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State of Machine Learning

Andrew Ng

Electricity transforms countless in-
dustries: transportation, manufac-
turing, healthcare, communications
and more. Al (machine learning)
will bring about an equally big
transformation
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Head Assistant

Figure: Mohammad Reza Rahmani
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Main Textbook

Probabilistic
- Machine Learning

Kevin P. Murphy
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e Foundation

Introduction

o Univariate Probability
o Multivariate Probability
)
)

Statistics
Decision Theory
Optimization [Exercise Set 1]
e Supervised Learning

o Linear Discriminant Analysis
Logistic Regression
Linear Regression [Exercise Set 2]
Neural Networks [Exercise Set 3| [Midterm)]
Exemplar-Based Methods
Kernel Methods [Exercise Set 4]
Trees
Bagging
Forest

e Boosting [Exercise Set 5]
o Unsupervised Learning

e Dimensionality Reduction

o Clustering [Exercise Set 6]
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Grading Pol

Your grade

Activity Grade
Exercises 6
Midterm 4
Final Exam 4
Final Project 6
Class Activity (Bonus) 1

Summation 21

Regarding your Activities

@ One exercise will be neglected.

e Exercises will be precisely inspected for probable similarities (Similar ones
would be graded as 0)

e The best communication line is my email: s amini@sharif.edu

o If you email TAs regarding the course, please CC me for future followups.

e Extra class time
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References

The material in the slides except cited are inspired from the following
reference:

e Murphy, K. P. (2022). Probabilistic machine learning: an introduction.
MIT press.
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What is Machine Learning

Machine Learning [1]

Consider the following three items:
o Experience F
o Class of tasks T'
o Performance measure P

Machine learning is to improve the performance measured by P of a computer
program on 7" using E

v

Machine Learning

Based on Machine Learning, definition we have the main following major types
of machine learning;:

@ Supervised Learning

e Unsupervised Learning

o Reinforcement Learning
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Supervised Learning

Supervised Learning
Supervised Learning is:
o Task T: Finding mapping f: x>y (€ X =RP and y € ))
o x: Features, Covariates or Predictors
e y: Label, Target or Response
o Experience E: Set of N input-output pairs D = {(zn,y,,)})_;

o D: Dataset
e N: Sample size

o Performance measure P: Dependent on the task
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Classification
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Supervised Learning - Classification

General Features:
o Task 7T: Finding mapping f:x =y (x € X =RP and y € )
o Experience E: Set of N input-output pairs D = {(z,,, ¥, )},
Specific Features:
e Y ={1,2,...,C} (Unordered and mutually exclusive labels)

o P= %50, I(yn # f(n)) where:

I(e) = 1 ?f e %s true
0 if e is false

e P is known as Misclassification Error

Sajjad Amini IML-S01 Supervised Learning



petal  sepal petal sepal petal  sepal

(a) Setosa (y = 1) (b) Versicolor (y = 2) (c) Virginica (y = 3)

Figure: Different types of Iris flower
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1 (Setosa)
2 (Versicolor)
3 (Virginica)

(a) Approach 1

Sepal length
Sepal width
Petal length
Petal width

1 (Setosa)
2 (Versicolor)
3 (Virginica)

(b) Approach 2

Figure: Different types of Iris flower
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Example - Iris Flower Classification

Pixel: (10,10)

Pixel: (10,220)

label
setosa

® versicolor

® virginica

Pixel: (220,10)

W
//\\

Pixel: (220,220)

&
>
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) Pixel: (10,220) Pixel: (220,10) Pixel: (220,220)

Figure: Exploratory data analysis - Approach 1




254

~
I

petal width (cm)
il

05+

°

6 8 2 3 a 2 a 6 8 0 1 2
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

Figure: Exploratory data analysis - Approach 2
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versicolor
virginica




Frame Title

08 label Iabel
setosa 15 setosa
06 3 versicolor 3 versicolor
> 3 virginica 210 3 virginica
(7] ‘a
504 g
a a
02 0.5
petal length (cm) <= 2.45
samples = 150
00 T e s %0 4 2 3 value =[50, 50, 50]
petal length (cm) petal width (cm) class = setosa

(a) Petal length (b) Petal width

petal width (cm) <= 1.75
samples = 100
value = [0, 50, 50]
class = versicolor

©  setosa
B versicolor

25 A virginica

10

petal width (cm)

(d) Decision tree

(c) Decision tree surface
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Classification

Steps to Automate Classification
e Parameterizing mapping: f(-) = f(-;0)
o Finding suitable 0 (5) using Experiment E (Model Fitting)

o Enhancing performance measure P = decreasing misclassification error

Note: Limitation with Misclassification Error

Inability to distinguish different errors
f(x;0)
Setosa  Versicolor Virginica (Poisonous)
Setosa 0 (0) 1(1) 1(1)
Y Versicolor 1(1) 0 (0) 1(1)
Virginica (Poisonous) | 1 (10) 1 (10) 0 (0)

IML-S01
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» Classification

Empirical Risk, the generalization of misclassification error is:

1 N
- N;l(yn 7# [(n;0))

Using above definition, model fitting can be done via Empirical Risk Minimiza-
tion (ERM) as

N
~ 1
O—argml NZ:: (Yn # f(xn30))
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Uncertainty |2]

Epistemic Uncertainty (Model Uncertainty)

Uncertainty originated from lack of knowledge about true input-output mapping

Aleatoric Uncertainty (Data Uncertainty)

Uncertainty originated from inherent randomness in experiment F

o

Low Aleatoric | High Epistemic | High Aleatoric | High Epistemic
Uncertainty Uncertainty Uncertainty Uncertainty

.

p
b
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y (Eesponse)
"%
[ ] :L
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—

+ ---- Mr Seol- Seol27

100 075 050  —0.25  0.00 0.25 0.50 0.75 1.00
x (Features)
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Uncertainty in Classification

Capturing Uncertainty

To capture uncertainty, we can define Conditional Probability Density (CPD)
as:

0<fe<1

= clz;0) = fo(x;0),
p(y = clz;0) = fo(x;0) {chzlfc=1
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Softmax Function

Softmax Function
Consider the logits vector defined as:

70’0] = [fl(ac,G),

A
a=ag,...

The softmax function for this vector is defined as:

o fo(z;0)] = f(x;0)

Sa et etc
eSO e
c/'=1 &=l
v
a S(a)
34
g
=2
-
il I |
04 . * . * T
0 1 2 3 1 5 0 1 2 3 1 5
Index Index

Supervised Learning
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Application of Softmax Function in Classification

Capturing Uncertainty Using Softmax Function

Previously we define:

0<f <1
S fe=

—_

p(y = clz; 0) = fe(x; 0), {
Now using softmax we have:

p(y = clx;0) = S.(f(x;0))

where the following constraints are met:

0<S8.(f(x;0)) <1, c=1,2,...,C

o
D S(f(@;0) =1
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Fitting Probabilistic Model

Maximum Likelihood Estimation

One approach to fit probabilistic models is Mazimum Likelihood Estimation
(MLE). We can equivalently define loss function as:

Uy, f(z;0)) = —logp(y|f(x; 0))

Using above loss, the Negative Log Likelihood (NLL) over training set is:

N
NLL(0) = —% > logp(yal f(x4;6))

Then the MLE for model parameters is:

~

0,1 = argmin NLL(6)
0
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Supervised Learning - Regression

Regression

General Features:
o Task T: Finding mapping f:x+—y (€ X =RP and y € ))
o Experience E: Set of N input-output pairs D = {(z,,v,,)}_;
Specific Features:
e Y=R

N
o P= % En:1(yn — f(@n; 0))2
o P is known as Mean Square Error (MSE)
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Example - One Dimensional Curve Fitting

y (Response)

—5.01 °
(]
2100 075 —050 025 0.00 0.25 0.50 0.75 1.00
x (Features)
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Model Fitting in Regression

Model Fitting via ERM

Similar to classification, model parameters for regression problem can be found
via ERM as:
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Uncertainty in Regression

Capturing Uncertainty in Regression

To capture uncertainty, we assume the output distribution to be Gaussian (Nor-
mal) as:

1

e 5oz (—n)?
V2mo?

N(ylp, 0?) £

We make the mean depend on the inputs by defining p £ f(x,,8). Then we
have the following CPD:

p(yla; 0) = N(ylf(x0),07)
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Overfitting and Generalization

Population Risk

Consider p*(x,y) to be the true generating distribution of training set. Then
population risk is defined as:

L(0;p*) £ Ep (a4 [y, f(;0))]

Generalization Gap

The difference L£(0;p*) — L(0; Dirain) is called generalization gap where
L(0; Dtrain) is ERM defiend as:

1
ﬁ(e;Dtrain) = |Dt ] | Z l(ynv f(xna 0))
rawnmn (

Zn,Yn)EDtrain

Overfitting

Overfitting occure when the generalization gap is large.
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Population Risk

Population Risk Estimation

e In practice, we don’t know p*(x,y).

o We partition the data into two subsets, known as the training set and test
set.

o We use test set to estimate population risk as:

E(Q;Dtest) = ! Z l(ynyf(mnve))

N Dt t
| s | (@1 ,Yn ) EDrest
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Real World Applications
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Real World Classification: Super resolution [3|
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Real World Classification: Image Generation [4]

)

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads

a tapir with the texture of an hedgehog in a christmas “backprop”. a neon sign that

accordion. sweater walking a dog reads “backprop”. backprop
neon sign
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Real World Classification: Image Captioning [5]

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road.

Two hockey players are A little girl in a pink hat is A refrigerator ﬁlled.with lots of
fighting over the puck. +;blowing bubbles. food and drinks.

A herd of elephants walking i =
across a di rass field. A closz:pazfoaué::f laying A red motorcycle parked on the A yellow school bus parked

K idi of the road.z == ~=====in a parking lot.
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Real World Classification: Machine Translation [6]
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Unsupervised Learning

Unsupervised Learning
Unsupervised Learning is:
@ Task T: Dependent on the task
o Experience E: Set of N samples D = {z,})_;
@ Performance measure P: Dependent on the task
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Unsupervised Learning - Clustering

Clustering
General Features:
o Experience E: Set of N samples D = {z,}N_,

Specific Features:

o Task T": Partition the input into regions that contains similar points.

o Performance measure in Compression: Compression loss
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Clustering: Gaussian Mixture Model |7]

D GMM Uncertainty Visualization
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Factors of Variation
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Unsupervised Learning - Factors of Variation

Factors of Variation

General Features:
o Experience E: Set of N samples D = {z,})_;
Specific Features:

e Task T: Projecting data into low dimensional subspace which captures its
main aspects

o Performance measure: Performance of low dimensional data in various
downstream tasks
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Real World Applications
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ChatGPT 9]

RESEARCH

ChatGPT: Optimizing
Language Models

for Dialogue

We've trained a model called ChatGPT which interacts in a
conversational way. The dialogue format makes it possible
for ChatGPT to answer followup questions, admit its
mistakes, challenge incorrect premises, and reject
inappropriate requests. ChatGPT is a sibling model to
InstructGPT, which is trained to follow an instructionin a
prompt and provide a detailed response.
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Language Model

{x}

|

Language Model

|

p(x)

« . » Sample p(x): “I show him my drawing.”
p(“l am going home”) = 0.1 i . w o
p(“l you he blackboard”) = 0.00001 Conditional Sampling: p(x| “Today is”)
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Reinforcement Learning

Reinforcement Learning
Reinforcement Learning is:

o Task T: Learning an agent to take action in different environmental
conditions.

e Experience E: Set of N condition-action-reward triplet

@ Performance measure P: Average reward
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1forcement Learning

Playing an Atari game

o Task T: learning policy mapping a = w(x) where:
e a: Action
e x: Environmental conditions

o Experience E: Set of N triplet {(z,,an, )}

@ Performance measure P: Maximizing the reward
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Real World Applications
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nforcement Learning
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