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Solar Introduction Model

Introduction

I Renewable capacity increased: falling price+ policies

I Problem is intermittency: solar generators produce only when
the sun is shining

I This paper: structurally quantify social costs and reductions in
carbon emissions

I Social cost depends on:

1. variability & its correlation with demand
2. forecastibility in its output
3. costs of building backup generation for system reliability

I Counterfactual with real-time pricing

I Related literature: systems engineering + economics literature

I Engineers ignore re-optimizing of policies.
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The Electricity Industry in the Tucson Area

I Tucson Electric Power (TEP), vertically integrated

I 91% of new fossil fuel in Arizona: combined cycle generators

I State-mandated Renewable Portfolio Standard: 3% (15%)
from renewables by 2011 (2025)

I Absence wind generation in Arizona

I Scenarios 10, 15, 20 % of generation from solar
I Operating reserves: ≈ 1.5% of peak load.

I contingency reserves, used in the event of a generator failure
I balancing reserves, used to smooth out fluctuations in load and

renewable output
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Solar Energy

I Intermittency:load and solar PV output

I Positive correlation between load and solar output
I Increases value of solar installations
I But, late afternoons with high load but low solar output
I ⇒ still need fossil fuel capacity
I Large fluctuations in solar over a fine time scale
I Not forecastable ⇒ increases reserve operation costs
I State mandate: 30% of renewable consist of distributed
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Model-Overview

I Retail price of electricity as given

I Stage 1: system operator decides on capacity investment + a
price for interruptible power contracts to customers

I Stage 2: operator decides on generator scheduling
+demand-side management

I After scheduling& curtailment, solar output realized
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Demand and Consumer Welfare

I Retail price (constant) p̄
I Demand: random of weather (~ω)
I ~ω= cloud, temperature, time of day, day of week, sunrise
I Constant price elasticity η up to reservation value ν, scale D̄

varies stochastically with ~ω D̄ ∼ FD(.|~ω

QD(p, D̄) =

{
0 p > ν
D̄p−η p ≤ ν

I F (.|~ω) has a lower bound ¯Dmin(~ω)
I Value of lost load (VOLL): mean value of electricity per unit

for customers
I Manage demand by voluntary arrangements to curtail demand

when necessary, in exchange for a payment at the time of
curtailment
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Solar Introduction Model

Demand and Consumer Welfare

I Curtailment contracts at price pc
I If necessary, curtaile & paid a net per-unit price of pcp̄ as

compensation

I Quantity z of demand curtailment is decided

I WLC(z, pc): welfare loss from curtailment
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Generation, Transmission, and Reserves

I Generators: j = 1, · · · , J
I Maintenance status mj ∈ {0, 1}, mj = 1 unavailable
I Maintenance with probability Pmaintt , iid
I System operator schedules available units for production and

reserves
I let onj denote a 0–1 scheduling indicator
I mj = 1 implies that onj = 0
I Marginal costs (MC) cj and capacity kj
I MC of reserves: fraction cr of cj
I Probability P failj of failure in any hour, ii
I Maximum output

xj(onj) =

{
kj with probability(1− P failj )onj
0 Otherwise
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Generation, Transmission, and Reserves

I ~x( ~on): maximum outputs for all generators

I Decide on number of new fossil fuel generators, nFF , with
fixed capacity kFF , capacity costs of FCFF per MW of
capacity, operating costs of cFF per MWh.

I New fossil fuel units j = J + 1, · · · , J + nFF

I Fixed solar PV capacity nSL, zero MC & maintenance &
failure probabilities, capacity costs FCSL per MW of capacity

I Solar production: state-contingent distribution nSLS̄, where
S̄ ∼ FS(.|~ω)

I ~F (.|~ω) joint distribution~FD(.|~ω), ~FS(.|~ω)
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Generation, Transmission, and Reserves

I Solar close to lines, wind far from
I dSL installed in a distributed environment, lowers transmission

costs

1. Lower the fixed costs of transmission lines, function of
maximum loads

TFC(nSL) = AFCT max
~ω

{
E[D̄(~ω)p̄−η − dSLnSLS̄(~ω)]

}
2. . Lower line losses: Line loss: LL = α(Q+ LL)2 solve to

LL(Q) = (2α)−2(1− 2αQ−
√

1− 4Qα)
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System Operator’s Problem

I Max expected discounted total surplus, s.t. p̄, nSL

I Discount β, life span T (generators)
I First stage: nFF , pc
I Second stage: conditional on weather forecast ~ω ,

maintenance statuses ~m
1. Generator scheduling decisions ~on
2. Amount of demand to be curtailed z

I Operator chooses ~onj for each unit with ~mj = 0
I Then, state-specific random variables are realized: may outage
I Otherwise, low mc are on and high mc as reserve
I PC(D,~x): ex post minimized costs of generation & reserves
I D: demand (net of curtailment) plus line loss minus solar

production
I ~x denotes generator output realization vectors.
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Simple example calculation PC

I Two scheduled generators each with capacity 1

I c2 > c1, D = 1.6, and no generator failures

I Demand realization ⇒ Output 2=0.6

PC(1.6, (1, 1)) = c1 + 0.6c2 + 0.4c2c
r

I Outage 0-1 indicator for a system outage

Outage( ~on, z, ~ω) = 1
{∑J+nFF

j=1 xj(onj) + nSLS̄ <

D̄p̄−η − z + LL(D̄p̄−η − z − dSLnSLS̄)
}

I Supply less demand.

I doutage: fraction lose power times number of hours
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Simple example calculation PC

I System operator’s problem for a second-stage

W (~ω, ~m|nFF , Pc) = max ~on,z E [1− doutageoutage( ~on, z, ~ω)
×
[
D̄p̄−ηV OLL−WLC(z, Pc)

]
−PC(D̄P̄−η − z − nSLS̄ + LL(.), ~x( ~on))|~ω, ~m

]
s.t.mj = 1⇒ onj = 0

I Expectation over F (., ~ω) & ~x( ~on)

I Stage 1: Pc&n
FF use expected value of W

I H be number of hours in a year

V (nFF ) = max
Pc

E
[
H ×W (~ω, ~m|nFF , Pc)

]
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Simple example calculation PC

I Investment decision for system operator:

V ∗ = maxnFF

{
1−βT

1−β V (nFF )

−nSLFCSL − nFFFCFF − TFC(nSL)
}

I nSL chosen by regulator
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Data, Estimation, and Computation

I Data: May 2011 until April 2012

I Data on capacity, fuel source, location.

I EIA: average price & investment cost

I eGRID2010 rates on CO2, SO2, NOx

I Solar: min size 2.3Kw, max size 84.2Kw

I Total capacity (58 sites) is 517 kW

I Map distances of 10, 20, 30, 40 Km from center Tucson

I Weather+forecast: National Oceanic and Atmospheric
Administration

I Info at cloud cover, wind speed, temperature, relative
humidity, dew point
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Map of Tucson with solar sites
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Solar Production by Hour of a Day
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Estimation and Calibration of Parameters-Demand

I Demand parameters of base model

I FD, FS : seemingly unrelated regression with load and solar
output as the dependent variables.

I Solar zero at night ⇒ separate nighttime load regression
I Load estimates recovers D̄ (demand equ)
I MC method like BBW (2002) for CA
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Estimation and Calibration of Parameters-Technology

I New generators: Combined cycle w/ kFF = 191MW

Rahmati (Sharif) Energy Economics October 30, 2018 20



Solar Introduction Model

Estimation and Calibration of Parameters-Technology

I Cost for PV and other sources
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Estimation and Calibration of Parameters-Technology

I Line losses 6.6% for all year

I Using using LL(Q) equation to find in any hour that match
annual loss

I doutage: in 2008, 21 outrage ⇒= duration × percentage of
customers affected

I Mean hourly maintenance and failure probabilities

Rahmati (Sharif) Energy Economics October 30, 2018 22



Solar Introduction Model

Computation of the System Operator’s Problem

I Find nFF , Pc given nSL

I Given (long-tun) (nFF , Pc, ~ω, ~m), operator chooses ~on, z
I For each value of (nFF , Pc, ~ω, ~m, ~on, z), simulate generator

failures ~x( ~on), demand and solar output F (., ~w) ⇒ solve for
social welfare

I Short-run simplification assumptions:
I Operator schedules in ascending order of MC
I Operator curtails demand only if MC available generators ¡

marginal cost of curtailment (dWLC(z)
dz )
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Results-Forecast Estimation Results

I U-shaped relation forecasted temperature and load
I electricity for both heating and cooling

I Solar output negative on forecasted cloud

I Correlation in residuals load & solar output=.093 (significant)

I Forecast with perfect fit
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Social Costs of Large-Scale Solar Energy

I Social costs of large scale solar generation

I Paper: Social cost of large-scale solar $126.70 to $138.40 per
MWh.
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Foregone new gas generation+outrage probability

I Engineering calculation:
I Solar average cost $181.20, combined cycle $66.30 per MWh
I Simple average, solar PV additional per-unit cost of $114.90

per MWh

I Paper endogenizes choices ⇒ higher solar cost by $23
I Higher solar ⇒ weakly monotonically & nonlinear decreasing

new natural gas
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Reserve, production cost, curtailment

I Reserve increase is minor by solar 20%

I Cost adds only $6.7 million annuallly

I While decrease in production costs $105 million

I Demand curtailment in (July at 6 pm) rises 9.7 % to 58 %

I Curtailment at noon goes down monotonically

I Aggregate curtailment non-linear
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Environment, capital cost

I US government value for social cost of CO2 in 2015 is $39
per ton

I Solar capital costs is the major source of valuation

I Social break-even point for 20% solar as solar capital costs.

I Solar capacity costs =$1.52 & 20% solar ⇒ welfare neutral

I Model w/ start-up raise social cost of solar from $138 to $143
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Components of Social Costs for Solar

I Decomposition social costs of 20 percent solar
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Components of Social Costs for Solar

I Unforecastable component lower SC, small effect (b/c good
forecast of intermittency)

I Compare w/ perfectly dispatchable (total intermittency costs
I = difference in social costs between large-scale solar and a

energy source with same capacity
I lower the social cost of 20%

I Solar facility that always produced at its mean output: better
$4.60 per MWh

I Distributed generation (rooftop solar) is also costly, raising
the cost of solar by $19.70 per MWh
I ⇒ Transmission cost savings from distributed generation are

small relative to extra capacity costs

I Main saving: fixed cost of solar
I With $3.00/W in 2012 as in table
I If cost drops to $2 social costs drop by $99 per MWh
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Components of Social Costs for Solar

I Test of alternative policies (nFF , Pc)

1. As no solar: higher social cost $281.60 vs $138.40 (too many
new generators+much higher outage)

2. Rules of thumb as systems engineering literature for nFF

2.1 meet load during peak demand periods
2.2 meet specific outage, equal to paper benchmark

both rule-of-thumb policies $15 higher social cost than
optimum

I Importance of reoptimization for large-scale solar to mitigate
intermittency cots.
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Robustness to Environment

I Social cost across different environments

I Environment rules no substantial effects
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Real Time Pricing

I Adds to the social value.

I Without solar, 75% customers on real-time pricing contracts:
adds $36 million to annual social surplus relative to having no
real-time pricing (the dashed line)

I Real-time pricing has a negligible effect in changing the social
costs of large-scale solar.
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Introduction

I Lee, Miguel, Wolfram. “Appliance ownership and aspirations
among electric grid and home solar households in rural
Kenya” AER (2016)

I Universal energy access major policy goal in sub-Saharan
Africa

I large-scale infrastructure (grid connections) OR small-scale
decentralized (solar, solar lanterns, solar home systems)

I Microfinance for home solar by mobile phone! in Kenya

I Solar: short-term benefit, make it more difficult to meet the
soaring increase in energy demand (out poverty)

I ⇒ type of energy supply is matter

I Paper: household appliance survey in Western Kenya
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Data and Setting

I Low electrification rates: 5% for rural HH
I Unconnected HH, sources of energy: kerosene (92.4%), solar

lanterns (3.6%), solar home systems (2.2%)
I Sample into three categories

1. connected to national electric grid (n = 215);
2. not connected to the grid but use solar (n = 198)
3. not connected to the grid, rely on kerosene (n = 2,091)

I Solar lanterns (cost $10 to $100) less than 10 watts of power,
lighting and mobile charging services

I Solar home systems (cost $75 to $2,000) up to 1,000 watts of
power, televisions, fans, and limited motive and heating power

I M-KOPA (solar)(costs over $200) 8 watt panel, two LED
bulbs, an LED flashlight, a rechargeable radio, and mobile
charging adaptors
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Patterns of Electrical Appliance Ownership and Aspirations

I Solar HH higher living standards than kerosene HH, but
differences in appliance ownership are not large
I More educated, politically aware, have bank accounts, high

quality walls, more land

Rahmati (Sharif) Energy Economics October 30, 2018 36



Solar Introduction Model

Patterns of Electrical Appliance Ownership and Aspirations

I Strong desire to own high-wattage appliances
I kerosene: televisions (39%), irons (16%)
I solar: televisions (37%), irons (26%), refrigerators (24%)

I All HH spend a similar mean amount on kerosene
I Portion not spend on Kerosene: 33.4 % of connected HH,

23.7% and 2.5% of home solar and kerosene HH
I Connected HH: problems with grid, such as blackouts
I Solar HH: solar not provide sufficient lighting points within the

home and must be complemented with kerosene lanterns
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Discussion and Conclusion

I Solar for basic appliances, mobile. lighting

I Next level needs grid connections

I Sub-Saharan countries move to less non-fossil
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