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Important Notation Definition
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Notation Definition

Throughout the course, we use the following notation to show random variable,
random vector, random matrix and their corresponding outcomes:

X Random variable (Upper-case letter)

3 Outcome of a random variable (lower-case letter)

X Random vector/matrix (Blackboard boldface letter)

x/X Outcome of a random vector/matrix (Boldface letter)

C) Random variable/vector /matrix

0 Outcome of random variable

0 Outcome of random vector/matrix
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Basic Definitions

@ Suppose two random variables X and Y. The Covariance is defined as:

Cov[X,Y] £ E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

@ Assume X = [X1, X2,..., Xp]T is a D-dimensional random vector, then its covariance
matrix is defined as:

Cov[X] 2 E[(X — EX)X - EX])T] ==

COVXl,Xl COVXl,Xz COVXl,XD
Cov|Xa, X1 Cov|Xa, X2 Cov|Xa, Xp
COV[XD, X1] COV[XD, Xo] - Cov[Xb,XD]

@ Cross-covariance: Cov[X, Y] = E[(X — E[X])(Y — E[Y])T] )
o EXXT] =2+ pu”, p £ E[X]
@ Cov[AX +b] = ACov[X]AT
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Basic Definitions

@ Suppose two random variables X and Y. The Correlation that measure the level of
Linear relation between two variables is defined as:

Cov[X,Y]

VVIX]VIY]

@ If X is a D-dimensional random vector, its correlation matrix is defined as:

p = Cor[X,Y] £

Cor[X1,X1]=1 Cor[X1, Xo] Cor[X1,Xp
COr[Xz,Xl] COI‘[XQ,XQ] =1 - Cor[X2, Xp
A
Cor[X] = . . . .
Cor[Xb,Xl] Cor[Xb,Xz] . Cor[XD,'XD] =1

Correlation

@ One can show that —1 < p <1
@ [Cor[X,Y]|=1if Y =aX +b
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Correlation and Nonlinear Dependencies 1]
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Uncorrelatedness vs. Independence

Independence implies Uncorrelatedness

Uncorrelatedness Does NOT Imply Independence

Suppose: X ocU(-1,1) Then: Cor[X,Y] = 0 (Uncorrelated)
Y = X? XUY

IML-S03



Correlatedness vs. Causation

Causation Does NOT Imply Correlatedness

Suppose: {X o« U(=1,1) Then: {COT[Xa Y] =0 (Uncorrelated)

Y = X2 X clearly causes Y.

Correlatedness Does NOT Imply Causation

| A\

Z xU(-1,1
< Ul ) Cor[X,Y] =1 (Correlated)
X =2 Then: ,
v — 72 X and Y don’t have causal effect on each other.
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Spurious Correlation

Figure: Violent Crime Index vs Ice Cream Sales
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The Multivariate Gaussian (Normal) Distribution (MVN)

The Multivariate Gaussian (Normal) Distribution

Random vector Y is said to be multivariate normally distributed if every linear
combination of its components has a univariate normal distribution.

v

Probability Density Function
The PDF for MVN with dimension D is defined as:

1 1 _
N(y|ua2)émexp —§(y—H)Tz Hy —p)

where:

p = E[Y] € RP
3 = Cov[Y] € RP*P
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MVN Covariance Matrix Properties

Matrix A € R™ " is symmetric iff A = AT (We usually show this by A € S")

Positive (Semi)Definite

Suppose A € S”. Then Yv € R™\ {0}:

A is positive definite (PD), denoted A > 0 & vl Av >0
A is positive semidefinite (PSD), denoted A > 0 < vTAv >0
A is negative definite (ND), denoted A < 0 < v Av <0
A is negative semidefinite (NSD), denoted A < 0 & vl Av <0

A is indefinite iff it is none of the above.
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MVN Covariance Matrix Properties

Covariance Matrix is PSD

Assume ¥ to be the covariance matrix of X D-dimensional random vector.
Then:

e ¥ € S? based on definition.
e ¥ > 0 (PSD) because:

vI'Sv = vVpTX] >0, Vv € RP

o If X is distributed normally, then 3 > 0 (PD) because:

Jv#0: v'Zv=0— V[v'X] = 0 — "X is not normally distributed

v

Sajjad Amini IML-S03

Sample Distributions



Noraml (D=2)

Spherical

Diagonal

Full

0.10

Y2
Y1, 92

Y2
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Mahalanobis Distance

Mahalanobis Distance

Mahalanobis Distance (A) is a metric to calculate the distance between point
y and distribution p with mean g and covariance matrix 3 and is defined as:

AE (y—p)'S"Hy - )

MVN and Mahalanobis Distance

The log probability of MVN at a specific point y is given by:

A2

1 =
log p(ylp, ) = =5 (y — )" 27" (y — ) +constant

Sajjad Amini IML-S03 Sample Distributions



Inference for MVN

Marginals and Conditionals of an MVN

Suppose Y = (Y1, Y2) where Y; and Y5 have Dy and Dy dimension, respectively (thus Y is (D1 +D2)-
dimensional). Assume Y to be Gaussian with following parameters:

p=[t ] ==[30 B2] a=s7=[20 A2

where p, € RP1, oy € RP2, 35 € RPiXPj and Ay € RPiXPj  Then the marginals and
conditionals are given by:

(Y1) = N (Y11, B11)
P(Ya) = N(Ya|pa, T22)
p(y1ly2) = N(y1|”1|2> Z1\2)

where:

Hij2 = Hq + 21222_21 (Y2 — py) (Affine function of observed vector y,)

B2 =211 — 212)32_21221 (Independent of observed vector y,)
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VN Marginals

Imputing Missing Values

Consider the following scenario:

@ Select D movies

@ Ask N people to give them scores (Y € RP)

@ Some people have not scored all movies.

@ You know that the scoring vector comes from N (y|p, X)
How to fill missing scores by MVN marginals?
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Imputing Missing Values

Consider the following scenario:

@ Select D movies

@ Ask N people to give them scores (Y € RP)

@ Some people have not scored all movies.

@ You know that the scoring vector comes from N (y|p, X)
How to fill missing scores by MVN marginals? )

We can fill person n scoring vector as:

0 = (u, X) : Parameters
® Compute p(Y, p|Yp,v,0) where: ¢ h : missing (hidden) score indices
v : submitted (visible) score indices

Yn.h = E[Yn n|Yp o, 0] : Posterior mean

@ Impute missing values by: {Pos ftor s
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Using MVN Marginals

Imputing Missing Values

Consider the following scenario:

@ Select D movies

@ Ask N people to give them scores (Y € RP)

@ Some people have not scored all movies.

@ You know that the scoring vector comes from N (y|p, X)
How to fill missing scores by MVN marginals? )

We can fill person n scoring vector as:

0 = (u, X) : Parameters
® Compute p(Y, p|Yp,v,0) where: ¢ h : missing (hidden) score indices
v : submitted (visible) score indices

Yn.h = E[Yn 1|y, o, 0] : Posterior mean

@ Impute missing values by: {Pos ftor s

Imputing Missing Values

How to estimate p and 07 Solution: By using Ezpectation Maximization.

d Amini

Sample Distributions



Section 4

Linear Gaussian Systems
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Linear Gaussian Systems (LGS)

Linear Gaussian Systems
Assume the following items:
@ Z € RE: Unknown vector
@ Y € RP: Noisy measurements
@ The following distributions hold:
° p(z) = N(z|p., Z:)
° p(ylz) = N(y|Wz+b,%,), W e R°*" b eR”
then:

@ Joint distribution p(z,y) = p(z)p(y|z) is a L + D dimensional Gaussian with the
following parameters:

— M | = =.wT
“_[Wuz+b]’2_[wz:z 2, +WE.wT |

@ Using Bayes rule, the posterior p(z|y) is also L dimensional Gaussian with the
following parameters:

-1 _ s—1 Ts—1
=+ wissw

By =2y [Wngl(y —b)+ Ez_lﬂz]
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Conjugate Priors

Conjugate Priors

Assume F as a family of distribution functions (e.g. Gaussian). We say that
a prior p(z) € F is a conjugate prior for a likelihood function p(y|z) if the
posterior is in the same family of distribution, i.e., p(z|y) € F.

Conjugate Priors

Based on slide 22, Gaussian prior is a conjugate prior for the Gaussian likelihood.
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Linear Gaussian S;

Inferring an Unknown Scalar
Suppose:

@ Prior: We want to estimate unknown quantity Z where p(z) = N (2|po, >\0_1)

@ Likelihood We have N independent noisy measurements y; distributed as
p(yilz) = N(yilz, A7)

compute the posterior p(z|y1,...,yn).




Linear Gaussian Sys

Inferring an Unknown Scalar

Suppose:
@ Prior: We want to estimate unknown quantity Z where p(z) = N (2|po, >\0_1)

@ Likelihood We have N independent noisy measurements y; distributed as
p(yilz) = N(yilz, A7)

compute the posterior p(z|y1,...,yn).

We start by defining Y = (y1,...,yn). Then we can easily show that the problem is linear Gaussian
system with W = 1y and %' = diag(A,I). Thus:

p(zly) = N (zlun, ANY)

where:
zz_\ly = Ez_l + WTE;IW = Azly = Ao+ leiag()\yI)l = )Xo+ N,
By = sy [WT):;1(?J —b)+ ):z‘luz] = pay = ATy [1Tdiag()\y1)(y —0)+ )\O“o]
NAyg+ A NX, A
=Hz|ly = 2 = g+ 2 Ko
Azly NXy + Xo NXy + Xo
v




Linear Gaussian System

LGS system with N =1, A, = 1.0

A =0.5 X =1.0 Ao =4.0

—— Prior: p(2)

0.8 0.8 0.8 ~—— Likelihood: p(y|z)
—— Posterior: p(z[y)

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0.0 0.0 - . 0.0

—10 -5 0 5 10 —10 -5 0 5 10 -10 -5 0 5 10
¥4 z z

Figure: Prior precision (\o) effect




Linear Gaussian System

LGS system with N =1, g = 1.0

A =02 A=10 A= 40

—— Prior: p(z)

0.8 0.8 0.8 —— Likelihood: p(y|2)
—— Posterior: p(z|y)

0.6 0.6 0.6

0.4 0.4 0.4

0.2 /A 0.2 0.2

0.0 0.0 - . 0.0

—10 -5 0 5 10 —10 -5 0 5 10 -10 -5 0 5 10
¥4 z z

Figure: Likelihood precision (\y) effect




Linear Gaussian System

LGS system with Ag = 1.0, A, = 1.0

v = _ T _ T
y =[0] y =1[0.0] y =1[0,0,0]
—— Prior: p(z)
08 08 08 —— Likelihood: p(y|z)
—— DPosterior: p(z|y)
0.6 0.6 0.6
04 0.4 0.4
0.2 02 0.2
0.0 0.0 - 0.0 -
-0 -5 0 5 0 -0 -5 0 5 0 10 -5 0 5 10
4 z z

Figure: Number of measurements (N) effect




Linear Gauss

Sensor Fusion

Suppose:
e Prior: We want to estimate unknown vector Z where p(z) = N (z|uo, o)

o Likelihood: We have 2 sensors and 1 measurements of each sensor,
denoted Y; and Y, distributes as N (y;|z, X;) (X; demonstrates the
reliability for i-th sensor).

compute the posterior p(z|y,y,).
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Sensor Fusion

Suppose:
e Prior: We want to estimate unknown vector Z where p(z) = N (z|uo, o)

o Likelihood: We have 2 sensors and 1 measurements of each sensor,
denoted Y; and Y, distributes as N (y;|z, X;) (X; demonstrates the
reliability for i-th sensor).

compute the posterior p(z|y,y,).
We start by defining Y = (Y;,Ys). Then we can easily show that the problem

3, 0
. Thus the

is linear Gaussian system with W = [I;I] and X, = 0 X
2

posterior p(z|y) = N(z|p,,, X.,) where p1,|, and %), can be calculated using
formulas in Slide 22.

A
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Sensor Fusion

Sensor Fusion

Suppose the sensor fusion example in Slide 28, with the following parameters:
o = [0;0], o =1000I, ¥; =35 =0.011

and assume y; = (0,—1) and y, = (1,0). Visualize th measurements and

posterior p(z|y).
x Y1
x Y2
x Elx]y1,ys]

—03 00 03 0.6 0.9 12
First coordinate

v

0.3

| |
= = e
o o =3

Second coordinate

|
o
©

Figure: Sensor fusion result
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Sensor Fusion

Sensor Fusion

Suppose the sensor fusion example in Slide 28, with the following parameters:
o = [0;0], 3o =1000I, ¥; = 0.011, X5 = 0.051

and assume y; = (0,—1) and y, = (1,0). Visualize th measurements and

posterior p(z|y).
Y1
00 x y,
*x Blx[y1,y]
—0.4

—0.8

v

Second coordinate

—0.4 0.0 04 0.8 1.2
First coordinate

Figure: Sensor fusion result
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Sensor Fusion

Sensor Fusion

Suppose the sensor fusion example in Slide 28, with the following parameters:

po = [0;0], T = 10001, =; = 0.01 { 110 } ] s, =001 [ 1 110 ]
and assume y; = (0,—1) and y, = (1,0). Visualize th measurements and
posterior p(z|y).
0.8
x Y1
o 04 x ¥
g x Elx|yi,ys
£ 00
;2*0.4
% -0.8
—-12

08  —04 00 0.4 08 12
First coordinate
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Mixture Models
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One way to create more complex probability models is to take a convex combination of simple
distributions. This is called a mixture model. This has the form p(y|@) = Zle TPk (Y)
where:
@ py is the k-th mixture component
o {wk}le are mixture weights with the following constraints:
o 0<m <1,k=1,....K
K
o> =1

Mixture Models - Generative Story

Suppose latent variable Z to be a categorical RV and distributed as p(z|@) = Cat(z|w) and
conditional p(y|z =k, 0) = pr(y) = p(y|0k). We can interpret mixture models as follows:

@ We sample a specific component.
@ We generate y using sampled value of z.
Using the above procedure, we have:

K

K
p(yl0) = > p(z = k|O)p(ylz = k,0) = > mp(y|Or)
k=1 k=1
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Gaussian Mixture Model

Gaussian Mixture Model
Gaussian Mixture Model (GMM) or Mixture of Gaussian (MoG) is defined as:

p(y|0) = Z?Tk/\/ Ylie, i)

k=1

D GMM Uncertainty Visualization
Ty [ Pe

3 u@ 3T oSy
NS I iE I
T & L
o b 1 o+ 5

£ &
RaEr P LT
] L ] ]
°®0 o 0
1 P Ud‘rm 1 -1
e
(‘ ® o®
-2 T £ -2 -2
uﬁP %
-3 e -3 -3
00 25 50 75 00 25 50 75 00 25 50 75
] T T

Figure: Sample GMM distribution and its application for clustering
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