have queries {mge)}f.v:*l. Assume:

o] 2" m(@,) m(@)”)
X = 5 X* = y Mx = y My = :
Ty xﬁSZT m(zy) m(:cg\?)
fla) + e F@E] (Kxx =KX, X) e RV*N
Y= ) f*: ) KX,*:K(va*)ERNXN*
flen) +en f(wg\?)) K*,*ZIC(X*,X*)G]RN*XN*
Sajjad Amini IML-S13
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Prior Information

Prior Based on GP

In this case, the covariance of observed noisy responses is:

Covlyi, y;] =Cov[f(®:) + €, f(x;) + €] = Cov[f(@:), f(x;)] + Covlei, ;]
le(oci, Ilij) A U;(Sij

Thus we conclude:
Covly|X]=Kxx+o,I2K,

Based on GP, we have joint distribution p(f x, f,|X, X,) as:

Yy Ky K, KX,*
2] L, %))

Posterior By MVN Conditionals

Assuming we have observe fy, we can compute the posterior over f, using
MVN conditionals.
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Posterior for Noise Free Observations

o1 X
the posterior conditional is given by p(y;|y2) = N (y1|t1)2, X1j2) Where:

Suppose y = [zl] is jointly Gaussian with p = Zl , U= [211 212] Then
2 2

P = 1 + Z1285 (Y2 — p2), Bije = Tii — T12T5 T

Calculating Posterior

Using prior distribution and MVN conditionals, we conclue p(f,|D,X,) =
N(F,|H2°% T2 where:

Pt =p, + KX K (y — py)
B = Ko~ K K K x
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Single Test Input

Single Test Input

Suppose we use zero mean prior (m(x) = 0) and kernel K(:,-). Assume the following
case:

X=1|:|, X.=[z]]

Then we can show that p(fi|Dx.) = N (f«|0+kL K, (y—0), kew — kT K k,). where:

’C(w*vml)
k. = ) ko = ’C(w*ym*)
’C(ZB*,HSN)

Thus we have conditional mean as:

N
P X = kT(K;Iy) L kTa = ZIC(.”L'*,mn)an

n=1
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Posterior Samples
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-6 4 -2 0
xT
Posterior Samples

2,
= 01

—21 ! ! !

—6 —4 -2 0

xT
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Support Vector Machines
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Subsection 1

Hard Margin
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Support Vector Machines

Approach Definition

Support vector machines (SVMs) are non-probabilistic models for classification
and regression formulated as:

N
flx) = Z anK(x, x,)
n=1

Idea Behind SVMs

o When N is large, kernel methods are not efficient.

@ SVMs solve the aformentioned deficiency by ensuring that many of o
coefficients are zero.

e Support vectors are training samples x; whose corresponding coefficient
«; are not zero.
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Widest Street Concept [4]

In SVM with hard margin, we assume a two class classification problem where
the training samples are linearly separable. We are looking for the widest clas-
sification margin.

X2

I
I
I
|
-

T
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Decision Rule [4]

Assume w to be perpendicular line to
the decision street. As the projection of
u on w increases, the unknown samples
tends to lie on the + side. Thus:

— if (w,z) +wy <0

{+ if (w,z) +wo >0

A 4

X1
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Toward Constraining

Considering a Margin
Assume samples ;1 and x_ for positive and negative samples, respectively.
Then we impose the following inequalities:

<’LU, m-|-> +wy > 1

(w,z_)+wy <1

We can encode the label using definition of y as:

a J+1 + samples
-1 — samples

Using the definition of we can write the enequalities for positive and negative
samples as:

Y+ ((w,x4) +wp) > 1

y—(<w7$—>+w0)§ 1 }jy«ww)—l—wo)—lzo

Sajjad Amini IML-S13 Support Vector Machines



Samples on the Gutter

Samples on the Gutter

For samples on the gutter (margin), the
inequality is reduced to equality as:

y((w, @) +wo) =1 =0

A 4

X1
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Width of the Street

The width of the street can be calcu-
lated uisng projection of difference vec-
tor 1 = x_ onto normalized normal
vector w as:

w
Width = <:v —a:,—>
i [lw]|
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Street Width

Equal Formulation

For positive samples on the gutter, we have:

Y+ ((w,y) +wo) =1 = (w,z4) =1—wp
For negative samples on the gutter, we have:

y- ((w,z_) +wo) =1= (w,z_) = -1 —wy

Using the above equation, we conclude:

w 1
Width:<w —w_,—>:—(<:c ,w) — (T, w))
i lwll /T~
1 2
=~ (1—wp+1+wp)=—
R
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Maximizing the Wi

Optimization Problem

To maximize the width of street, we have to solve the following optimimzation
problem:

= 2 . :
w = argmax —— subject to y; ((w, z;) +wp) —1>0,i=1,...,N

w

1
= argmin §||w||2 subject to y; ((w, z;) + wo) —1>0,i=1,...,N

Lagrangian

The Lagrangian for the above optimizaion problem is:

1 N
7= §||w||2 = > i lyi ((w, @) + wo) — 1]

=1
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Differentiating the Lagrangian

With Respect to w

g—i :'w—Zalylml :O:@:Zalyzwz

Thus w is linear combination of some of training samples x;

With Respect to wy

8’(1)0 :_Zazyz —Oézalyz—o
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Re-writing the Lagrangian

Re-writing the Lagrangian

Pulg-in the equation found by differentiating with respect to w and wo into La-
grangian, we have:

L :%kug = ZO&-L [yi (<w7w1> 4L wo) _ 1]

i=1
1 -
:5 <Zaiyiwi,zajyj$j> - Zaiyi <Z ajijj,mi> — wOZaiyi+Zai
g J ¢ J i 3
= - %Ezai%‘yi%(%%), > iy =0
7 i j B

Lagrangian Form

As we can see, in the resulting Lagrangian, it’s dependent upon input samples x; is
of the inner product form. Thus we just need to know the inner product of input
samples for optimization.

Sajjad Amini IML-S13

Support Vector Machines



Updating the Decision Rule

Updating the Decision Rule

Using equality w = ), oyy;;, we can write the decision rule as:

+1if 3y, x) +wo >0
=1 if Y iy, @) +wo <0

v

Deciding on New Sample x

As we can see, in the resulting decision rule, the dependency upon input query
sample = and training input sample {x;}}¥ | is of the inner product form. Thus
we just need to know the inner product of input samples and query sample to
decide on the label.

o
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Looking Back into Lagrangian

As we can see, the Lagrangian is:
1
L= Zo‘i 5 Zzaiajyiyj<mi,mj>, Zaiyi =0
e g J i

The above form is dual form of the objective function and the vector of Lagrange
multipliers defined as o = (a1, ..., an) can be found as:

~ 1 . sy =0
a= arginax Xi:ai =5 z;zj:aiajyiyj@i,mj) subject to {ZZ oe

;>0i=1,...,N
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Intuition of Solution

Optimization Problem

The optimization problem for widest street can be formulated as:
1 2 : .
= argmin §Hw|| subject to y; ((w,x;) + wo) —1>0,i=1,...,N
w

The above optimization problem is convex and we see the Lagrangian as:

N

L= llwl = o s (fow, @3) + o) — 1
=1

Based on KKT conditions, we have:
a;>0,i=1,... N

yi (W, ;) +Wo) — 1 >0
o; (y; (@, ;) + W) —1) =0

Sajjad Amini

Support Vector Machines



Support Vectors

Complementary Slackness

Based on complementary slackness, we have:

y; ((W,®;) +@o) —1=0
or
a; =0

Remember that the decision is made based on:

+1if 3, apyi{mi, ) +wo >0
-1 if Y, ouyi(xi, ) +wo <0

Thus for each training input sample x;, either of the following condition may happend:
@ «a; = 0 and the sample is ignored in the decision.

@ y; ((w,x;) + Wo) = 1 the sample is on the gutter.

Support Vectors

The input training samples lie on the gutter are known as support vectors. These samples
contribute to the decision rule.
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Calculating Parameters

Calculating Parameters

As we see, the dual problem is defined as:

~ 1 . >y =0
a = argmax E o — = E E a1y {xi, ;) subject to ¢
ga ,- i 522 % YiYi (@i, T5) J {

= o >0,i=1,...,N

Now consider the following definitions:

1 T

(671 Y1 Ty
1= ,a=| 1|, y=|:1|, X=diag) | |.5=XX
1] N1 ay YN xy

Then we can rewrite the optimization as:
1 Ta=0
max 17a — ~aSa subject to v o
a 2 [0 2 0

The above problem can be solved using packages for standard quadratic programming
(QP) solvers.
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ing Parameters

Calculating Parameters
After calculating @ using QP, we can find model parameters as:
o ’l./l} = ZZ alyla:z

@ wWp: Assume x; to be a support vector, then we can calculate @wp as:

yi (W, i) + @o) = 1 =5 To = y; — (W, 1)

In practice we average the value of wp resulting from all support vectors in set
S as:

o = |%| > (i — (W, 2)) = é > <yi - Zajyj@j,mi))

i€S i€ES JjES
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Subsection 2

Hard Margin SVM with Kernel
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gtV ety
Heed | o8
0.5 o0 :" l-"'i
e (3-8
0.01 *%yee @&
N : ff
—051 ¥ ¥
"W s!
~1.0 24 0 PR A KN

—-1.0 =05 0.0 0.5 1.0

(a) Original dataset {(z;,4;}X;,  (b) Mapped dataset {(¢(;), v }¥ ,
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A Closer Look to Hard Margin SVM

How to Solve Widest Margin Problem
Using QP, we solve:

_ : 1 : Ta=0
Q = argmin 1o - ZaSa subject to L
2 a>0

(e
where:
1 aq U1 T
1= |: La= ||, y=|:|, X =diagQ) | :
1 Nx1 anN YN mq]\“]

T S c RNXN
S=XX =
{[S]z‘j = yiy; (@i, T;)

To evaluate the class for a new data, we have:

~ >0 = y=+1
me(mi,w)—l—wo 20 ﬁZ:—l
0
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Replacing Inner Product with PD Kernel

gin SVM with Kernel

Assume using a mapping ¢ : RP — #, we convert dataset {(xi,v:)}v, to {(p(x:), i)}, where
K(z,z') = (¢p(x), ¢(x’)). Then we can design hard margin SVM as:

yTa=O
a>0

1
o = argmin 17a — EaSa subject to {
o
where:

1 aq Y1 m?
cy=| 1|, X =diag(y)
1 Rl an YN m%
2T L IS¢€ RNV XN

[Sli; = viyj{@(zi), p(x5)) = viy,; K(zi, x;5)

k)

S =
To evaluate the class for a new data, we have:

>0 =y=+1
Zalyl (z3), p(x)) +o <0 =y=-1
K@)

d Amini
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Intuition

As we see before, for any positive kernel we have:
K(zi, ;) = (¢(x:i), d(x;))

where ¢ : RP — # and # is a Hilbert space. The process above can be describes as:
@ Mapping input training samples {z;}*, to Hilbert space H as {¢(x:)} 7,
o Explicitly finding separating hyper-plane w = >, @;y:¢p(a;) (implicitly finding
o)
@ Finding wy as:

K(zj,2;)

Z yi— > iy ($(;), p(i))

’LES JES

@ Evaluating new sample x as:

. 20 =y=+1
Zazyz ’L ( )>+’LUO <0 jy:_l

K(zi,®;)
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Subsection 3

Soft Margin SVM
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Soft Margin SVM

Not Linearly Separable Case

Assume the following case where the training dataset is not linearly separable.
Then hard margin SVM cannot be solve due to the infeasibility of constraints.
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SVM with Soft Margin

Hard margin SVM is formulated as:

1
min §||w\|§ subject to y; ((w, ) +wp) > 1

When the problem is not linearly separable, the set of vectors w and scalars wq

that satisfy the constraints is empty.
In soft margin SVM, the above deficiency is solved by updating the problem as:

N AT . yi (w, @) +wo) 21-¢
min —||wl5+C ; subject to
in 5wl +CF6 sub {& o
o y; ((w, ) +wp) > 1—¢; allows some samples to enter the margin or even
cross the decision hyper-plane
e C').¢& Controls the number of samples that enter the margin or cross
the decision hyper-plane
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Lagrangian

Lagrangian

yi ((w, ) +wo) 21§

1
ngn §||'w||§ s C;{i subject to {& > 0

The Lagrangian for the above problem is:
1
L(w, wo, 00, €, 1) =3 [wllf + C D€ = ey ((w, 1) +wo) =146
= ik
Lo
:§||w||2 + CZf - Zaiyi<wvwi> - Zaiyiwo
> = il — > ki

Support Vector Machines
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Lagrangian

oL &
7w :w_zaiyiwi =0=>w=ZO<iyz‘fBi
i i

OL
Sy Z%’yi =0

oL _
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Frame Title

Updating Langrangian Formulation

Using above equalities, we can rewrite Lagrangian in terms of dual variables (a
and p) as:

:% Z Z a;ja;yiy; (@i, o) + C Z & — Z Z ;Y y; (i, ;)
i g i i g
+Zo‘i - Zai& - ZM&'
On the other hand, we know:

Cz& Zazgz ZN%&’L_ZO A — My 51 Zoxfz—o
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Dual Formulation

Dual Formulation

Thus we have the following optimization problem:

0 S Q5

= 1 . 0< w;

Q = argmax —— o0y (X, @ 5) + «; subject to = Hs
C—a;—p; =0

The effect of p; can be easily translated to upper bounding «; as:

@ = argmax —5 Z Zaiajyiyj<wi, x;) + Zai subject to {Z 42 _)
o P i i Hili =

Thus the only change in comparison to hard margin case, is the upper bound
added to «;.
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Intuition

1 ] > 11— ¢
= 5”“’”%"'0;& subject to {g (Z<1g7x>+wo) >1-¢

e For large values of C, the feasible interval for a; is widened and we
approach the hard margin SVM.

o For small values of C, the feasible interval for a; becomes narrower and
we allow more samples to cross the margin.
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Slackness Complementary

Slackness Complementary

ai[y,-(<'w,:ci>+wo)—1+€i]=0, i=1,...,N
ni& =0,i=1,...,N

Thus:
@ a; > 0= z; is Suport Vector = y; ((w, x;) +wp) =1 —&;

; = 0 = x; is on the margin
o i > 0= & ‘ s >0<a; <C—
C—ai—pi=0=>a; <C
x; is on the margin
x; crosses the margin
e & >0= ‘ & = «a; = C — x; crosses the margin
/.Li=0:>0¢i=C
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Slackness Complementary

Slackness Complementary

o; [y ((w, i) +wo) —1+&]=0,i=1,...,N
ni& =0, i=1,...,N

Thus:
@ y; ((w,x;) +wo) >1—¢& = x; is NOT Suport Vector = a; =0

C—a;—p; =0

P }:>m=C>O=>£i=0:>y¢(('w,:l:i)+wo)>l

Therefore «; is classified correctly and is not on the margin.
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Calculating Parameters

Calculating Parameters

Similar to hard SVM, the dual problem is defined as:

~ 1 . > iy =0
a= arglrxnax EZ @i =g % Ej @iy yiy; (@i, ;) subject to {O “a<Ci=1.. . N

Now consider the following definitions:

1 o1 Y1 :clT
1= , = , Y= ,/)E:diag(y) , S=XX
1 Nx1 aN YN m]]\“]
Then we can rewrite the optimization as:
1 Ta=0
m;n 17 — iaTSa subject to {ggaa <c

The above problem can be solved using packages for standard quadratic programming
(QP) solvers.
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ing Parameters

culating Paramet

After calculating @ using QP, we can find model parameters as:
o w= Z,L azyzwl
@ Wo: Assume x; to be a support vector on the margin (0 < a; < C), then we can
calculate Wy as:

yi (W, 1) + @o) = 1 =5 To = yi — (W, 1)

In practice we average the value of Wy resulting from all support vectors on the
margin in set S, as:

& 1 =
wo =157 Z (i — (W, z:) |S | (yz - Z ajyj@j’mi))
m 1€ESm

JESm
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Subsection 4

Soft Margin SVM with Kernel
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A Closer Look to Soft Margin SVM

How to Solve Widest Margin Problem
Using QP, we solve:

_ : 1 : Ta=0
Qa = argmin 1o — —aSa subject to e
% 0<a

o <C
where:
1 a Y1 xi
1=|: o=, y=|": , X = diag(y) :
1 Nx1 anN YN mq]\“]

T S c RNXN
S=XX =
{[S]z‘j = yiy; (@i, T;)

To evaluate the class for a new data, we have:

~ >0 = y=+1
me(mi,w)—l—wo 20 ﬁZ:—l
0
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Replacing Inner Product with PD Kernel

Assume using a mapping ¢ : RP — #, we convert dataset {(xi,v:)}v, to {(p(x:), i)}, where
K(z,z') = (¢(x), p(x')). Then we can design soft margin SVM as:

yTa=0
0<a<C

1
a = argmin 17a — 5aSa subject to {
o
where:

1 [e%} Y1 m?
cy=| 1|, X =diag(y)
1 Rl an YN m%
2T L IS¢€ RNV XN

[Sli; = viyj{@(zi), p(x5)) = viy,; K(zi, x;5)

k)

S =
To evaluate the class for a new data, we have:

>0 =y=+1
Zalyl (z3), p(x)) +o <0 =y=-1
K@)
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Intuition

As we see before, for any positive kernel we have:
K(zi, ;) = (¢(x:i), d(x;))

where ¢ : RP — # and # is a Hilbert space. The process above can be describes as:
@ Mapping input training samples {z;}*, to Hilbert space H as {¢(x:)} 7,
o Explicitly finding separating hyper-plane w = >, @;y:¢p(a;) (implicitly finding
o)

@ Finding wy as:

K(zj,2;)
———N——
o = % Z vi— 3 oy (), (i)
ESm JESm

@ Evaluating new sample x as:

. 20 =y=+1
Zazyz ’L ( )>+’LUO <0 jy:_l

K(zi,®;)
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Subsection 5

Samples of SVM
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Hard Margin SVM

2.16 2.94 1.00 0.1105
2.95 1.89 1.00 0.3898

3.09 2.77 1.00 _ 0.0000 _

X = ;Y = , =>a= , W = | —2.4943

1.17 0.92 —1.00 0.5003

—0.97 0.98 —1.00 0.0000

—0.85 —1.21 —1.00 0.0000

v

upport Ve



Soft Margin SVM

2.16
2.95
3.09
1.17
—0.97
—0.85

2.94
1.89
2.77
0.92
0.98
—1.21

1.00

1.00
—1.00
—1.00
—1.00
—1.00

Soft Margin SVM with C

5.5408
8.1495
10.0000
3.6904
0.0000
0.0000




0.92 1.00 ] 0.0000
—0.43 1.00 0.0000
—1.36 1.00 0.1066
0.10 1.00 N 0.0000 _
X = y = a = , W :{1.9156]
=P, 1.82 —1.00 0.0000
—1.89 —1.54 —1.00 0.1066
2.01 —2.22 —1.00 0.0000
L 2.11 1.88 —1.00 | 0.0000
2
1 \
\
\
\
o II
g 0 i
]
—1




0.92
—0.43
—1.36

0.10
—2.21
—1.89

2.01

2.11

Soft Margin kernel-SVM with C'

1.00
1.00
1.00
1.00
—1.00
—1.00
—1.00
—1.00

0.0000

2.7729
3.8414
10.0000
0.0000
10.0000
6.4263

0.1879




Subsection 6

Multiclass SVM
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One-Versus-Rest Strategy

Approach

Assume we have C classes labels as y € {1,2,...,C}. Then:
o For each value of ¢ € {1,...,C}, we train a SVM (f.(x) = W9z + w(()c))
over the following dataset:

e Samples belonging to class c are labeled as +1
e Samples belonging to classes other than c are labeled as —1

e For a new sample x, we find the label as: y(x) = argmax, f.(x)

Disadvantages

@ Some regions in this method becomes ambiguous (Regions where
fe(®) <0,c=1,...,0)

o The value of f.(x) are not calibrated (having fi(x) =1 and fa(x) =1 is
not informative due to un-calibrated function values)

e If the original dataset is balances across different classes, then the dataset
generated to train each f;(x) is imbalanced.

v
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One-Versus-Rest Strategy
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One-Versus-One Strategy

Approach
Assume we have C classes labels as y € {1,2,...,C}. Then:
e For each possible pair of labels (¢, k) : ¢,k € {1,...,C}, we train a SVM

(for(z) = WPR g 4 w((fk)) over the following dataset:

e Samples belonging to class c are labeled as +1
e Samples belonging to class k are labeled as —1

e For a new sample &, we find the label as: y(x) = MaxVote({ fer(z}))

Disadvantages

@ Some regions in this method becomes ambiguous (Equally voted regions)
o We need to train O(C?) models
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One-Versus-Rest Strategy
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