Final Exam Econometrics, PhD, Spring 2022 Sharif University of Technology, MH Rahmati

1. (**30 points**) Consider the following model:

$$y_{1i} = \beta x_{1i} + u_i$$

$$y_{2i} = \beta x_{2i} + u_i$$

$$U_{1i} = y_{1i} + v_{1i}$$

$$U_{2i} = y_{2i} + v_{2i}$$

$$u_i = \alpha_1 v_{1i} + \alpha_2 v_{2i} + \omega_i$$

$$i = 1, 2, \cdots, n$$

define

$$y_i = \begin{cases} y_{1i} & if \ U_{1i} - U_{2i} > 0 \iff D_i = 1 \iff A_i \\ y_{2i} & if \ U_{1i} - U_{2i} < 0 \iff D_i = 0 \iff \overline{A_i} \end{cases}$$

Assume that (v_{1i}, v_{2i}) are i.i.d. $N(0,0,1,1,\rho)$, ω_i are i.i.d $N(0,\sigma^2)$ independent of (v_{1i}, v_{2i}) , and the statistician observes D_i , y_i , x_{1i} , x_{2i} for every *i*. The unknown parameters of the model are $\alpha_1, \alpha_2, \beta, \rho$ and σ^2

- i. Derive the likelihood function
- ii. Define a two-step consistent estimator of β simpler to compute than the maximum likelihood estimator.
- 2. (40 points) Consider a linear panel data model with unobserved heterogeneity and a (potentially) endogenous explanatory variable, y_{it2} , where $y_{it2} > 0$:

$$y_{it1} = \alpha_1 y_{it2} + z_{it1} \delta_1 + c_{i1} + u_{it1}$$

$$E(u_{it1}|z_i,c_{i1}) = 0$$

where $z_{it} = (z_{it1}, z_{it2})$ and z_i is the entire history $\{z_{it} : t = 1, 2, \dots, T\}$.

- i. Assuming an appropriate rank condition which you should provide how would you estimate α_1 without further assumptions?
- ii. Let $\overline{z_i} = T^{-1} \sum_{r=1}^{T} z_{ir}$ be the vector of time averages of the exogenous variables and assume that

$$E(c_{i1}|z_i) = \psi_1 + \overline{z_i}\xi_1$$
$$E(y_{it2}|z_i) = \exp(\eta_2 + z_{it}\pi_2 + \overline{z_i}\xi_2)$$

where $z_{it}\pi_2$ is assumed to depend on z_{it2} . Find $E(y_{it1}|z_i)$.

iii. Consider the following two-step procedure.

(a) Run a pooled nonlinear least squares estimation

$$\min_{\eta_2, \pi_2, \xi_2} \sum_{i=1}^{N} \sum_{t=1}^{I} [y_{it2} - \exp(\eta_2 + z_{it}\pi_2 + \overline{z_i}\xi_2)]^2$$

and obtain the fitted values, $\hat{y_{it2}} = \exp(\hat{\eta_2} + z_{it}\hat{\pi_2} + \bar{z_i}\xi_2)$ (b) Run the pooled OLS regression y_{it1} on $\widehat{y_{it2}}, z_{it1}, 1, \overline{z_i}$.

Under the assumptions given in part (ii), is this two-step approach generally consistent for α_1 and δ_1 ? Explain two ways of performing inference and discuss the pros and cons of each. (No derivations are needed but careful explanations are.)

- iv. Argue that if $E(y_{it2}|z_i) \neq \exp(\eta_2 + z_{it}\pi_2 + \overline{z_i}\xi_2)$ the approach from part (iii) is inconsistent. What is a better way of using the fitted values $\widehat{y_{it2}}$ generated in part (iii)?
- v. If you extend the model to

 $y_{it1} = \alpha_1 y_{it2} + z_{it1} \delta_1 + y_{it2} z_{it1} \theta_1 + c_{i1} + u_{it1}$

how would you estimate the parameters? Be very detailed in your description.

3. (**30 points**) Consider a structural equation:

$$y_t = \alpha d_t + \beta x_t + \varepsilon_t$$

Where d_t can be correlated with ε_t . Suppose you have access to an instrument variable z_t such that $E(\varepsilon_t | z_t) = 0$. Since d_t is a count variable that takes values 0,1,2,... you specify a Poisson regression model, such that for k = 0,1,2,...

$$P(d_t = k | x_t, z_t) = \frac{\lambda^k e^{-\lambda}}{k!}$$
, where $\lambda = \exp(x_t' \alpha_1 + z_t' \alpha_2)$

Suppose you estimate a Poisson regression model in the first stage and obtain the predicted value of $E[d_t|x_t, z_t]$, call it $\widehat{d_t}$

- i. Will you be able to obtain consistent estimate for α and β if you regress y_t on \hat{d}_t and x_t in the second stage? State clearly any assumption you need to make to justify your answer.
- ii. How will your answers change if you use \hat{d}_t as an instrument instead of regressor in the second stage regression?
- iii. Given the information above what is the most efficient method you can come up with to estimate α and β ? Derive your estimator!