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Basic Definitions

In this course we assume column vectors represented by:
T
T2
x=| .| =(x1,22,...,2Zn)
In

aiq ai2 6060 A1n

a1 a922 200 agn
A =

Aml1 Am2 ... Qmnp

Definitions



Basic Definitions

Matrix Rows

A= A: 1 A:2 A:n = I:A:,l ) A:,2

»
2
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Vectorizing

Vectorizing Operator

[-vectorizing Operator

A = jvec(vec(A), O)

Sajjad Amini IML-S05 Basic Definitions



Section 2

Vector Space
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Vector Space

A vector space is a set of vectors © € R™, denoted V, such that:
@ It is closed under vector addition: if ¢,y € V=>x +y €V

@ It is closed under multiplication by a real scalar c € R: if & € V = cx € R

Linear Independence

A set of vectors {®1,®2,..., @, } is said to be (linearly) dependent if:
=8 6 = Z a5y
i,i7#]

Otherwise the set is said to be (linearly) independent.

The span of a set of vectors {@1,®2,...,x,} is defined as:

n
span({x1, ®2,...,@Tn}) £ {v tv = Zaimi,ai € ]R}

i=1
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Matrix-Vector Product

Matrix-Vector Product

Assume A € R™*™ and & € R™. Then the product vector y = Ax € R™ can be viewed as follows:

~T ~T

- a; — a;

— a§ — a;m
y=Ax = . = .
~T ~T

- a, - a, x

| | [ | |2 | | |
= |lai|z1+ |az|x2+ ...+ |an| Tn




Matrix-Matrix Product

Matrix-Matrix Product
Assume A € R™*™ and B € R™*P?. Then the product vector C = AB € R"™*? can be viewed as

follows:

=T =T =T =T
- a = a; by ayby ... ajb,
=T =T =T =T
— a, — \ | | a, b a,; bs - a, b,
C =AB= by bo b,| =
=T =T =T =T
- a = a,b a,b ... a,b,




Matrix-Matrix Product

Matrix-Matrix Product

Assume A € R™*™ and B € R™*?. Then the product vector C = AB € R"*? can be viewed as
follows:

- af - - &af'B -

- ay - - aiB -
C=AB= B =

- ar - - al'B -

§




Range and Null Spaces

Range of a Matrix

Assume A € R™*". The range or columns space of A is the span of the columns
of A as:

range(A) = {v € R" : v = Az,x € R"}

Null Space of a Matrix

Assume A € R™*™. The null space of A is the set of all vectors x that get
mapped to the null vector when multiplied by A as:

nullspace(A) = {x € R" : Az = 0}

Sajjad Amini IML-S05 Products



Section 4

Norms

Sajjad Amini IML-S05 Norms



Vector Norms

Norm is any function f :R™ — R that satisfies the following properties:
Q@ Vx € R” = f(x) > 0 (non-negativity)
@ f(z) =0 iff = 0 (definiteness)
Q@ Vx e R",Vt € R = f(tx) = |t|f(x) (absolute value homogeneity)
QVzeR"VyecR" = f(x+y) < f(x)+ f(y) (triangle inequality)

Examples of Vector Norm

bzl =300 |l
o puorm (6,): |lzl, = (T, [5:f)7 . p = 1= bo s |lelle = VI, 27
loo i |||l 0o = max; |z;]
o O-norm ({y): |z|lo = > iy I(Ja;| > 0) (Pseudo norm due to
inhomogeneity)
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Examples of Matrix Norm

Assume matrix A € R™*™ then:
I

A
o p-norm (£,): [|All, = maxgo IEfle = max g || Az,

o Frobenius norm ((r): |Allp = /3070, 37, af; = || vec(A)]2
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Trace of a Square Matrix

The trace of a square matrix A € R"*" denoted tr(A), is the sum of diagonal
elements in the matrix as:

Assume matrices A, B € R"*™ and scalar ¢ € R.
o tr(A) = tr(AT)

o tr(A+ B) = tr(A) + tr(B)
o tr(cA) =ctr(A)
o tr(AB) = tr(BA)

.
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Trace of a Square Matrix

Cyclic Permutation Property

For real matrices A, B and C where ABC'is square, then we have:

tr(ABC) = tr(CAB) = tr(BCA)
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Determinant of a Square Matrix

Assume A € R"*™. The (i,7) minor, denoted A;; is the matrix obtained from
A by deleting the i-th row and the j-th column.

Assume A € R"*". The (4, j) cofactor, denoted Cj; is: Cy; = (—1)"T7 det (A ),
where det(A;;) is the determinant of (¢, j) minor.

Determinant

| A\

The determinant of a square matrix, denoted det(A) or |A], is a measure of
how much it changes a unit volume when viewed as a linear transformation and
is defined as:

det(A) = Z aﬂC’ﬂ
=1

Sajjad Amini IML-S05 Matrix Operators



Condition Number of a Square Matrix

Condition Number

The condition number of a square matrix A is a measure for the stability of
linear equation set Az = b and is defined as follows: xk(A) £ ||A[| x A7} A
suitable option for the matrix norm is ¢ norm which result in x(A) > 1.

Matrix Conditioning

Assume square matrix A. Based on the condition number, this matrix can be
divided into two categories:

e A is ill-conditioned if k(A) is large.

o A is well-conditioned if k(A) is small (close to 1).
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Condition Number of a Square Matrix

In a linear system of equations Ax = b, assume we change b to b+Ab. Compute
the change in & vector (Ax) for the following two matrices:

o A=0.1I100x100 (K(A) =1,det(A) = 107190):
Az = A~'Ab = 10IAb = 10Ab

1 1

° A=051; 1910 1_qg-10

} (K(A) = 2 x 1010, det(A) = —2 x 10~10):

Aby — 1010(Aby — Abs)
Aby + 1010(Ab1 = Abg)

Az =ATAb=1 {
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Special Matrices

Diagonal Matrix

e Diagonal matrix:

D= o :diag(dlvd2a"'7dn)
dn

e Block diagonal Matrix: A square matrix with square matrices in the main
diagonal blocks and zero matrices in all off-diagonal blocks as:

A
A
A= . :diag(Al,Ag,...,An)

Ap
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al Matrices

Band-diagonal Matrix

A band-diagonal matrix only has non-zero entries along the diagonal, and on k
sides of the diagonal (k is known as bandwidth).

V.

Tridiagonal Matrix

Tridiagonal matrix is a band-diagonal matrix with k£ = 1.

tridiagonal matrix is:

a12
a22
a32

a3
a33
43

A sample 6 X 6

0 0 0

0 0 0
a34 0 0
ags aygs 0
asy ass  Ase

0 aes aes

IML-S05
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Triangular Matrix

Lower Triangular Matrix

lor  laa
L= |lsn l32 lIs3

Uip U2 U1z ... Uin
U22 U223 coo U2,
U =
U(n—1)n
L unn -
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Definite and Indefinite Matrices

Symmetric Matrix

Matrix A € R™ " is symmetric iff A = AT (We usually show this by A € S")

Definite and Indefinite Matrices

Suppose A € S™ and arbitrary nonzero vector v € R™ \ {0} then:
o A is positive definite (PD), denoted A = 0, iff: v Av >0
o A is positive semidefinite (PSD), denoted A > 0, iff: vT Av >0
o A is negative definite (ND), denoted A < 0, iff: vT Av < 0
A is negative semidefinite (NSD), denoted A < 0, iff: vT Av <0
A is indefinite iff it is none of the above.
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Orthogonal Square Matrices

Orthogonal Square Matrices

A= |a; a2 ... a,| isorthogonal iff:

1 ifi=j

aiTaj:{o if i # j
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Inverse Matrix

Inverse Matrix

The inverse of a square matrix A € R™*", denoted A™!, is the unique matrix
such that:

A'A=AA"1=1T

Singular Matrix

A~ exists iff det(A) # 0. If det(A) = 0, A is called a singular matrix.
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Eigenvalue and Eigenve

Eigenvalue and Eigenvector

Assume a square matrix A € R%2%2, we say that A € R is an eigenvalue of A
and uw € R” is the corresponding eigenvector if:

Au=)u, u#0

“The” Eigenvector

For any eigenvector u € R™\ {0} and scalar ¢ € R\ {0}, cu is also an eigenvector.
“The” eigenvector is normalized to have unit length.
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Eigenvalue and Eigenvector

Characteristic Equation

(A, u) is (eigenvalue,eigenvector) pair if:

M—-Au=0, u#0

Thus:
@ w is in the nullspace of A\I — A.
o det(A)=0

Equation det(A) = 0 is called characteristic equation.

Characteristic Equation

@ The order of characteristic equation is 7.
o Characteristic equation has n roots, denoted A1, ..., A,, possibly complex.

e wu,; corresponding to \; can be easily found by finding the nullspace of
NI — A matrix.
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Eigenvalue and Eigenvector

Eigenvalue and Eigenvector

Find the eigenvalues and eigenvectors of A = [0'8 0'3] .

0.2 0.7
Solution:
0.8 — A\ 0.3
det(A—AI)zdet([ 0.2 0.7_4) =A=-1)(A-05)=0
A =1
=
A =0.5
—0.2 0.3 1.5
(A—/\lI)U1—0:>|:0.2 _0.3:|U1—0:>’u,1—|:1:|
0.3 0.3 1
(4 =22Du, =0 = {0.2 0.2] Uz =0=uy = [—1}
Saj 1 Amini IML-S05
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Eigenvalue and Eigenvector

The rank of matrix A is equal to the number of non-zero eigenvalues of A.

Connection to Trace and Determinant

Assume A € R™*™ with eigenvalues Aq, . .

o A~ ! shares the eigenvector with A while its eigenvalues are

1 1 L
R e

e Symmetric matrix A is PD iff \; > 0,i=1,...,n.
e Symmetric matrix A is PSD iff A\; > 0,i =1,...,n.

tr(A) =320, N
det(A) = [T;_; A

-y An. Then:

@ The rank of A equals to the number of non-zero eigenvalues of A.
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Diagonalizable

Diagonalizable

As we see: Au; = \u;,i=1,...,n
We can write the above equalities as:

AU =UA

where:

o U e R™™ = |u; us Uy,

. |
o A =diag(\1,...,\n)

Now assume that matrix U is invertible. Then:

A=UAU"!

A matrix that can be written in this form is called diagonalizable.
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Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvec
Based on Spectral Theorem, for symmetric matrices we have:

o All eigenvalues are real
e Eigenvectors are orthonormal (U is orthogonal thus U~ = U™

Then we have:

B T | | )\2 - u
A=UAU" = |(u; us Uy,

n
p=il )

Eigenvalue Decomposition
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hitening Using Eigenv

Data Whitening Using Eigenvectors

Suppose we have a dataset X € RV*? where the empirical mean verctor is zero
and empirical covariance matrix is X = %X TX . Find matrix W € RD x D

such that empirical covariance matrix for transformed vector y = Wx is I.
1
Solution: Matrix ¥ is symmetric, thus ¥ = UDU?T. Assume W = D™ 2U7,

then the covariance matrix for y is:

Covl[y] :%YTY = %(XWT)T(XWT) =wIw?’

=D :U'UDU'UD * =D :DD %=1
I I

Eigenvalue Deco

IML-S05
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Gradient

Assume function f : R™ — R. The gradient vector of this function at a point x
is the vector of partial derivatives as:

o)
<

Q|
&g

T2

.9

of
= = v =
9=5,=Vf :
of
oz,
To emphasize the gradient evaluation point we write:

2 0f

g(w*) ox lz=x*

Sajjad Amini IML-S05

Matrix Calculus



Hessian

Assume function f : R™ — R. The Hessian matrix of this function is the matrix
of second partial derivatives as:

f 3 f
82f 3—93{ Ox10x,
oz ; ;

s2f- ... &

TnO0T1 ibn

d Amini



Jacobian

Assume function f : R™ — R™. The Jacobian matrix of this function is an
m X m matrix of partial derivatives as:

o o wr] [VA@T
Jf(w):(i:_f;pé L e 2=
R V fm(@) )
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