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ABSTRACT

Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a
century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely
defined by an intensity threshold.
Aims. Here, we aim at studying the magnetic nature of umbra–penumbra boundaries in sunspots of different sizes, morphologies,
evolutionary stages, and phases of the solar cycle.
Methods. We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral
boundaries. We defined these umbra–penumbra boundaries by an intensity threshold and performed a statistical analysis of the mag-
netic field properties on these boundaries.
Results. We statistically prove that the umbra–penumbra boundary in stable sunspots is characterised by an invariant value of the
vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its mor-
phology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field
component is, with a likelihood of 99%, in the range of 1849–1885 G with the most probable value of 1867 G. In contrast, the magnetic
field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra,
the stronger and more horizontal the magnetic field at its boundary.
Conclusions. The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity thresh-
old. We now unveil the empirical law of the magnetic nature of the umbra–penumbra boundary in stable sunspots: it is an invariant
vertical component of the magnetic field.
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1. Introduction

The enhanced temperature and brightness of a penumbra com-
pared to temperature and brightness of an umbra define a sharp
intensity boundary between these regions. This umbral boundary
is commonly outlined by an intensity threshold of 50% relative to
the spatially averaged surrounding quiet-Sun intensity in visible
continuum. An intensity threshold was necessary to define the
umbral boundary because the magnetic nature of this boundary
was unknown.

The magnetic nature of sunspots was discovered by Hale
(1908). Several analyses have described the global properties of
the magnetic field in sunspots (Lites et al. 1990; Solanki et al.
1992; Balthasar & Schmidt 1993; Keppens & Martinez Pillet
1996; Westendorp Plaza et al. 2001; Mathew et al. 2003; Borrero
et al. 2004; Bellot Rubio et al. 2004; Balthasar & Collados 2005;
Sánchez Cuberes et al. 2005; Beck 2008; Borrero & Ichimoto
2011). The umbra harbours stronger and more vertical magnetic
field than the penumbra. With increasing radial distance from
the umbral core, the fields becomes weaker and more horizon-
tal. Detailed analyses of penumbral filaments discovered that
the horizontal fields are the essential property of these struc-
tures (Tiwari et al. 2013; Jurčák et al. 2014). These horizontal

fields are interlaced with a background component of the penum-
bral magnetic field creating the so-called uncombed structure of
sunspot penumbrae (Solanki & Montavon 1993).

Despite the detailed knowledge of the magnetic field struc-
ture, the analyses did not point to any specific properties of
the magnetic field at the umbra/penumbra (UP) boundary. Rea-
sons for this inconclusiveness are discussed in Jurčák (2011). In
this analysis, the magnetic field strength and inclination were
investigated directly at the UP boundaries. Jurčák (2011) found
evidence that the UP boundaries are defined by a constant value
of the vertical component of the magnetic field, Bver. Although it
changes smoothly across the boundary, Bver is found to be con-
stant along the boundary. In contrast, the magnetic field strength
and inclination vary along the boundary. The follow-up case
study showed that in a forming spot, umbral areas with Bver lower
than this constant value are colonised by the penumbra (Jurčák
et al. 2015). In addition, an umbra with overall reduced Bver was
observed to fully transform into a penumbra giving birth to a
so-called orphan penumbra (Jurčák et al. 2017).

In this study, we carry out a statistical analysis of the mag-
netic field properties on boundaries of more than 100 umbral
cores. We compare our results with the proposed canonical value
of Bver to check for a proof of its invariance. We discuss the
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Fig. 1. Selection of the analysed sample of sunspots displayed on the same scale. The white contours mark the intensity threshold of 50% of the
quiet-Sun intensity. The red contours are independently defined and outline isocontours of 1867 G of Bver. Only contours encircling regions larger
than 3 Mm2 are shown. Sunspots marked (L) clearly show a systematic displacement of the white and red contours that is due to line-of-sight
effects. Sunspots marked (U) have regions where the red contours lie within the intensity (white) contours. The arrows point to the disc centre. The
numbers denote the heliocentric angle of the sunspot.

sample of sunspots and the data analysis in Sect. 2 and present
the properties of the UP boundaries in Sect. 3. We discuss the
results and conclude in Sect. 4.

2. Observations and data analysis

We determined the magnetic field vector using 88 scans of
79 different active regions observed with the spectropolarimeter
(SP) attached to the Solar Optical Telescope (Tsuneta et al. 2008)
on board the Hinode satellite (Kosugi et al. 2007) from 2006
to 2015, in the course of solar cycle 24. The sample contains
sunspots of different sizes, morphologies, evolutionary stages,
and phases of the solar cycle. A full list of the observed regions
is given in Appendix A.

Hinode SP records full Stokes profiles of the neutral iron line
pair at 630 nm. The observed line profiles were calibrated using
the standard reduction routines (Lites & Ichimoto 2013). The
majority of the Hinode SP scans are taken in so-called fast mode,
for which the spatial sampling is 0.′′32. The SP scans taken with
a spatial sampling of 0.′′16 were smoothed by a boxcar function

with the size 2 × 2 pixels to minimize the effect of different spa-
tial resolution in our sample, ensuring the homogeneity of our
dataset. For each scan, we constructed continuum intensity maps
using the Stokes I profile intensities around 630.1 nm. We also
determined the quiet-Sun intensity for each scan and computed
isocontours at 50% of this intensity. We derived areas encircled
by these contours and corrected them for projection effects. For
the further analysis, we considered only isocontours encircling
areas larger than 3 Mm2.

To determine the magnetic field properties, we performed
SIR inversion (Stokes inversion based on response function,
Ruiz Cobo & del Toro Iniesta 1992). Except for the temperature,
all atmospheric parameters were considered height independent.
We took into account the spectral point-spread function of the
Hinode SP in the inversion process. We assumed the magnetic
filling factor to be unity and assumed no stray light. The macro-
turbulence was set to zero, while microturbulence was a free
parameter of the inversion. The retrieved magnetic field vectors
were then transformed into the local reference frame, and the
azimuth ambiguity was removed using the AZAM module (Lites
et al. 1995). The 0 deg inclination angle (γ) defines the vertical

L4, page 2 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732528&pdf_id=0
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Fig. 2. Mean values of the magnetic field inclination (A), the magnetic
field strength (B), and the vertical component of the magnetic field (C)
for every identified boundary as a function of the area encircled by the
given boundary. The uncertainties represent the standard deviations of
the physical parameters at the boundaries. Contours encircling areas
smaller than 10 Mm2 marked in red are not considered for the statis-
tical analyses. The dashed line corresponds to the most probable value
estimated by a Bayesian linear regression, and the shaded area denotes
the 99% confidence interval of the estimated model.

direction, that is, the direction perpendicular to the solar surface.
We inverted the polarities of negative sunspots.

The averaged magnetic field strength (B), inclination (γ), and
vertical component (Bver) along umbra boundaries were then
computed along each isocontour defined by 50% of the mean
quiet-Sun intensity for each umbral core.

The homogeneity of the dataset provided by Hinode, free
from seeing effects and with an identical instrument setup for all
sunspot maps, has allowed us to statistically analyse the magnetic
parameters on the umbral boundaries, that is, to investigated the
dependence of B, γ, and Bver (dependent variables) on the loga-
rithm of the area encircled by the intensity isocontours and also
the dependence of Bver on the date of the observations (explana-
tory variables). We primarily used a Bayesian linear regression.
To support our conclusions, we also used standard linear regres-
sion. Both methods lead to the same conclusions, which are
described in detail in Appendix B.

3. Results

Figure 1 presents a selection of the analysed sample of sunspots
in which the striking correspondence between the indepen-
dently defined boundaries based on thresholds of intensity (white
contours) and Bver = 1867 G (red contours) manifests the

Fig. 3. Dependence of Bver on the phase of the solar cycle. Contours
encircling areas smaller than 10 Mm2 and sunspots observed in solar
cycle 23 are marked in red and not considered for the statistical analy-
ses. The dashed line corresponds to the most probable value estimated
by a Bayesian linear regression, and the shaded area denotes the 99%
confidence interval of the estimated model.

fundamental invariance of Bver. In no single case does the con-
tour of Bver cross significantly into the penumbra. There is a
small systematic line-of-sight effect for sunspots observed far-
off disk centre: since the absorption line to infer Bver forms
some 200 km higher than the continuum intensity, the contours
for intensity and Bver are shifted correspondingly for sunspots
observed close to the limb. This effect is recognisable in sunspots
marked L in Fig. 1. In some sunspots, the intensity boundary is
not coupled with the Bver contour (examples marked U in Fig. 1),
but the latter crosses through umbral areas. These cases are dis-
cussed in Sect. 4. Our sample of sunspots also exhibits light
bridges dividing umbrae into multiple umbral cores. We find that
the invariant magnetic property equally holds at the boundaries
of light bridges.

Mean values of B, γ, and Bver were computed along the inten-
sity boundaries of all umbral regions larger than 3 Mm2 for each
sunspot in the sample. Figure 2 shows the dependence on the
umbral area of the mean values of γ, B, and Bver along the inten-
sity isocontour. The changes in magnetic field inclination and
strength (panels A and B) are correlated: the larger the umbra,
the stronger and more horizontal the magnetic field at its bound-
ary. The vertical component, Bver (panel C), does not depend
on the size of the umbral area. These findings are corroborated
by a statistical Bayesian inference applied to our dataset. With
this analysis, we find that Bver is most likely independent of the
umbral size and is in the range of 1849–1885 G with a likelihood
of 99%; the most probable value is 1867 G.

Since the maximum magnetic field strength in sunspots
shows a systematic variation with the phase of the solar cycle
(Rezaei et al. 2012, 2015; Pevtsov et al. 2014; Schad 2014), we
investigated the dependence of the Bver with time throughout
solar cycle 24 (Fig. 3). The Bayesian inference method identifies
the constant model as the most plausible to describe this depen-
dence. The parameters of the constant fit are the same as for the
dependence of Bver on the umbra area.

We have thus unveiled the empirical law governing the
boundary between the modes of energy transport operating in
the umbra and penumbra of stable sunspots: the vertical com-
ponent of the magnetic field strength discriminates the umbral
from the penumbral mode of magneto-convection and an invari-
ant value of Bver allows identifying the boundary between umbra
and penumbra in stable sunspots, reflecting its magnetic nature.
The value of this invariant is subjected to the measurement pro-
cess. With our data, inversion method, and statistical analysis,
we find a most probable value of 1867 G.
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4. Discussion and conclusions

While in stable sunspots the intensity and the Bver boundary con-
tours are coupled, cases are also observed in which the Bver =
1867 G isocontour lies within the intensity contour (see sunspots
marked U in Fig. 1 and Jurčák et al. 2015, 2017). We conjec-
ture that the empirical law presented here serves as a stability
criterion in evolving spots and proto-spots: pores and umbral
areas with Bver higher than 1867 G are stable, while umbral areas
with lower Bver are unstable. That is to say, they are prone to be
transformed into a different mode of magneto-convection like a
penumbra or light bridges. This is also why we restricted our
statistical analysis to umbral areas larger than 10 Mm2. Smaller
areas are typically observed to be in a transient state.

Moreover, light bridges harbour horizontal magnetic fields
(Beckers & Schröter 1969; Jurčák et al. 2006; Felipe et al. 2016).
We find that our empirical law indeed applies here as well, as
demonstrated in the examples shown in Fig. 1. Based on images
of very high spatial resolution, Schlichenmaier et al. (2016)
reported that the fine structure in the boundary of light bridges
is found to share morphological aspects with the inner boundary
of penumbral filaments, suggesting that the modes of magneto-
convection in light bridges and penumbrae are coupled to the
umbral mode in a similar manner.

The implications of these findings have profound conse-
quences on the formation process of the penumbra. While the
umbra harbours strong vertical fields (Bray & Loughhead 1964;
Solanki 2003), horizontal fields are the essential property of
penumbral filaments (Tiwari et al. 2013; Jurčák et al. 2014). Dur-
ing the formation of the penumbra, the umbral magnetic field
with sufficiently low Bver is converted into a penumbral magnetic
field (Jurčák et al. 2015, 2017).

There must therefore exist a mechanism that turns vertical
(umbral) fields into horizontal (penumbral) fields. An explana-
tion of this process regulated by the interplay between the con-
vective and magnetic forces seems straightforward, but is funda-
mentally new: from the convectively unstable sub-photosphere,
hot buoyant plasma pushes upwards along the umbral field lines.
When cooling, the mass load exerted by the plasma will bend and
incline the field lines of a reduced (lower than 1867 G) vertical
field. Only in strong vertical magnetic fields (higher than 1867 G)
is the magnetic tension as a restoring force strong enough to pre-
vent the field lines from bending over and becoming horizontal.
This scenario is consistent with the fallen flux tube model by
Wentzel (1992) and with numerical simulations of the penum-
bral fine structure, which showed that the mass load in inclined
penumbral field lines overcomes the magnetic tension to form a
horizontal penumbral filament (Rempel 2011).

The discovery of the empirical law defining the existence
of a critical vertical component of the magnetic field governing
the umbra boundary in stable sunspots solves the long-standing
question on the nature of this boundary, and it gives fundamen-
tal new insights into the magneto-convective modes of energy

transport in sunspots, which will be addressed in following
studies.
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Appendix A: Datasets
In Table A.1 we summarise all the datasets that were used
for the statistical analysis. For each listed item in Table A.1,
we constructed a continuum intensity map with marked inten-
sity isocontours at 50% of the local quiet-Sun intensity and
isocontours at Bver = 1867 G. These maps are shown in Fig. A.1.

When the date, time, and NOAA numbers were identical in
Table A.1, the scan was separated into sub-fields for display
purposes.

We performed both a Bayesian linear regression and a stan-
dard linear regression. Before we performed these statistical
analyses, we centred and scaled the x values of each explanatory

Table A.1. List of Hinode SP scans.

Scan Date Time (UT) NOAA Scan Date Time (UT) NOAA

1 2006/11/14 16:30 10923 48 2012/02/19 19:00 11420
2 2007/01/06 13:00 10933 49 2012/05/25 07:44 11486
3 2007/05/12 11:43 10955 50 2012/08/04 19:07 11538
4 2007/06/29 09:13 10961 51 2012/08/14 00:00 11543
5 2007/07/02 12:38 10961 52 2012/10/17 09:06 11591
6 2008/03/27 11:50 10989 53 2012/11/15 20:18 11613
7 2009/07/04 12:18 11024 54 2012/12/03 18:52 11625
8 2009/07/07 10:45 11024 55 2012/12/22 02:46 11633
9 2009/10/27 10:45 11029 56 2013/01/31 13:06 11663
10 2009/12/18 14:07 11035 57 2013/02/02 07:06 11665
11 2010/01/01 11:50 11039 58 2013/03/15 09:44 11692
12 2010/01/28 11:15 11041 59 2013/03/17 11:50 11692
13 2010/02/04 17:00 11043 60 2013/04/04 15:50 11711
14 2010/04/06 22:00 11061 61 2013/04/19 15:44 11723
15 2010/07/03 00:32 11084 62 2013/07/21 13:18 11793
16 2010/07/30 17:32 11092 63 2013/08/21 22:04 11823
17 2010/08/01 20:30 11092 64 2013/09/01 13:05 11836
18 2010/08/30 02:23 11101 65 2013/11/19 11:02 11899
19 2010/09/16 16:30 11106 66 2013/12/01 10:00 11908
20 2010/09/22 09:30 11108 67 2013/12/15 02:05 11921
21 2010/10/22 20:40 11113 68 2014/01/04 19:26 11944
22 2010/11/14 15:36 11124 69 2014/01/25 06:59 11959
23 2010/11/14 15:36 11124 70 2014/02/10 08:13 11974
24 2010/12/02 01:37 11130 71 2014/03/05 23:24 11990
25 2010/12/10 16:24 11131 72 2014/03/26 15:20 12014
26 2011/01/22 09:49 11147 73 2014/03/26 15:20 12014
27 2011/04/18 16:47 11193 74 2014/04/05 13:24 12027
28 2011/04/28 13:10 11195 75 2014/05/12 02:15 12056
29 2011/05/11 01:08 11210 76 2014/05/12 02:15 12056
30 2011/05/21 03:43 11216 77 2014/05/12 02:15 12056
31 2011/06/08 00:32 11232 78 2014/05/12 02:15 12056
32 2011/06/21 11:54 11236 79 2014/06/17 22:55 12087
33 2011/07/14 19:33 11250 80 2014/06/29 05:29 12096
34 2011/07/30 14:28 11260 81 2014/07/06 01:19 12104
35 2011/08/28 09:54 11277 82 2014/07/09 05:00 12109
36 2011/09/01 07:52 11277 83 2014/08/12 18:15 12135
37 2011/09/14 14:55 11289 84 2014/08/13 01:21 12135
38 2011/09/27 18:35 11302 85 2014/08/24 18:18 12146
39 2011/10/07 22:30 11309 86 2014/09/13 02:23 12158
40 2011/10/19 06:42 11314 87 2014/09/13 02:23 12158
41 2011/10/25 14:36 11330 88 2014/10/02 14:19 12181
42 2011/10/30 17:30 11330 89 2014/11/18 19:43 12209
43 2011/11/23 00:15 11352 90 2014/11/29 16:40 12222
44 2011/12/06 23:08 11363 91 2014/12/04 01:00 12222
45 2011/12/14 00:34 11374 92 2014/12/04 04:00 12222
46 2011/12/24 04:21 11384 93 2015/01/02 08:30 12251
47 2012/02/01 19:15 11410 94 2015/02/14 15:00 12282
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Fig. A.1. Hinode SP maps. The spatial scale in all panels is the same, with one tick mark of the axis being 1′′. The white contours mark the
intensity threshold of 50% of the quiet-Sun intensity. The red contours are independently defined and outline the isocontours of 1867 G of Bver.
Only contours encircling regions larger than 3 Mm2 are shown. The arrows point to the disc centre. The black numbers denote the heliocentric
angle of the sunspot. The red numbers refer to the scan number as listed in Table A.1.
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Fig. A.1. continued.
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Fig. A.1. continued.
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Appendix B: Statistical analysis

Fig. B.1. Scatter plot showing the dependence of magnetic field inclina-
tion on the umbra area. A black cross marks the observed data points.
The line colour denotes the model complexity of the Bayesian linear
regression; blue shows a constant model, red a linear model, and green
a quadratic model. The solid lines mark the most probable value esti-
mated by the corresponding model, and the dashed lines mark the 99%
confidence interval of the estimated model.

Fig. B.2. Same as Fig. B.1, but for the dependence of Bver on the umbral
area.

Fig. B.3. Same as Fig. B.1, but for the dependence of Bver on the phase
of solar cycle 24.

Fig. B.4. Same as Fig. B.1, but for the dependence of the magnetic field
strength on the umbral area.

Table B.1. Bayes factors for the magnetic field inclination as a function
of the area logarithm.

Model Constant Linear Quadratic

Constant 1.0000000 7.655851e−22 3.260399e−22
Linear 1.306191e+21 1.0000000 4.258703e−01

Quadratic 3.067109e+21 2.348133e+00 1.000000

variable to ensure better numerical stability:

x′ =
x − µ(x)
2σ(x)

,

where µ(x) is the mean of the explanatory variable, and σ(x) is
the standard deviation of the explanatory variable.

B.1. Bayesian linear regression

The inference with the Bayesian linear model can be found in
standard textbooks (Denison et al. 2002). We assumed conju-
gate priors. These assumptions imply that the marginal prior
distributions of the regression parameters are the multivari-
ate t-distributions and the square of the standard deviation of
the dependent variable error (σ2) follows the inverse gamma
distribution. The parameters of the marginal posterior distribu-
tions can be computed analytically and follow the same standard
distributions as priors.

We used the following parameter values:
– for noise of the dependent variable Bver, we set the parame-

ters of the inverse gamma distribution to obtain the mode of
the marginal prior distribution of σ, which is about 145 G,
which corresponds to the value estimated from the observed
data,

– for noise of the dependent variable B, we set the parame-
ters of the inverse gamma distribution to obtain the mode of
the marginal prior distribution of σ, which is about 165 G,
which corresponds to the value estimated from the observed
data,

– for noise of the dependent variable γ, we set the parameters
of the inverse gamma distribution to obtain the mode of the
marginal prior distribution of σ, which is about 5 deg, which
corresponds to the value estimated from the observed data,

– the prior distributions of the intercept values of γ, B, and
Bver have a mean corresponding to the mean value of the
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Table B.2. Bayes factors for the magnetic field strength as a function of
the area logarithm.

Model Constant Linear Quadratic

Constant 1.0000000 8.092029e−16 1.501854e−16
Linear 1.235784e+15 1.0000000 1.855967e−01

Quadratic 6.658439e+15 5.388028e+00 1.000000

Table B.3. Bayes factors for the Bver as a function of the area logarithm.

Model Constant Linear Quadratic

Constant 1.0000000 1.4529998 3.824566
Linear 0.6882313 1.0000000 2.632186

Quadratic 0.2614676 0.3799123 1.000000

Table B.4. Bayes factors for the Bver as a function of the phase of solar
cycle 24.

Model Constant Linear Quadratic

Constant 1.0000000 2.541874 0.9061921
Linear 0.3934106 1.0000000 0.3565056

Quadratic 1.1035187 2.805005 1.000000

observed data of each of the dependent variable, and the t-
distribution is scaled by the standard deviation of the error
of the dependent variables,

– the prior distributions of the slope values of γ, B, and Bver
have a mean of zero to eliminate any preferences, and the
distributions are scaled by the standard deviation,

– the prior distributions of the quadratic coefficients of γ, B,
and Bver have a mean of zero to eliminate any preferences,
and the distributions are scaled by the standard deviation.
The results of Bayesian linear regression are shown in

Figs. B.1–B.3. The most likely solutions and the 99% confidence
intervals presented in these figures are derived from the result-
ing posterior distributions that are shown in Figs. B.5–B.8. The
prior and posterior distributions of the regression parameters are
presented using the scaled and centred explanatory variables.

For every learned model M, we computed the marginal log-
likelihood of the model and compared the constant model (M0),
the linear model (M1), and the quadratic model (M2) using the
Bayes factors (BF), which is defined as the ratio of marginal like-
lihoods of the two compared models. We summarise the results
in Tables B.1–B.4. The hypothesis for each element of the matrix
is in favour of the model associated with the row against the
model associated with the column. A widely used interpretation
(Jeffreys 1961) of the strength of evidence for Bayes factor B is
the following:

– BF ≤ 0.1 – strong against,
– 0.1 < BF ≤ 1/3 – substantial against,
– 1/3 < BF < 1 – barely worth mentioning against,
– 1 ≤ BF < 3 – barely worth mentioning for,
– 3 ≤ BF < 10 – substantial for,
– 10 ≤ BF – strong for.

We can draw the following conclusions from Tables B.1–B.4
and Figs. B.1–B.8:

– There is strong evidence in the data that the magnetic field
inclination is not constant and is a function of the logarithm
of the area. The resulting confidence intervals do not allow
us to distinguish if the dependence of γ on the logarithm of
the area is linear or quadratic.

Fig. B.5. Prior (red lines) and posterior (black lines) distributions of the
regression coefficients and standard deviation of the error distribution
for the dependence of magnetic field inclination on the logarithm of the
area. The solid lines correspond to the constant model, the dashed lines
to the linear model, and the dash-dotted lines to the quadratic model.

– There is strong evidence in the data that the strength of the
magnetic field is not constant and is a function of the log-
arithm of the area. The resulting confidence intervals do
not allow us to distinguish if the dependence of B on the
logarithm of the area is linear or quadratic.

– There is no substantial evidence in the data that the vertical
component of the magnetic field is a linear or a quadratic
function of the logarithm of the area. The constant solu-
tion is well within the confidence intervals of the linear and
quadratic solutions.

– There is no substantial evidence in the data that the ver-
tical component of the magnetic field is a linear or a
quadratic function of the date. The constant solution is well
within the confidence intervals of the linear and quadratic
solutions.
Figures B.1–B.3 show that the 99% confidence intervals of

the estimated models are quite narrow compared to the spread
of the measured values of dependent variables. This can be
explained by the fact that the Bayesian analysis allows splitting
the overall uncertainty between the uncertainty of model param-
eters (which we see in these figures) and the error represented by
the value of the standard deviation (see the bottom right plots in
Figs. B.5–B.8).

B.2. Standard linear regression

The goal of the standard linear regression (Weisberg 2005) is to
estimate the vector of the linear regression coefficients β from
the measured data. We estimated the coefficients by solving the
linear least-squares problem using the QR factorization. Each
coefficient is a normally distributed random variable. For each
coefficient we report

– its value,
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Fig. B.6. Same as Fig. B.5, but for the dependence of B on the logarithm
of the area.

Fig. B.7. Same as Fig. B.5, but for the dependence of Bver on the
logarithm of the area.

– the standard error of each coefficient, which is the standard
deviation of its distribution. It measures the uncertainty in
the estimate of the coefficient,

– its p-value, which is the probability of achieving the same or
a higher value of the t-statistics if the null hypothesis were
true. The null hypothesis is that the corresponding value of
β is zero. If the p-value was higher than 0.01, we did not

Fig. B.8. Same as Fig. B.5, but for the dependence of Bver on the phase
of solar cycle 24.

reject the null hypothesis. The p-value was computed for the
coefficients learned from the scaled and centred data.
For each model we also report the p-value, that is, the prob-

ability of achieving a value of the t-statistics as high or higher
if the null hypothesis were true, where the null hypothesis is the
intercept-only model. If the p-value was higher than 0.01, we did
not reject the null hypothesis. With this p-value, the probability
of incorrectly rejecting a true null hypothesis is typically close
to 15% (Sellke et al. 2001).

The resulting values of standard linear regression are listed
in Tables B.5–B.8. These values are used to plot the best fit and
the 99% confidence intervals in Figs. B.9–B.12.

The results of the standard linear regression are in full
agreement with the results of the Bayesian linear regression:

– There is strong evidence in the data that the magnetic field
inclination is not constant and is a function of the loga-
rithm of the area as the p-values of both linear and quadratic
models are extremely low and we can reject the constant
model.

– There is strong evidence in the data that the strength of the
magnetic field is not constant and is a function of the loga-
rithm of the area as the p-values of both linear and quadratic
models are extremely low and we can reject the constant
model.

– There is no substantial evidence in the data that the vertical
component of the magnetic field is a linear or a quadratic
function of the logarithm of the area. The p-values of the
more complex models are above 0.01, that is, we cannot
reject the constant model.

– There is no substantial evidence in the data that the vertical
component of the magnetic field is a linear or a quadratic
function of the date. The p-values of the linear and quadratic
models are above 0.01, meaning that we cannot reject the
constant model.
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Table B.5. Model parameters for γ as a function of the area logarithm.

Model Constant Linear Quadratic

Intercept 29.3 deg 11.6 deg 21.1 deg
Slope 9.96 −1.51
Quadratic coeff. 3.18

σ-intercept 0.5 deg 1.4 deg 4.8 deg
σ-slope 0.75 5.19
σ-quadratic coeff. 1.42

p-value intercept <2e−16 <2e−16 <2e−16
p-value slope <2e−16 <2e−16
p-value quadratic coeff. 0.027

Model p-value NA <2.2e−16 <2.2e−16

Table B.6. Model parameters for B as a function of the area logarithm.

Model Constant Linear Quadratic

Intercept 2176 G deg 1745 G 2095 G
Slope 0.024 −0.017
Quadratic coeff. 0.011

σ-intercept 13 G 41 G 142 G
σ-slope 0.002 0.015
σ-quadratic coeff. 0.004

p-value intercept <2e−16 <2e−16 <2e−16
p-value slope <2e−16 <2e−16
p-value quadratic coeff. 0.007

Model p-value NA <2.2e−16 <2.2e−16

Table B.7. Model parameters for Bver as a function of the area
logarithm.

Model Constant Linear Quadratic

Intercept 1867 G deg 1819 G 1748 G
Slope 0.00266 0.01095
Quadratic coeff. −0.0023

σ-intercept 6 G 26 G 92 G
σ-slope 0.00139 0.00983
σ-quadratic coeff. 0.0027

p-value intercept <2e−16 <2e−16 <2e−16
p-value slope 0.0583 0.059
p-value quadratic coeff. 0.396

Model p-value NA 0.0583 0.117

Table B.8. Model parameters for Bver as a function of the phase of solar
cycle 24.

Model Constant Linear Quadratic

Intercept 1867 G deg 12.5 kG −25 790 kG
Slope −0.0005 2.564
Quadratic coeff. −0.0006

σ-intercept 6 G 7000 kG 10 190 kG
σ-slope 0.0004 1.013
σ-quadratic coeff. 0.0003

p-value intercept <2e−16 <2e−16 <2e−16
p-value slope 0.158 0.132
p-value quadratic coeff. 0.013

Model p-value NA 0.158 0.017

Fig. B.9. Scatter plot showing the dependence of the magnetic field
inclination on the umbra area. Black crosses mark the observed data
points. The line colour denotes the model complexity of the standard
linear regression; blue shows a constant model, red a linear model, and
green a quadratic model. The solid lines mark the best fit, and the dashed
lines mark the 99% confidence interval of the estimated model.

Fig. B.10. Same as Fig. B.9, but for the dependence of B on the
logarithm of the umbral area.
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Fig. B.11. Same as Fig. B.9, but for the dependence of Bver on the
logarithm of the umbral area.

Fig. B.12. Same as Fig. B.9, but for the dependence of Bver on the phase
of solar cycle 24.
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