فيزيک پلاسما

رضاً رضایی دانشکده فیزیک، دانشگاه صنعتی شریف reza.rezaei@sharif.edu

The main topics

Motion of Individual particles

Plasma as a Fluids

Plasma oscillations

Diffusion and resistivity

Plasma instability

kinetic theory

Nonlinear effects

outlook

The course, and the textbook

Plasma in presence of a Magnetic fields

induction equations

Reynolds number

The earth magnetosphere and the solar wind

The drift velocity

The plasma frequency, cyclotron frequency

Magnetic diffusion and reconnection

. . . .

Examples

Introduction to Plasma Physics and Controlled Fusion

Third Edition

کد درس: ۲۴۴۷۱ کد استاد: ۲۴۰۲۱۱

درس مشترک کارشناسی-کارشناسی ارشد نیمسال اول ۱۳۹۹

مرجع اصلی

Introduction to Plasma Physics and Controlled Fusion

Third Edition

Introduction to Plasma Physics & Controlled Fusion

3rd edition

F. F. Chen

Springer 2006

Introduction to Plasma Physics and Controlled Fusion

Third Edition

الکترومغناطیس ترمودینامیک و آماری یک

Introduction to Plasma Physics and Controlled Fusion

Third Edition

تقسیم نمرہ ها

Y	میان ترم
Y	پایان ترم
٣	تمرین ها
٣	پروژه
٣	فعالیت کلاسی

جمع .

فشار مغناطیسی و نیروی شناوری

 Magnetic field exerts a pressure. Pressure balance between two components of the atmosphere, 1 and 2 (Gauss units):

$$\frac{B_1^2}{8\pi} + P_1 = P_2 + \frac{B_2^2}{8\pi}$$

- If, e.g. $B_2 = 0$, then $P_1 < P_2$ and it follows: Magnetic features are evacuated compared to surroundings.
- If $B_2 = 0$ and $T_1 = T_2$, then also $\rho_1 < \rho_2$, so that the magnetic features are buoyant compared to the surrounding gas.

β پلاسما

• Plasma β describes the ratio of thermal to magnetic energy density:

$$\beta = \frac{8\pi P}{B^2}$$

- β < 1 \Rightarrow Magnetic field dominates and dictates the dynamics of the gas
- $\beta > 1$ \rightarrow Thermal energy, i.e. gas dominates & forces the field to follow

$$\boldsymbol{j} = \sigma(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

معادله القاي مغناطيسي

$$\dot{\boldsymbol{B}} = \operatorname{curl}(\boldsymbol{v} \times \boldsymbol{B}) - \operatorname{curl}(\eta \operatorname{curl} \boldsymbol{B})$$

القا

اتلاف اهمی

Magnetic diffusivity پخشندگی مغناطیسی

$$\eta = \frac{1}{\mu\sigma}$$

Magnetic Reynolds number

$$R_{\rm m} = vl/\eta$$

ضريب رسانش الكتريكي

$$\sigma = rac{32\,arepsilon_0^2\sqrt{\pi}(2kT)^{3/2}}{\sqrt{m_{
m e}}e^2Z\ln\Lambda}\,\gamma_{
m E}$$

(full ionization)

rough estimate of electric conductivity $\sigma \sim 0.003 \, T^{1.5} \, [A/V.m]$

Ionization fraction ~ 1% in the photosphere, ~ 100% in corona

(weakly ionized plasma)

$$\sigma = rac{3 e^2}{8S(2\pi m_{
m e} kT)^{1/2}} \, rac{n_{
m e}}{n_{
m n}}$$

Reynolds number vs Magnetic Reynolds number

Magnetic diffusivity
$$\eta = \frac{1}{\mu\sigma}$$

Magnetic Reynolds number

$$R_{
m m}=vl/\eta$$

 $R_m \sim 10^6$

Magnetic Reynolds number is a measure of coupling between flow and magnetic field, or ratio of timescales of Ohmic decay (L^2/η) to advection (L/v)

Reynolds number = V. L / v

v: viscosity

Reynolds number is the ratio of inertia to resistive forces

mag. diffusivity

object	L (m)	U (m/s)	η=1/ μ_0 σ (m ² /s)	$R_{m} = U L / \eta$	$\tau_{\text{decay}} = L^2/\eta$ (year)
lab	1	1	0.1	10 ²	10-6
Earth (outer core)	10 ⁶	10-3	2	~ 10 ²	10 ⁴
Sun (atmosphere)	108	10 ²	10 ⁴	~ 106	10 ⁵
Sun (convection zone)	10 ⁹	10 ³	10 ²	10 ⁷ -10 ⁹	10 ⁹

Frozen-in magnetic field
(large conductivity, large Reynold number)

Force-free magnetic field
(j X B =0)

حرکت ذره باردار در مغناط کره زمین - کمربند ون آلن

Summary of guiding center drifts

$$E \times B \ Drift:$$
 $\mathbf{v}_E = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$

Polarization Drift:
$$\mathbf{v}_P = \frac{1}{\omega_g B} \frac{d\mathbf{E}_\perp}{dt}$$
 $\mathbf{j}_P = \frac{n_e (m_i + m_e)}{B^2} \frac{d\mathbf{E}_\perp}{dt}$

Gradient Drift:
$$\mathbf{v}_{\nabla} = \frac{m v_{\perp}^2}{2q B^3} (\mathbf{B} \times \nabla B) \qquad \mathbf{j}_{\nabla} = \frac{n_e (\mu_i + \mu_e)}{B^2} (\mathbf{B} \times \nabla B)$$

Curvature Drift:
$$\mathbf{v}_R = \frac{m v_{\parallel}^2}{q R_c^2 B^2} \left(\mathbf{R}_c \times \mathbf{B} \right) \qquad \mathbf{j}_R = \frac{2 n_e (W_{i_{\parallel}} + W_{e_{\parallel}})}{R_c^2 B^2} \left(\mathbf{R}_c \times \mathbf{B} \right)$$

Associated with all these drift are corresponding drift currents.

Schematic topography of solar-terrestrial environment

solar wind -> magnetosphere -> iononosphere

استتار دبای و رفتار جمعی

The mobility of free electrons leads to shielding of point charges and their Coulomb potential.

$$\phi_D = \frac{q}{4\pi\epsilon_0 r} exp\left(-\frac{r}{\lambda_D}\right)$$

The exponential function cuts off the electrostatic potential at distances larger than Debye length, λ_D , which for $n_e = n_i$ and $T_e = T_i$ is:

$$\lambda_D = \left(\frac{\epsilon_0 k_B T_e}{n_e e^2}\right)^{1/2}$$

The plasma is *quasineutral* on large scales, $L >> \lambda_D$, otherwise the shielding is ineffective, and one has microscopically a simple ionized gas. The plasma parameter (number of particles in the Debye sphere) must obey, $\Lambda = n_e \lambda_D^3 >> 1$, for *collective behaviour* to prevail.

نمونه هایی از پلاسما

نیروی کولمب و نیروی لورنتس

- Coulomb force -> space charge oscillations
- Lorentz force -> gyration about magnetic field

Any perturbation of quasineutrality will lead to electric fields accelerating the light and mobile electrons, thus resulting in fast collective motions -> plasma oscillations around the inert and massive ions at the plasma frequency:

$$\omega_{pe} = \left(\frac{n_e e^2}{m_e \epsilon_0}\right)^{1/2}$$

The Lorentz force acts perpendicularly to the magnetic field and bends the particle motion, thus leading to circulation (electrons in clockwise, and ions in anti-clockwise sense) about the field -> *gyromotion* at the gyro- or cyclotron frequency:

$$\omega_g = \frac{qB}{m}$$

Magnetic diffusion

Assuming the plasma be at rest, the induction equation becomes a pure diffusion equation:

$$\frac{\partial \mathbf{B}}{\partial t} = D_m \nabla^2 \mathbf{B}$$

with the magnetic *diffusion* coefficient $D_m = (\mu_0 \sigma_0)^{-1}$.

Under the influence of finite resistivity the magnetic field diffuses across the plasma and field inhomogenities are smoothed out at time scale, $\tau_d = \mu_0 \sigma_0 L_B^2$, with scale length L_B .

میدان منجمد چیست؟

In an ideal collisionless plasma in motion with infinite conductivity the induction equation becomes:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

The field lines are constrained to move with the plasma -> **frozen-in field**. If plasma patches on different sections of a bundle of field lines move oppositely, then the lines will be deformed accordingly.

Magnetic merging - reconnection

Assuming the plasma streams at bulk speed V, then the induction equation can be written in simple dimensional form as:

$$\frac{B}{\tau} = \frac{VB}{L_B} + \frac{B}{\tau_d}$$

The ratio of the first to second term gives the so-called *magnetic Reynolds number*, $R_m = \mu_0 \sigma_0 L_B V$, which is useful to decide whether a plasma is diffusion or convection dominated. Current sheet with converging flows -> magnetic merging at points where $R_m \approx 1$. Field lines form *X-point* and *separatrix*.

Field line merging and reconnection in the Earth's magnetosphere

magnetotail

magnetopause

Medical plasma

Medical plasma

پلاسما در پژشکی

Figure 6. Photos showing (row (a)) cutting by a scalpel, treating this cross cut for 13 s, and bleeding-stopped cross cut wound; (row (b)) punching a hole in an ear's saphenous vein, plasma treatment for 15 s, and hole is sealed; (row (c)) cutting an ear artery, plasma treatment for 12 s, and cut is sealed.

Dielectric Barrier Discharge (DBD) plasma

Free burning arc

Figure 9. Temperature fields in the free-burning arc: (top) heavy-species temperature T_h , and (bottom) electron temperature T_e , for (left) no anode cooling ($h_w = o$) showing a diffuse attachment and (right) extreme cooling ($h_w = \infty$) showing the spontaneous emergence of self-organized spot patterns (adapted from Trelles^[82] with permission, © 2014 IOP Publishing).

Arc plasma: simulation vs observations

Figure 7. Comparisons of the calculated and measured³⁴ 2-D electron temperature distributions (**a**), and the radial profiles of T_e at L = 1.0 and 7.0 mm (**b**) for a TIG argon arc (I = 200 A, d = 8.0, Q = 12.0 slpm).

Fig. 2. Flow profile in the liquid recipient induced by the plasma jet and visualized by laser scattering on air bubbles. In this photograph, argon gas was used at a flow rate of 1.9 slpm. The exposure time of the image is 0.25 s. The white light at the sidewalls is due to scattering from the laser sheet. The

Aircraft and lighting strike

Fig. 12 Ultrasonic T-scan images of the lightning damage areas in CFRP samples: a S1, b S2, c S3, and d S5

Plasma in spaceships

پیشرانه یونی

Accelerators and tokamaks

High-tech movement!

Accelerators and tokamaks

پیکربندی میدان مغناطیسی در یک توکامک چیست؟

Accelerators and tokamaks

پیکربندی میدان مغناطیسی در یک توکامک چیست؟

برون یابی میدان مغناطیسی خورشید

تاج خورشید

Planetary Nebula NGC 6751

سحابی سیاره نما

PRC00-12 • Space Telescope Science Institute • NASA and The Hubble Heritage Team (STScI/AURA)

علت انحراف دنباله یونی دنباله دارها چیست؟

دنباله دار هیل-باپ

