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My field of research is arithmetic geometry. I will start by introducing my
conceptual background and my research skills, and then I will review my results in
four separate sections.

My background in analysis is limited to my research field. The words symmetric
spaces, modular forms, L-functions and automorphic representations pretty much
classifies the kind of analysis I am most familiar with. I am also familiar with the kind
of analysis which is absorbed in geometric formalism. Moduli spaces, deformation
theory and dynamical systems introduce a good picture of the most convenient set
up for me a geometric object could be studied in. All my geometric concepts could
be studied in algebraic language. Any kind of algebraic structure which could be
related to number theory is under my focus. Diophantine geometry is my main
focus in number theory. I consider my results immature until they contribute to
Diophantine geometry.

While performing my research, I try to construct arithmetic versions of every
piece of mathematics I encounter. Then, I try to contribute to problems in Dio-
phantine geometry. I lay mostly on geometric imagination rather than analytic
calculations. This is my main source of creativity. My background in geometry is a
rich toolbox for handling technical difficulties. Any use of analytical techniques is
pure imitation for me. Algebraic calculations are successful when I see what I am
doing. I have no interest in doing mathematics in the style of Euclid, dealing with
axioms and their logical consequences. I don’t even like his style of presentation.
The process of discovery is very important to me.

1 Modular forms

Let Fq denote a finite field of characteristic p and let X be a smooth projective
absolutely irreducible curve of genus g over Fq. The field of rational functions K of
the curve X is an extension of Fq of transcendence degree one. We fix a place ∞
of K with associated normalized absolute value. The order of the residue field of
the ring of integers Ov of the completion Kv is denoted by qv. In my thesis, I got
congruences between Ql-valued weight two v-old Drinfeld modular forms and v-new
Drinfeld modular forms of level vn.

1
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Theorem 1.1 Let n be a nonzero effective divisor on X −{∞} and let v be a point
on X−{∞} which does not intersect n. Let l be a prime not dividing 2q(qv +1) and
not contained in an explicit finite set of places SΓ(n). Let f be a Hecke eigen-form of
level Γ(n) and Tvf = tvf . If t2v ≡ (qv +1)2 mod l then f is congruent to a new-form
of level Γ0(v) ∩ Γ(n) mod l.

In the number field case, the idea of obtaining such a cogruence is due to Ribet
[Ri]. In order to do this, we shall first construct a cokernel torsion-free injection
from a full lattice in the space of v-old Drinfeld modular forms of level vn into a full
lattice in the space of all Drinfeld modular forms of level vn. To get this injection
we use ideas introduced by Gekeler and Reversat on uniformization of jacobians of
Drinfeld moduli curves [Ge-Re].

In our attempt to generalize this to Siegel modular forms, we introduced a higher
dimensional Atkin-Lehner theory for Siegel-parahoric and Borel congruence sub-
groups of GSp(2g). The philosophy is that, old Siegel forms are induced by geomet-
ric correspondences on Siegel moduli spaces which commute with almost all local
Hecke algebras. We use elements of the Weyl group of GSp(2g) to construct new
congruence subgroups sandwiched between the Siegel-parahoric congruence group

ΓP (n) = {γ ∈ Sp(2g, Z)|γ ≡
(
∗ ∗
0 ∗

)
, (mod n)}

and the following congruence group

ΓT (n) = {γ ∈ Sp(2g, Z)|γ ≡ diag(∗, ..., ∗), (mod n)}.

These groups are all defined in terms of the mod-n reduction of elements in Sp(2g, Z)
and thus have moduli interpretations which could be used to define correspondences
on the moduli space.

Let ζn denote an n-th root of unity for n ≥ 3. The moduli scheme classify-
ing the principally polarized abelian schemes over Spec(Z[ζn, 1/n]) together with a
symplectic principal level-n structure is a scheme over Spec(Z[ζn, 1/n]) and will be
denoted by Ag(n). The symplectic group Sp(2g, Z/nZ) acts on Ag(n) as a group
of symmetries by acting on level structures. We will recognize these moduli spaces
and their etale quotients under the action of subgroups of Sp(2g, Z/nZ) as Siegel
spaces.

A ΓP (n)-level structure of type I on (A, λ) is choice of a subgroup H ⊂ A[n] of
order ng which is totally isotropic with respect to the Weil pairing induced by λ. A
ΓP (n)-level structure of type II on (A, λ) is choice of a principally polarized isogeny
(A1, λ1) → (A2, λ2) of degree ng. By a principally polarized isogeny, we mean an
isogeny σ : A1 → A2 such that σ ◦ λ2 ◦ σt ◦ λ−1

1 is multiplication by an integer. For
n ≥ 3 type I and type II ΓP (n)-level structures induce isomorphic moduli schemes
over Spec(Z[1/n]) [DJ]. We denote this moduli scheme by AP

g (n). There exists a
natural involution

wP
n : AP

g (n) → AP
g (n)
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taking (σ : (A1, λ1) → (A2, λ2)) to (σt : (A2, (λt
2)
−1) → (A1, (λt

1)
−1)) which we call

the Atkin-Lehner involution.
A ΓB(n)-level structure of type I on (A, λ) is choice of g subgroups Hi ⊂ A[n] of

order ni with H1 ⊂ ... ⊂ Hg where Hg is totally isotropic. A ΓB(n)-level structure
of type II on (A, λ) is choice of a chain of g isogenies (A0, λ0)

α→ ...
α→ (Ag, λg) each

of degree n which satisfy n.idAi = αi ◦ λ−1
0 ◦ (αt)g ◦ λg ◦ αg−i for all i = 1, ..., g.

In case n ≥ 3 type I and type II ΓB(n)-level structures induce isomorphic moduli
schemes over Spec(Z[1/n]) [DJ]. We denote this moduli scheme by AB

g (n). There
also exists a natural involution

wB
n : AB

g (n) → AB
g (n)

taking ((A0, λ0)
α→ ...

α→ (Ag, λg)) to ((Ag, (λt
g)
−1) αt

→ ...
αt

→ (A0, (λt
0)
−1)) which

commutes with the Atkin-Lehner involution under the natural projection between
the Siegel spaces.

AB
g (n)

wB
n−→ AB

g (n)
↓ ↓

AP
g (n)

wP
n−→ AP

g (n)

A ΓT (n)-level structure on (A, λ) is choice of 2g subgroups Hi ⊂ A[n] for i = 1 to
2g, each isomorphic to (Z/nZ) such that H1⊕...⊕Hg and Hg+1⊕...⊕H2g are totally
isotropic subgroups of order ng which do not intersect with Hi⊕Hg+i hyperbolic for
i = 1 to g. For A and A′ abelian schemes over the schemes S and S′ respectively,
we define a morphism from (S, A, λ,H1, ...,H2g) to (S′, A′, λ′,H ′

1, ...,H
′
2g) to be a

pair of morphisms (f, g) where f : S → S′ and g : A → A′ satisfy g∗(λ′) = λ
and g(Hi) = H ′

i for all 1 ≤ i ≤ 2g. Also we want the pair (f, g) to induce an
isomorphism A ' S ×S′ A′. Having these morphisms defined, we have formed a
category AT

g (n). The functor π : AT
g (n) → Sch defined by π(S, A, λ,H1, ...,H2g) =

S makes AT
g (n) into a stack in groupoids over S. The 1-morphism of stacks π′ :

AT
g (n) → Ag defined by π′(S, A, λ, H1, ...,H2g) = (S, A, λ) is representable and

is a proper surjective morphism. For n ≥ 3 we get a separated scheme of finite
type AT

g (n) which is smooth over Spec(Z[1/n]). The moduli space AT
g (p) is the

appropriate moduli space to geometrically realize all the endomorphisms

vσ
p : AT

g (p) → AT
g (p)

induced by conjugation via elements σ in the Weyl group WG.

Theorem 1.2 The linear subspaces of H0(AB,P
g (p, n), ω⊗k) generated by Atkin-

Lehner correspondences πn∗C
σ
B(p)π∗n where Cσ

B(p) is defined by πT,B∗v
σ∗
p π∗T,BwB∗

p

AT,P
g (p, n)

vσ
p−→ AT,P

g (p, n)
↓ ↓

AB,P
g (p, n) AB,P

g (p, n)
wB

p−→ AB,P
g (p, n)
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for σ varying in WG give several linearly independent copies of H0(AP
g (n), ω⊗k)

inside p-old forms of level pn living on AB,P
g (p, n).

If one could prove that the number of these copies is g!2g a geometric formulation
for the notion of p-old Siegel modular forms would be available for arbitrary genus.
This is what we originally imagined we had proved, but there was some flaws in our
arguments.

Using the Atkin-Lehner correspondences, we define a map from four copies of
the space of forms of level n to the p-old part of forms of level np which turns out to
be injective and generate the whole p-old part. By an Ihara-result we mean cokernel
torsion-freeness of the map induced on the specified full lattices in these vector
spaces. This is what Ihara proved in the elliptic modular case [Ih]. Injection of this
map is an automorphic fact. But cokernel torsion-freeness is proved by getting an
injection result in finite characteristic. We generalize a result of G. Pappas to get
this injection using density of Hecke orbits. This density result is proved by C. Chai
[Ch]. The precise statement of our main result is as follows.

Theorem 1.3 Let p be a prime which does not divide the square-free integer n.
Atkin-Lehner correspondences induce an injection from a full lattice in the space of
p-old Siegel modular forms, into a full lattice in the space of all modular forms of
level np. The cokernel of this map is free of l-torsions for all primes l not dividing
2np[ΓP (p) : ΓT (p)] with l − 1 > k where ΓP (p) and ΓT (p) are certain congruence
subgroups of Sp(4, Z).

Using the same ideas one can also prove an Ihara result for Siegel-Jacobi forms of
genus two. Let B∗g(n) denotes the compactification of the universal abelian variety
over the Siegel space AB

g (n).

Theorem 1.4 Let p be a prime which does not divide n. The Atkin-Lehner corre-
spondences induce a cokernel torsion-free injection

H0(B0∗
2 (n)/Zl, ω

⊗k ⊗ L⊗m)⊕4 → H0(B0∗
2 (np)/Zl, ω

⊗k ⊗ L⊗m)

for all primes l not dividing 2pn[ΓP (p) : ΓT (p)] with l − 1 > k.

We shall continue this line of research by trying to obtain congruences between
Siegel modular forms of arbitrary genus.

2 Arakelov theory

We introduce an admissible pairing of divisors on a Drinfeld moduli space as an
analogue of Arakelov’s pairing on an arithmetic surface. Such a pairing has been
constructed before by S. Zhang by globalizing a pairing which he constructed of
divisors on a curve defined over a non-archimedean field [Zh]. In order to define such
a pairing, he associated a graph to each finite fiber and defined Green’s functions
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on these metrized graphs. By specializing to Drinfeld moduli spaces we are able to
construct a pairing without passage through local theory.

Let k denote the residue class field of O∞ ⊂ K∞ of cardinality q∞. The set
of vertices V (τ) of the Bruhat-Tits tree consists of the set of similarity classes of
O∞-lattices in K2

∞. Two vertices are adjacent if and only if they are represented
by lattices Λ1 ( Λ2 such that Λ1\Λ2 has length one. This way, we get a connected
homogeneous tree τ over which GL(2,K∞) acts by its quotient PGL(2,K∞) [Ge-Re].

There is a canonical map λ from Ω to the realization τ(R) of τ . Inverse image of
vertices of τ under λ are isomorphic as analytic spaces with P 1(C) minus (q∞ + 1)
disjoint open balls, and inverse image of edges of τ (open edges) are isomorphic to
an annulus

{z ∈ C | q−1
∞ < |z| < 1}.

The map λ is equivariant with respect to the left action of GL(2,K∞) on Ω and
τ . So we get a map Γ\Ω → Γ\τ . The graph Γ\τ is union of on finite graph with
finitely many ends. By ends, we mean half lines like this

•−−−−•−−−−•−−−−•−−−−•−−−−• ...

and λ induces a bijection of the set of ends in Γ\τ with the cusps of the Drinfeld
moduli curve M̄Γ(C) − MΓ(C), which are in one-to-one correspondence with the
set Γ\P 1(K). The genus g(M̄Γ) of M̄Γ equals the first betti number b1(Γ\τ) of Γ\τ
which is also the rank dimQ Γab⊗Q of the factor commutator group Γab of Γ [De-Hu].

We use Bruhat-Tits tree τ of PGL(2, Fq((t))), where Fq is a finite field of char-
acteristic p, and apply Zhang’s version of Green’s function to a quotient of τ which
is associated to the Drinfeld moduli space, we started with. Our definition has the
advantage that it can be naturally generalized to Drinfeld moduli spaces of higher
ranks.

S. Bloch suggested to us to use this intersection theory to check Birch and
Swinerton-Dyer conjecture in the special case of Drinfeld modular curves.

3 Diophantine geometry

By arithmetic fractals we mean self-similar objects in arithmetic ambient spaces.
More precisely, arithmetic fractals are subsets of arithmetic varieties which are finite
union of pieces, each similar to the whole object, where these similarity maps are
given by algebraic self-maps on the ambient arithmetic variety. For technical reasons,
we assume that only finite intersection between these pieces are allowed. This allows
us to define a well-defined and well-behaved concept of fractal dimension for these
arithmetic objects. This concept is intimately related to the concept of arithmetic
height. Examples of arithmetic fractals are the set of rational points on an abelian
variety or on a projective space, and the set of torsion points on an abelian variety.

We consider finiteness problems in Diophantine geometry in the context of arith-
metic fractals. There are quite a number of statements in Diophantine geometry
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which are naturally formulated in the context of arithmetic fractals. Indeed, arith-
metic fractals provide a common framework in which similar theorems in Diophan-
tine geometry could be united in a single context. We formulate a general conjecture
implying and unifying many similar statements.

Conjecture 3.1 Let X be an irreducible variety over a finitely generated field K and
let F ⊂ X(K̄) denote an arithmetic fractal on X and let Z be a reduced subscheme
of X. The Zariski closure of Z(K̄)∩F is union of finitely many components Bi for
which, either Bi is a point, or Bi(K̄) ∩ F is an arithmetic fractal with respect to
some induced endomorphisms of Bi.

Important special cases are proved by Faltings and Raynaud [Fa],[Ra]. Our main
theorems are extensions of Siegel’s and Falting’s theorems on finiteness of integral
points, which are special cases of the above general conjecture. Here is our version
of Siegel’s theorem:

Theorem 3.2 Let X be an affine irreducible curve defined over a number field K
and let F ⊂ An(K̄) denote an affine arithmetic fractal in the affine ambient space
of X, which means that self-similarity maps are given by polynomials. If genus of
X is ≥ 1, then X(K) ∩ F is finite.

Our version of Faltings’ theorem is as follows:

Theorem 3.3 Let A be an abelian variety defined over a number field. Let W
be an affine open subset of A and F be an affine arithmetic fractal contained in
An(K̄) ⊃ W (K̄) where K is a number field. Then F ∩W (K) is finite.

These results are proved using the following strong fractal version of Roth’s theorem:

Theorem 3.4 Fix a number-field K and σ : K ↪→ C a complex embedding. Let V
be a smooth projective algebraic variety defined over K and let L be an ample line-
bundle on V . Denote the arithmetic height function associated to the line-bundle L
by hL. Suppose F ⊂ V (K) is a fractal subset with respect to finitely many height-
increasing self-endomorphisms φi : V → V defined over K such that for all i we
have

hL(φi(f)) = mihL(f) + 0(1)

where mi > 1. Fix a Riemannian metric on Vσ(C) and let dσ denote the induced
metric on Vσ(C). Then for every δ > 0 and every choice of an algebraic point
α ∈ V (K̄) which is not a critical value of any of the φi’s and all choices of a
constant C, there are only finitely many fractal points ω ∈ F approximating α in
the following manner

dσ(α, ω) ≤ Ce−δhL(ω).

We will follow this line of research by trying to connect our conjecture with
Vojta’s conjectures.
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4 Deformation theory

To a hyperbolic smooth curve defined over a number-field one naturally associates
an ”anabelian” representation of the absolute Galois group of the base field landing
in outer automorphism group of the algebraic fundamental group.

ρX : Gal(K̄/K) −→ Out(π1(X))

Here Out(π1(X)) denotes the quotient of the automorphism group Aut(π1(X)) by
inner automorphisms of the algebraic fundamental group. By a conjecture of Vo-
evodski and Matsumoto the outer Galois representation is injective when topological
fundamental group of X is nonabelian. Special cases of this conjecture are proved
by Belyi for P1 − {0, 1,∞}, by Voevodski in cases of genus zero and one [Vo], and
by Matsumoto for affine X using Galois action on profinite braid groups [Ma]. The
importance of the representation ρX is due to the fact that, by a result of Mochizuki,
for X and X ′ hyperbolic curves, the natural map

IsomK(X, X ′) −→ OutGal(K̄/K)(Out(π1(X)), Out(π1(X ′)))

is a one-to-one correspondence [Mo]. Here OutGal(K̄/K) denotes the set of Galois
equivariant isomorphisms between the two profinite groups. In particular, ρX de-
termines X completely.

The induced pro-l representation

ρl
X : Gal(K̄/K) −→ Out(πl

1(X))

after abelianization of the pro-l fundamental group induces the standard Galois rep-
resentation associated to Tate module of the Jacobian variety of X. Curves with
abelian fundamental group are not interesting here, because the outer representation
does not give any new information. After dividing πl

1(X) by its Frattini subgroup,
or by mod-l reduction of the abelianized representation, one obtains a mod-l repre-
sentation

ρ̄l
X : Gal(K̄/K) −→ GSp(2g, F̄l).

We are interested in the space of deformations of the representation ρl
X fixing the

mod-l reduction ρ̄l
X . In order to make sense of deforming a representation landing

in Out(πl
1(X)) we will translate the outer representation of the Galois group to the

language of graded Lie-algebras.
If all of the points in the complement X̄−X are K-rational, then the pro-l outer

representation of the Galois group lands in the braid type outer automorphism group

ρ̃l
X : Gal(K̄/K) −→ Õut(πl

1(X))

and the weight filtration on the pro-l outer automorphism group induce a filtration
on the absolute Galois group mapping to Õut(πl

1(X)) and also an injection between
associated Lie algebras over Zl defined by each of these filtrations

Gr•X,lGal(K̄/K) ↪→ Gr•I Õut(πl
1(X)).
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The classical Schlessinger criteria for deformations of functors on Artin local
rings is used for deformation of the Galois action on the abelianization of the pro-
l fundamental group which is the same as etale cohomology. Using Schlessinger
criteria, we will construct universal deformation rings parameterizing all liftings of
the mod-l representation ρ̄l

X to actions of the Galois group on graded Lie-algebras
over Zl with finite-dimensional graded components. We also show that this defor-
mation theory is equivalent to deformation of abelian representations of the Galois
group. Together with Shimura-Tanyama-Weil conjecture proved by Wiles and his
collaborators [Wi] [Ta-Wi] [Br-Co-Di-Ta] we get the following

Theorem 4.1 Let E be an elliptic curve over Q together with a rational point 0 ∈ E.
For each m the Galois representation

Gal(Q̄/Q) −→ Aut(grmÕut(πl
1(E − {0})))

appear as direct summand of the Galois representation

Gal(Q̄/Q) −→ Aut(grmÕut(πl
1(Y0(N))))

for some integer N .

To use the full power of outer representations, we deform the corresponding
Galois-Lie algebra representation to the graded Lie algebra associated to weight fil-
tration on outer automorphism group of the pro-l fundamental group. We construct
a deformation ring parameterizing all deformations fixing the mod-l Lie-algebra
representation. Alongside, we develop an arithmetic theory of deformations of Lie-
algebras.

More, precisely, we are interested in deforming the following graded representa-
tion of the Galois graded Lie algebra

ρ : Gr•X,lGal(K̄/K) → Gr•I Õut(πl
1(X))

among all graded representations which modulo l reduce to the graded representation

ρ̄ : Gr•X,lGal(K̄/K) → L̄

where the Lie algebra L̄ over F̄l is the mod-l reduction of Gr•I Õut(πl
1(X)).

The main point we are trying to raise in this paper is that for a hyperbolic
curve X the l-adic Lie-algebra representation we associate to a hyperbolic curve X
contains more information than the associated abelian l-adic representation.

Theorem 4.2 The cohomology groups H i(Gr•I Õut(πl
1(X)), Gr•I Õut(πl

1(X)))(0) are
finite dimensional for all non-negative integer i.

Theorem 4.3 H1(Gr•X,lGal(K̄/K), Ad ◦ ρ)(0) is finite dimensional.

Theorem 4.4 Suppose Gr•X,lGal(K̄/K) is a free Lie algebra over Zl, then the Ga-
lois cohomology H2(Gr•X,lGal(K̄/K), Ad ◦ ρ̄) vanishes.
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Theorem 4.5 Suppose that Gr•X,lGal(K̄/K) is a free Lie algebra over Zl. There
exists a universal deformation ring Runiv = R(X, K, l) and a universal deformation
of the representation ρ̄

ρuniv : Gr•X,lGal(K̄/K) −→ Gr•I Õut(πl
1(X))⊗Runiv

which is unique in the usual sense. If Gr•X,lGal(K̄/K) is not free, then a mini-versal
deformation exists which is universal among infinitesimal deformations of ρ̄.

The following conjecture places the above result in the correct perspective.

Conjecture 4.6 (Deligne) The graded Lie algebra (Gr•P1−{0,1,∞},lGal(Q̄/Q)) ⊗ Ql

is a free graded Lie algebra over Ql which is generated by Soule elements and the
Lie algebra structure is induced from a Lie algebra over Z independent of l.

Remark 4.7 It is reasonable to expect freeness to hold for (Gr•X,lGal(Q̄/Q))⊗Ql.

The main obstacle in generalizing this method is the fact that fundamental
groups of curves are one relator groups and therefore very similar to free groups. This
makes it possible to mimic many structures which work for free groups in the case
of such fundamental groups. This is heavily used in the course of our computations.
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