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a b s t r a c t

This reviewaddresses a central question in the field of complex systems: given a fluctuating
(in time or space), sequentially measured set of experimental data, how should one
analyze the data, assess their underlying trends, and discover the characteristics of the
fluctuations that generate the experimental traces? In recent years, significant progress
has been made in addressing this question for a class of stochastic processes that can be
modeled by Langevin equations, including additive as well as multiplicative fluctuations
or noise. Important results have emerged from the analysis of temporal data for such
diverse fields as neuroscience, cardiology, finance, economy, surface science, turbulence,
seismic time series and epileptic brain dynamics, to name but a few. Furthermore, it
has been recognized that a similar approach can be applied to the data that depend on
a length scale, such as velocity increments in fully developed turbulent flow, or height
increments that characterize rough surfaces. A basic ingredient of the approach to the
analysis of fluctuating data is the presence of a Markovian property, which can be detected
in real systems above a certain time or length scale. This scale is referred to as the
Markov–Einstein (ME) scale, and has turned out to be a useful characteristic of complex
systems. We provide a review of the operational methods that have been developed for
analyzing stochastic data in time and scale. We address in detail the following issues:
(i) reconstruction of stochastic evolution equations from data in terms of the Langevin
equations or the corresponding Fokker–Planck equations and (ii) intermittency, cascades,
and multiscale correlation functions.
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1. Introduction

Overview
Quite often the behavior of complex systems that are far from equilibrium can be traced back to rather simple laws,

due to the existence of self-organizing processes [1–6]. Complex systems are composed of a huge number of microscopic
subsystems,which irregularly vary on a fast time scale. The fast dynamics can often be treated as fluctuations. Self-organized
behavior arises due to the emergence of collective variables, or order parameters, which, compared to the time or length
scales of the microscopic subsystems, vary on slower temporal and larger spatial scales. The interaction of the order
parameters are typically nonlinear, with the microscopic degrees of freedom showing up in irregular fluctuations that
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Fig. 1. Time series of interbeat intervals x(t) versus interval number t for a typical person with congestive heart failure (bottom) and a healthy subject
(top).

participate in the order parameter dynamics. As a result, the analysis of the behavior of complex systems must be based
on the assessment of the nonlinear interactions, as well as the determination of the characteristics and the strength of the
fluctuating forces. This immediately leads to the problem of retrieving a stochastic dynamical system from data; see Fig. 1
for typical stochastic time series.

Analysis of time series has a long tradition in the field of nonlinear dynamics [7–9]. Much effort has been devoted
to addressing the question of how to extract a deterministic dynamical system from a suitable analysis of experimental
data, since the correct analysis may yield all the important information on the dynamical properties of the system under
consideration. Usually, the fluctuations are treated as a random variable, additively superimposed on a trajectory generated
by a deterministic dynamical system. The problem of dynamical noise, i.e., fluctuations that interfere with the dynamical
evolution, has not been addressed inmuch details, although it is of utmost importance for the analysis of strongly fluctuating
time series.

This review provides detailed description and discussion of the methods that have been developed for analyzing
stochastic data in time and/or length scales. The development of suchmethods has been stimulated by research on turbulent
flows [10–13], which has shown the necessity of treating the fluctuations as dynamical variables which interfere with the
deterministic dynamics. We address in detail the following issues: (i) How to reconstruct stochastic evolution equations
from data in terms of the Langevin equation, or the corresponding Fokker–Planck equation and (ii) intermittency, cascades,
and multiscale correlation functions in the data.

A necessary ingredient of the system under consideration is that, its dynamical behavior should be described by a set of
macroscopic order parameters X(t) that are governed by the nonlinear Langevin equations [14–17],

d
dt

X = D(1)(X) + g(X)F(t) (1.1)

where X(t) denotes the n-dimensional state vector, D(1)(X) the drift vector, and the matrix g(X) is related to the diffusion
matrix according to, D(2)(X)ij =

∑
k gik(X)gjk(X). The noise terms Fl(t) lumped together in the vector F(t) are fluctuating

forces with Gaussian statistics and rapidly decaying temporal correlations, such that delta-correlation in time can be
assumed, i.e., ⟨Fl(t)⟩ = 0, and, ⟨Fl(t)Fk(t ′)⟩ = 2δlkδ(t − t ′).

Applications of the method include for example, the analysis of noisy electrical circuits [18], stochastic dynamics of
metal cutting [19,20], systems with feedback delay [21,22], meteorological processes such as analyzing of sea surface wind
vectors [23,24], traffic flow data [25] and physiological time series [26].

It has turned out that the method of analysis based on the Markov processes can also be successfully applied to not
only fluctuating time series, but also the analysis of spatially disordered structures, such as fluid turbulence [10,27–29] or
characterization of rough surfaces [30,32,34–37]. Such structures can be analyzed as scale-dependent stochastic processes.
Experimental observables include the velocity increments, i.e., the difference in the velocity field between two points
separated by a distance r , or the analogously defined height increments for rough surfaces. The change of the increments as
a function of the distance r can then be viewed as a stochastic process over a length scale and can, quite often, be mapped
onto the mathematical structures of the Langevin processes.

Further length/time scale-dependent processes that may be analyzed by such methods include passive scalar
advection [38], financial time series [39–42], human interbeat fluctuations [43–47], cosmic microwave background
radiation [48], epileptic brain dynamics [50] and seismic time series [52–54], etc.

At the same time, the method can be viewed as an extension of the multifractal description of stochastic processes [55].
The multifractal description focusses on the scaling behavior of the moments of quantities of interest, such as velocity or
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temperature increments, as a function of the scale. The complete information on an increment, ∆rX(t) = X(t + r) − X(t),
is contained in the probability distribution function (PDF), p̃(∆rX, r), for a certain scale r . It is assumed that the increments
exhibit scaling behavior, ∆rX ≈ rh, with locally varying scaling [56]. As a consequence, the PDF is constructed as a
superposition of the probability distributions

p(∆rX, r) =

∫
dh

1
rh

p̃(∆rX/rh)f (h, r), (1.2)

where the measure f (h, r) characterizes the distribution of the regions with different scaling behavior.
In contrast, the approach based on the characterization of the field by a scale-dependent stochastic process aims at

describing the joint statistics of the chosen measure on many different scales. This is achieved by the knowledge of the
joint PDF, p(∆X(t, r1); . . . ; ∆X(t, rn)). Using such joint PDFs, the correlations between the scales are also worked out,
demonstrating how the complexity is linked between scales. If the statistics of the scale-dependentmeasure can be regarded
as a Markov process evolving in r , the knowledge of two-scale conditional PDF is sufficient for a complete description of
multiscale joint PDF. As recently shown this can be extended to the n-point statistics p(X(t1) . . . X(tn)) [101,102].

The Markov method has the advantage that it relates the random variables across different scales by introducing a
conditional PDF or, in fact, a two-scale PDF. Provided that the Markov property holds, which can be tested experimentally,
a complete statistical characterization of the process across the scales is obtained.

The method is also capable of yielding the scaling behavior of the multiscale correlation functions [57–63], i.e.,

Fp+q(r, R) ≡ ⟨[X(t + r) − X(t)]p[X(t + R) − X(t)]q⟩

≡ ⟨[∆rX(t)]p[∆RX(t)]q⟩ (1.3)

which has been shown that, for a large class of processes independent of their details, behaves as

Fp+q(r, R) ∼ Sp(r)Sp+q(R)/Sp(R) (1.4)

where, Sm(r) = ⟨[X(t + r) − X(t)]m⟩. All the results have led to the conclusion that, for the processes that satisfy Eq. (1.4),
multiscale correlation functions that are measured for time series are fully consistent with a multiplicative random process
for the evolution of the increments in length scale.

As another consequence, the Markov method allows us to analyze and obtain the complete information about level
crossing of time series [64–67,41]. In the level-crossing analysis one is interested in determining the average frequency (in
time or space) ν+

α of observing a given value for a fluctuating function, X − X̄ = α, in time series fromwhich one determines
the average number of crossing the given level in a sample of size T . The average number of visiting themagnitude X−X̄ = α
with positive slope is, N+

α = ν+
α T . It can be shown that for discrete time series ν+

α can be written in terms of the drift and
diffusion coefficients of the underlying stochastic process [41]. For continuous time series the frequency ν+

α is determined
by averaging the time derivative of the series on the level α over positive slopes [64,65].

The third consequence of the Markov method is that it enables us to understand the cascade nature of scale-dependent
processes, as well as the intermittency of the time series. The structures that arise in a time series exhibit themselves as
high peaks at random times. The intervals between them are characterized by a low intensity and a large size. Rare peaks
are the hallmarks of the PDF’s non-Gaussian tails.

The plan of the review is as follows. In Section 2 we give a brief review of essentials of stochastic processes. The
main subjects discussed include discrete time evolution, statistical description of stochastic time series, and finite-time
propagators. The section ends with the definition of measurement noise. In Section 3 we discuss stochastic analysis and
introduce the Markov–Einstein time (length) scale of a data set, which is the basic characteristic time (length) scale of
the Markov method. This section contains some technical aspects of the method for estimating the drift and diffusion
coefficients of a stochastic series. In addition, explicit expressions for the level-crossing analysis, in terms of the drift and
diffusion coefficients, are given. In Section 4we take up the issue of stochastic analysis for data that depend on length scales,
and provide a physical picture of the information cascade from large to small scales. Moreover, this section introduces the
multiscale correlation functions and multiplier. Examples of the applications of the method to the analysis of time series
are given in Section 5. We address such phenomena as epileptic brain dynamics, heart interbeat fluctuations and financial
data. Examples of analysis of the data that fluctuate over length scales are given in Section 6, which include hydrodynamics
turbulence, passive scalar, rough surfaces, financial increments and seismic time series.

2. Stochastic processes

In what follows we consider a class of systems that are described by a multivariate state vector X(t) contained in a
d-dimensional state space {x}. The evolution of the state vector X(t) is assumed to be governed by a deterministic part to
which noise is added:

d
dt

X(t) = N

X(t), t


+ F


X(t), t


. (2.1)
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Here N denotes a nonlinear function that depends on the stochastic variable X(t) and, additionally, may explicitly depend
on time t . Note, however, that the time t may also be considered as a general variable and replaced by, for example, a scale
variable l, as described by, for example, [3,4]. Because the functionN can be nonlinear, that systems that exhibit chaotic time
evolution in the deterministic case are also included in the class of stochastic processes (2.1). The term F


X(t), t


fluctuates

on a fast time scale. We assume that the d components Fi can be represented in the form

Fi

X(t), t


=

d−
j=1

gij

X(t), t


Γj(t). (2.2)

The quantities Γj(t) are considered to be random functions, whose statistical characteristics are well defined. It is evident
that these properties determine significantly the dynamical behavior of the state vector X(t). Formally, this approach also
includes purely deterministic processes by taking, F = 0.

2.1. Discrete time evolution

It is convenient to consider the temporal evolution (2.1) of the state vector X(t) on a time scale that is large compared
to the time scale of the fluctuations Γj(t). As we shall briefly indicate below, a stochastic process related to the evolution
Eq. (2.1) can be modeled by stochastic evolution laws that relate the state vectors X(t) at times ti, ti+1 = ti + τ , ti+2 =

ti + 2τ , . . . , for small but finite values of τ . Here, we deal with the class of proper Langevin processes that are defined by
the following discrete time evolutions.

(a) Proper Langevin equations: White noise
The discrete time evolution of a proper Langevin process is given by

X(ti+1) = X(ti) + D(1)
[X(ti), ti]τ + g(X(ti), ti)

√
τΓ (ti) (2.3)

where D(1)
[X(ti), ti] and Γ (ti) are the drift vector and a fluctuating quantity characterized by a Gaussian distribution with

zero mean, ⟨Γ (ti)⟩ = 0,

p(Γ ) =
1

(
√
2π)d

e−
Γ 2
2 =

1

(
√
2π)d

exp


−

d−
α=1

1
2
Γ 2

α


. (2.4)

Furthermore, they are statistically independent for different times
⟨Γα(ti)Γβ(tj)⟩ = δαβδij. (2.5)

The discrete Langevin Eq. (2.3) must be considered in the limit τ → 0. In the following we describe how the discrete time
processes are related to the stochastic evolution equation, Eq. (2.1).

(b) Generalized Langevin equations: Lévy noise
A more general class is formed by the discrete time evolution laws [68,69],

X(ti+1) = X(ti) + D(1)
[X(ti), ti]τ + g(X(ti), ti)τ 1/αηα,β(ti) (2.6)

where D(1)
[X(ti), ti] and ηα,β(ti) are the drift vector and a fluctuating quantity, distributed according to the Lévy stable law,

characterized by the Lévy parameters α and β [70]. The physical origin of the scaling factor τ 1/α is as follows. A variable X
corresponding to such a process can frequently exhibit the dynamics described by the notion of superdiffusion, where the
characteristic value ⟨X(t)2⟩ of the variable X demonstrates scaling behavior ⟨X(t)2⟩ ∼ t2/α , with α < 2. Some examples are
themotion of tracer particles in turbulent flows [71], the diffusion of particles in randommedia [72], human travel behavior
and spreading of epidemics [73] or economic time series in finance [74]. Therefore the variable X scales with time as τ 1/α .

As is well known, only the Fourier transform of the distribution is well defined,

pα,β(η) =
1
2π

∫
dkZ(k, α, β)e−ikη

Z(k, α, β) = e−i|k|α(1−iβsign(k)Φ)

Φ = tan
πα

2


α ≠ 1, Φ = −

2
π

ln |k| α = 1. (2.7)

The Gaussian distribution represents a special limit of the class of Lévy stable distributions, α = 2 and β = 0. Formally,
one has, 0 < α ≤ 2. However, for almost all applications it seems reasonable to choose, 1 < α ≤ 2, in order for the first
moment of the noise source to exist. The parameter β characterizes the skewness of the distribution, i.e. the deviation from
a symmetric of the pdf. For a detailed definition we refer the reader to the monograph by Feller [75]. The consideration of
this type of statistics for the noise variables η is based on the central-limit theorem, as discussed below.

The discrete Langevin equation, Eq. (2.3), and the generalized Langevin equation, Eq. (2.6), must be considered in the
limit, τ → 0. They are the basis of all the further treatments. A central point is that, if one assumes the noise sources to be
independent of the variable X(ti), the discrete time evolution equations define a Markov process, the generator of which,
i.e., its conditional probability distribution or short-time propagator, is established on the basis of Eqs. (2.3) and (2.6).

We now describe how the discrete time processes are related to the stochastic evolution described by Eq. (2.1).
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2.1.1. Discrete time approximation of stochastic evolution equations
In order to motivate the discrete time approximations, Eq. (2.3), we integrate the evolution law [14] over a finite but

small time increment τ :

X(t + τ) = X(t) +

∫ t+τ

t
dt ′N(X(t ′), t ′) +

∫ t+τ

t
dt ′g(X(t ′), t ′)Γ (t ′)

≈ X(t) + τN(X(t), t) +

∫ t+τ

t
dt ′g(X(t ′), t ′)Γ (t ′). (2.8)

The time interval τ is chosen to be larger than the time scale of the fluctuations of Γj(t). It involves the rapidly fluctuating
quantities Γj(t), and is represented by a stochastic integral [15–17,14].

If we assume the matrix g to be independent of the time t and the state vector X(t), we arrive at the integrals

dW(t, τ ) =

∫ t+τ

t
dt ′Γ (t ′). (2.9)

These are the quantities for which a statistical characterization can be given. We shall pursue this problem in the next
subsection. However, looking at Eq. (2.8), we encounter the difficulty that the integrals over the noise forces may involve
functions of the state vector within the time interval (t, t + τ). The interpretation of such integrals for wildly fluctuating
stochastic quantities Γ (t) is difficult. The simplest way is to formulate an interpretation of such terms that leads to different
interpretations of the stochastic evolution equation, Eq. (2.1). We formulate the widely used definitions due to Itô and
Stratonovich.

In the Itô sense, the integral is interpreted as∫ t+τ

t
dt ′g(X(t ′), t ′)Γ (t ′) = g(X(t), t)

∫ t+τ

t
dt ′Γ (t ′) = g(X(t), t)dW(t, τ ). (2.10)

The Stratonovich definition is∫ t+τ

t
dt ′g(X(t ′), t ′)Γ (t ′) = g


X(t + τ) + X(t)

2
, t +

τ

2

∫ t+τ

t
dt ′Γ (t ′)

= g

X(t + τ) + X(t)

2
, t +

τ

2


dW(t, τ ). (2.11)

Since from experiments one obtains the probability distributions of the stochastic processes that are related to the stochastic
Langevin equations, we are free to choose a certain interpretation of the process. In the following we shall always adopt
the Itô interpretation. In this case, the drift vector D1(x, t) = N(x, t) coincides with the nonlinear vector field N(x, t).
We note that Itô and Stratonovich interpretations arise due to the fact that Langevin equations with multiplicative noise
need an interpretation of the evaluation of stochastic integrals, as outlined above. In this sense the Itô and Stratonovich
calculations are equivalent, since they yield two different interpretations of the Langevin equations leading to the same
probability distributions. It may look arbitrary to choose one of them, but fortunately we know how to translate between
them. Operationally, the Stratonovich stochastic differential equations (SDE) are easier to solve analytically, but Itô SDEs
are more natural starting points for numerical schemes. White noise is an idealization of a real fluctuating forcing which
has finite amplitude and timescale. If white noise is an approximation to continuously fluctuating noise with finite memory
(much shorter than the dynamical timescales of the considered process), the appropriate representation is the Stratonovich
one (Wong–Zakai Theorem [277]). If white noise approximates a sequence of discrete pulses with finite time separation,
then the Itô representation is appropriate.

2.1.2. Limit theorems, and Wiener and Lévy processes
In the following we shall discuss the possibilities of characterizing the stochastic integrals

W (t + τ) − W (t) =

∫ t+τ

t
dt ′Γ (t ′) (2.12)

where Γ (t) is a rapidly fluctuating quantity of zeromean. In order to characterize the properties of this force, one can resort
to the limit theorems of statistical mechanics [70]. The central-limit theorem states that if the quantities Γj, j = 1, . . . , n
are statistically independent variables of zero mean and variance σ 2, then the sum

1
√
n

n−
j=1

Γj = Γ (2.13)
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tends to a Gaussian random variable with variance σ 2 for large values of n. The limiting probability distribution h(Γ ) is then
a Gaussian distribution with variance σ 2:

p(Γ ) =
1

√
2πσ 2

exp(−Γ 2/2σ 2). (2.14)

As is well known, there exists a generalization of the central-limit theorem, which applies to random variables whose
second moments do not exist. It states that the distribution of the sum over identically distributed random variables Γj

1
n1/α

n−
j=1

Γj = ηα,β (2.15)

tends to a random variable ηα,β that is distributed according to the Lévy stable distribution pα,β(η) [278]. The Lévy stable
distributions can only be given by their Fourier transforms, Eq. (2.7).

In order to evaluate the integral (2.12) using the limit theorems, it is convenient to represent the stochastic force Γ (t)
as a sum over Nτ δ-kicks occurring at discrete times tj

Γ (t) =

−
j

Γj(∆t)1/αδ(t − tj), (2.16)

where ∆t is the time difference between the occurrence of the two kicks. Then, we obtain
dW (t, τ ) =

−
j,tj∈τ

Γj(∆t)1/α

= (Nτ∆t)1/α
1

N1/α
τ

−
j,tj∈τ

Γj = τ 1/αη(t). (2.17)

An application of the central-limit theorem shows that, if the quantities Γj are independent, identically distributed
variables, the integral

1
τ 1/α

∫ t+τ

t
Γ (2.18)

can be considered to be a random variable η(t) which, in the limit Nτ → ∞, tends to a stable random variable. Thus, for
the case of α = 2, i.e., for the case in which the second moments of the random kicks exist, the stochastic variable dW (t, τ )
may be represented by the increments

dW (t, τ ) =
√

τη(t) (2.19)
where η(t) is a random variable, distributed according to a Gaussian distribution. For the more general case, dW (t, τ ) is a
stochastic variable

dW (t, τ ) = τ 1/αηα,β(t) (2.20)
where the distribution of ηα,β is the Lévy distribution, i.e., Eq. (2.7).

2.2. Statistical description of stochastic processes

In the previous subsection we discussed processes described by stochastic equations. In the present subsection we
shall summarize the corresponding statistical description. Such a description is achieved by introducing suitable statistical
averages. We shall denote the averages by the brackets ⟨·⟩. For stationary processes the averages can be viewed as a time
average. For nonstationary processes the averages are defined as ensemble averages, i.e., averages over an ensemble of
experimental (or numerical) realizations of the stochastic process (2.1). For stationary processes in time, one usually deals
with time averages.

2.2.1. Probability distributions
The set of stochastic evolution equations, Eq. (2.1), or its finite time representations, Eq. (2.3), define a Markov process.

We consider the joint probability density
p(xn, tn; . . . ; x1, t1; x0, t0) (2.21)

which is related to the joint probability, to find the system at times ti in the volume ∆Vi in the phase space. If we take the
times ti that are separated by the small time increment τ = ti+1 − ti, then the probability density can be related to the
discrete time representation of the stochastic process (2.3), according to

p(xn, tn; . . . ; x1, t1; x0, t0) = ⟨δ(xn − X(tn)) · · · δ(x0 − X(t0))⟩ (2.22)
where the brackets indicate the statistical average, which may be a time average (for stationary processes) or an ensemble
average.
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2.2.2. Markov processes
An important subclass of stochastic processes are Markov processes. For such processes the joint probability distribution

p(Xn, tn; . . . ;X1, t1;X0, t0) can be constructed from the knowledge of the conditional probability distributions

p(xi+1, ti+1|xi, ti) =
p(xi+1, ti+1; xi, ti)

p(xi, ti)
(2.23)

according to

p(xn, tn; . . . ; x1, t1; x0, t0) = p(xn, tn|xn−1, tn−1) · · · p(x1, t1|x0, t0)p(x0, t0). (2.24)

Here, the Markov property of a process for the multiply conditioned probabilities

p(xi, ti|xi−1, ti−1; · · · ; x0, t0) = p(xi, ti|xi−1, ti−1) (2.25)

is used. As a consequence, the knowledge of the transition probabilities, together with the initial probability distribution
p(x0, t0), suffice to define the N-point probability distribution.

It is straightforward to prove the Chapman–Kolmogorov equation using the 3-point probability distribution for Markov
processes:

p(xj, tj|xi, ti) =

∫
dxkp(xj, tj|xk, tk)p(xk, tk|xi, ti). (2.26)

This relation is valid for all times ti < tk < tj. In the following we shall show that the transition probabilities p(xj+1, t +

τ |xj, t) can be determined for small time differences τ . This defines the so-called short-time propagators.

2.2.3. Short-time propagator of Langevin processes
It is straightforward to determine the short-time propagator from the finite time approximation, Eq. (2.3), of the Langevin

equation. We shall denote the propagators by p(xj+1, t + τ |xj, t), in contrast to the finite-time propagators, Eq. (2.23), for
which the time interval ti+1 − ti is large compared to τ . We consider the case of Gaussian noise. The variables Γ (ti) are
Gaussian random vectors with probability distribution

p[Γ ] =
1

(2π)d
exp


−

1
2
Γ · Γ


. (2.27)

The finite-time interpretation of the Langevin equation is then rewritten in the form

Γ (ti) =
1

τ 1/2
[g(X(ti), ti)]−1

[X(ti+1) − X(ti) − τD(1)(X(ti))]. (2.28)

In turn, this relation defines the transition probability distribution

p(xi+1, ti+1|xi, ti)dxi+1 = p[Γ (ti) = Γ ]J(xi, ti)dxi+1, (2.29)

where J is the determinant of the Jacobian

Jαβ =
∂Γα(ti)
∂xi+1,β

, (2.30)

and [g]−1 denotes the inverse of the matrix g (which is assumed to exist). In what follows it is convenient to define the
so-called diffusion matrix D(2)(xi, ti)

D(2)(Xi, ti) = gT (Xi, ti)g(Xi, ti). (2.31)

We are now able to explicitly state the short-time propagator of the process (2.3):

p(xi + τ , ti+1|xi, ti) =
1

(2πτ)dDet[D(2)]
exp[−S(xi+1, xi, ti, τ )] (2.32)

where we have defined the quantity S(xi+1, xi, ti, τ ) according to

S(xi+1, xi, ti, τ ) =
1
2
τ

[
xi+1 − xi

τ
− D(1)(xi, t)

]
[D(2)(xi, ti)]−1

[
xi+1 − xi

τ
− D(1)(xi, ti)

]
. (2.33)

As we see, the short-time propagator, which yields the transition probability density from state xi to state xi+1 in the finite
but small time interval τ is a normal distribution.
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2.2.4. Short-time propagator of the Lévy processes
It is now straightforward to determine the short-time propagator of the Lévy processes. We must replace the Gaussian

distribution by the (multivariate) Lévy distribution pα,β(η). As a consequence, we obtain the conditional probability, i.e., the
short-time propagator, of the Lévy processes:

p(xi+1, ti + τ |xi, ti) =
1

Det[g(xi, ti)]
pα,β


1

τ 1/α
[g(x(ti), ti)]−1

[x(ti+1) − x(ti) − τN(x(ti))]


. (2.34)

2.2.5. Joint probability distribution and Markovian properties
Due to the statistical independence of the random vectors Γ (ti) and Γ (tj) for i ≠ j, we obtain the joint probability

distribution as a product of the distributions p(β):

p(ΓN , . . . , Γ0) = p(ΓN)p(ΓN−1) · · · p(Γ0). (2.35)

Furthermore, we observe that under the assumption that the random vector Γ (ti) is independent of the variables X(tj) for
all j ≤ i, we can construct the N-time probability distribution

p(xn, tn; · · · ; x1, t1; x0, t0) = p(xn, tn|xn−1, tn−1) · · · p(x1, t1|x0, t0)p(x0, t0). (2.36)

However, this is the definition of a Markov chain. Therefore, the transition probabilities are the short-time propagators,
i.e., the representation (2.34) is valid in the short-time limit, τ → 0. The probability distribution (2.34) is the discrete
approximation of the path integral representation of the stochastic process under consideration [14].

Let us summarize: the statistical description of the Langevin equation based on theN-times joint probability distribution
leads to the representation in terms of the conditional probability distribution. This representation is the definition of a
Markov process. Due to the assumptions on the statistics of the fluctuating forces, different processes arise. If the fluctuating
forces are assumed to be Gaussian, the short-time propagator is Gaussian and, as a consequence, solely defined by the
drift vector and the diffusion matrix. If the fluctuating forces are assumed to be Lévy-distributed, more complex short-time
propagators arise [69].

We also remark that,
(a) The assumption of Gaussianity of the statistics of the noise is not necessary. One can consider fluctuating forces with

non-Gaussian probability distributions. In this case the probability distributions must be characterized by the higher-order
moments, or, more explicitly, by their cumulants.

(b) The Markovian property, i.e., the fact that the propagator p(xi, ti|xi−1ti−1) does not depend on the states xk at times
tk < ti is usually violated by many physical systems, due to the fact that the noise sources become correlated for small
time differences tM , a point which has already been emphasized in the famous work of Albert Einstein on the Brownian
motion, which is one of the first works on stochastic processes [76]. This time scale is called the Markov–Einstein time
scale, and appears to be a highly interesting quantity, especially for nonequilibrium systems such as turbulence [28,77], and
earthquakes [52].

2.3. Finite-time propagators

Up to now, we have considered the short-time propagators p(xi, ti|xi−1, ti−1) for infinitesimal time differences ti− ti−1 =

τ . However, one is interested in the conditional probability distributions for finite time intervals, p(x, t|x′, t ′), t − t ′ ≫ τ .
So, let us consider this limit.

2.3.1. The Fokker–Planck equation
The conditional probability distribution p(x, t|x′, t ′), with, t− t ′ ≫ τ , is obtained from the solution of the Fokker–Planck

equation (also known as the second Kolmogorov equation, Kolmogorov, [78]) [14]:

∂

∂t
p(x, t | x′, t ′) = −

d−
i=1

∂

∂xi
D(1)
i (x, t) p(x, t | x′, t ′) +

1
2

d−
i,j=1

∂2

∂xi∂xj
D(2)
ij (x, t) p(x, t | x′, t ′). (2.37)

D(1) and D(2) are the drift vector and the diffusion matrix, respectively. By considering the Itô’s definitions of the stochastic
integrals, the coefficients D(1), D(2) of the Fokker–Planck equation, Eq. (2.37), and the functionals N and g of the Langevin
equation, Eqs. (2.1) and (2.2) are related by

D(1)
i (x, t) = Ni(x, t), (2.38)

D(2)
ij (x, t) =

d−
l=1

gil(x, t)gjl(x, t). (2.39)
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They are defined according to

D(1)
i (x, t) = lim

τ→0

1
τ

⟨Xi(t + τ) − xi⟩

X(t)=x

= lim
τ→0

1
τ

∫
dx′p(x′, t + τ |x, t)(x′

i − xi) (2.40)

D(2)
ij (x, t) = lim

τ→0

1
τ


(Xi(t + τ) − xi)(Xj(t + τ) − xj)


X(t)=x

= lim
τ→0

1
τ

∫
dx′p(x′, t + τ |x, t)(x′

i − xi)(x′

j − xj). (2.41)

These expressions demonstrate that the drift vector and the diffusionmatrix are determined as the first and secondmoments
of the conditional probability distributions p(x′, t + τ |x, t) in the small time limit.

2.3.2. Fractional Fokker–Planck equations
The finite-time propagators or conditional probability distributions of stochastic processes containing Lévy noise lead to

the fractional diffusion equations. For a discussion of this topic we refer the reader to [69].

2.4. Measurement noise

We can now go a step forward and include the measurement noise [79,80,83,84]. Due to the measurement noise, the
observed state vector, which we denote by Y(ti), is related to the stochastic variable X(ti) by an additional noise term ϵ(ti):

Y(ti) = X(ti) + ϵ(ti). (2.42)

We assume that the stochastic variables ϵ(ti) have zeromean and are statistically independentwith probability density p(ϵ).
Then, the probability distribution for the variable Y(ti) is given by

p(yn, tn; · · · ; y0, t0) =

∫
dϵn · · · dϵ0p(yn − ϵn, tn; · · · ; y0 − ϵ0, t0)p(ϵn)p(ϵn−1) · · · p(ϵ0). (2.43)

Recently, it was shown that even strong external measurement noise, as well as the dynamical noise that is an intrinsic
part of the dynamical process, can be quantified correctly, solely on the basis of the measured time series and proper data
analysis [80].

3. Stochastic data analysis as a function of time

Complex systems are composed of a large number of subsystems that behave in a collective manner. In systems far from
equilibrium collectivity arises due to self-organization [3,4]. It results in the formation of temporal, spatial, spatiotemporal,
and functional structures. As discussed in Section 2, a complex system can be described in terms of the order parameters
Xi(t) that obey a set of stochastic differential equations of the form

dXi = Ni[X1, . . . , Xn]dt +

−
j

gij(X1, . . . , Xn)dWj, (3.1)

where Wj are independent Wiener processes. Although the state vector X(t) of the complex system under consideration is
high dimensional, its long time behavior is entirely governed by the dynamics of typically a few order parameters:

q(t) = Q(X1, . . . , Xn). (3.2)

For hydrodynamic instabilities in the laminar flow regime, such as the Rayleigh–Bénard convection or the Taylor–Couette
experiment, thermal fluctuations are usually small and can be neglected. However, in nonlinear optics, and particularly
in biological systems, the impact of noise has been shown to be of great importance. In principle, the equations for the
order parameters can be derived from the basic equations that characterize the system under consideration close to
instabilities [3]. However, if the basic equations are not available, as is the case, e.g., for systems considered in biology,
the order parameter concept yields a top-down approach to complexity [4].

In the top-down approach the analysis of the experimental time series becomes a central issue. Methods of analysis of
nonlinear time series (see, e.g., [8]) have been widely applied to analyze complex systems. However, such methods aim at
the understanding of deterministic systems and can only be successful if the stochastic forces are weak. Thus, it appears
that these methods must be extended in order to include stochastic processes. In Section 2 we provided the complete
mathematical tools for deriving Eq. (3.1) from experimental (or computer simulation) time series.

The ultimate goal of analysis of nonlinear time series, applied to deterministic systems, is to extract directly the
underlying nonlinear dynamical system from the measured time series in the form of a system of differential equations [8].
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The role played by dynamic fluctuations has not been fully appreciated. Instead, noise has usually been considered as a
random variable that is additively superimposed on a trajectory generated by a deterministic dynamical system. Noise has
been usually considered as extrinsic or measurement noise.

The natural extension of the methods for the analysis of nonlinear time series to (continuous) Markov processes is the
estimation of the short-time propagators from the time series. In recent years, it has become evident that such an approach
is feasible. In fact, noise may help in the estimation of the deterministic ingredients of the dynamics. Due to the dynamical
noise the system explores a larger part of the phase space and, thus, measurements of the series yield considerably more
information about the dynamics as compared to the purely deterministic case, where the trajectories rapidly converge to
attractors, hence providing only limited information.

The analysis of data sets of stochastic systems exhibitingMarkov propertiesmust be performed along the following path:

• Evaluating Markovian properties
• Determining the short-time propagators
• Reconstructing the data.

3.1. Markovian properties and Markov–Einstein time (length) scale

It is a difficult task, in principle, to decide by inspection whether some experimental data possess Markovian properties.
Themain point to emphasize is that such properties are usually violated in small time increments τ , aswas pointed out above
and by Einstein [76]. There are at least two reasons for this fact. First, the dynamical noise sources become correlated over
small time differences. If we consider Gaussian noise sources, one usually observes an exponential decay of the correlations

⟨Γi(t)Γj(t ′)⟩ = δij
1
tM

exp(−|t − t ′|/tM). (3.3)

Markovian properties may be expected to hold only for time increments, τ > tM . Second, measurement noise can spoil
Markovian properties. Thus, estimation of theMarkovian time scale tM is a necessary step for stochastic data analysis. Several
methods have been proposed for testing and detecting the Markov properties.

In general, an experimental data set is either stationary or nonstationary. Establishing or rejecting the stationarity of
the set can be done in a straightforward manner, by measuring, e.g., the numerical stability (constancy) of the average and
variance of the stochastic processX(t) in amoving timewindow. For nonstationary processes one should study the ensemble
averages. Quite often, one can investigate the ‘‘derivative’’ of the data set, D(t) ≡ X(t + 1) − X(t), or its returns defined
as, R(t) ≡ ln[X(t + 1)/X(t)] (if the data are positive numbers, such as the heart interbeat and the stock price). Frequently,
the derivative or returns turn out to be stationary, since a drifting mean value that renders the time series nonstationary is
subtracted.

As the first stepwe checkwhether the data follow aMarkov chain and, if so, estimate theME time (length) scale tM (lM). As
is well known, a given process with a degree of randomness or stochasticitymay have a finite or an infiniteME time (length)
scale. The ME time (length) scale is the minimum time interval (length scale) over which the data can be considered as a
Markov process. Here, we present three different methods of estimating the ME time scale.

Method 1: In this method, the ME time scale is estimated using the least squares test. The exact mathematical definition
of the Markov process is given by [14],

p(xk, tk|xk−1, tk−1; · · · ; x1, t1; x0, t0) = p(xk, tk|xk−1, tk−1).

Intuitively, the physical interpretation of a Markov process is that, it is a process with no memory; it ‘‘forgets’’ its past. In
other words, only the most nearby condition of data, say (xk−1, tk−1), is relevant to the probability of finding the system at
a particular state xk at time tk. Thus, the ability to predict the value of X(t) at time t is not enhanced by knowing its values
in steps prior to the most recent one. Therefore, an important simplification for a Markov process is that, a conditional
multivariate joint PDF can be written in terms of the products of the simple two-parameter conditional PDFs [14] as,

p(xk, tk; xk−1, tk−1; · · · ; x1, t1|x0, t0) =

k∏
i=1

p(xi, ti|xi−1, ti−1). (3.4)

Testing Eq. (3.4) for large values of k is beyond the present computational capability. However, for k = 3, i.e., for three points,
the relation,

p(x3, t3|x2, t2; x1, t1) = p(x3, t3|x2, t2), (3.5)

should hold for any value of t2 in the interval t1 < t2 < t3.
A process is Markov with a ME time scale tM , if Eq. (3.5) is satisfied for a certain time separation or interval. To measure

the ME time scale, we use a fundamental theory of probability that allows us to write any three point PDF in terms of the
conditional probability functions as,

p(x3, t3; x2, t2; x1, t1) = p(x3, t3|x2, t2; x1, t1)p(x2, t2; x1, t1). (3.6)
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Using the properties of Markov processes, and substituting Eq. (3.6), we obtain,
pMarkov(x3, t3; x2, t2; x1, t1) = p(x3, t3|x2, t2)p(x2, t2; x1, t1). (3.7)

We then compute the deviations of pMarkov from that given by Eq. (3.6), using the least squares method:

χ2
=

∫
dx3dx2dx1

[p(x3, t3; x2, t2; x1, t1) − pMarkov(x3, t3; x2, t2; x1, t1)]2

σ 2 + σ 2
Markov

(3.8)

where σ 2
+ σ 2

Markov is the sum of the variances of the terms in the denominator. One then takes, t1 = 0 and t2 = t3/2 and

plots the reduced χ2, χ2
ν =

χ2

N
(N is the number of degrees of freedom), as a function of the time scale t2. TheME time scale

is that value of t2 at which χ2
ν is minimum [85,48].

Method 2: The second method is based on the direct evaluation of the definition of Markovian properties (2.25),
considering the higher-order conditional probability distributions:

p(x3, t3|x2, t2; x1, t1) =
p(x3, t3; x2, t2; x1, t1)

p(x2, t2; x1, t1)

= p(x3, t3|x2, t2). (3.9)
This procedure is feasible if used for large data sets. Due to the different conditioning, both probabilities are typically based on
different numbers of events. As an appropriate method to show the similarity of (3.9), the Wilcoxon test has been proposed
[87,29,38]. In principle, higher-order conditional probability distributions should be considered in a similar way, which
becomes numerically intractable. However, the validity of relation (3.9) is a strong indication that the data set possesses
Markovian properties (see also [49]).

Method 3: An indirect way is to use the Chapman–Kolmogorov equation, Eq. (2.26), the validity of which for describing
the probabilities is a necessary condition for Markovian properties. The method is based on a comparison between the
conditional PDF

p(xk, tk|xi, ti) (3.10)
taken from the experiment and the one calculated by the Chapman–Kolmogorov equation

p(xk, tk|xi, ti) =

∫
dxjp(xk, tk|xj, tj)p(xj, tj|xi, ti) (3.11)

where tj is an intermediate time ti < tj < tk. A refined method can be based on an iteration of the Chapman–Kolmogorov
equation, i.e., considering several intermediate times. If the Chapman–Kolmogorov equation is not satisfied, deviations from
it are enhanced by each iteration. The conditional PDF p(xk, tk|xi, ti) can be estimated via severalmethods such as parametric
(Maximum Likelihood estimation of a Gaussian model), non-parametric (Histogram, Kernel based and K-nearest neighbor)
and semi-parametric methods (EM algorithm and gradient based optimization).

3.2. Estimation of drift and diffusion coefficients

We now describe an operational approach, which allows one to estimate the drift vector and the diffusion matrix from
data. We discuss the case in which the averages are taken with respect to an ensemble of experimental realizations of
the stochastic process under consideration, in order to include nonstationary processes in the discussions. Replacing the
ensemble averages by time averages for statistically stationary processes is straightforward. The procedure is as follows:
• The data is represented in a d-dimensional phase space
• The phase space is partitioned into a set of finite, but small d-dimensional volume elements.
• For each bin (denoted by α), located at point xα of the partition we consider the quantity

x(tj + τ) = x(tj) + D(1)(x(tj), tj)τ +
√

τg(x(tj), tj)0(tj). (3.12)

Therefore, the considered points x(ti) are taken from the bin located at xα. Since we consider time-dependent processes,
this must be done for each time step tj separately.

3.2.1. Estimation of the drift vector
The drift vector assigned to the bin located at xα is determined as the small τ -limit of

D(1)(xα, t) = lim
τ→0

1
τ
M(1)(xα, t, τ ) (3.13)

of the conditional moment

M(1)(xα, tj, τ ) =
1
Nα

−
x(tj)∈α

[x(tj + τ) − x(tj)]. (3.14)

The sum is over all the Nα points contained in the bin α.
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Proof. The drift vector assigned to the bin α located at xα is approximated by the conditional expectation value

M(1)(xα, t, τ ) = τ
1
Nα

−
x(tj)∈α

D(1)(xj, tj) +
√

τ
1
Nα

−
x(tj)∈α

g(x(tj), tj)0(tj). (3.15)

Therefore, the sum is over all points x(tj) located in the bin assigned to xα . Assuming that D(1)(x, t) and g(x, t) do not vary
significantly within the bin, the second contribution drops out since

1
Nα

−
xj∈α

0(tj) → 0. � (3.16)

3.2.2. Estimation of the diffusion matrix
The diffusion matrix is estimated by the small τ -limit of

D(2)(xα, t) = lim
τ→0

1
τ
M(2)(xα, t, τ ) (3.17)

of the conditional second moment

M(2)(xα, t, τ ) =
1
Nα

−
j

{[x(tj + τ) − x(tj)] − τD(1)(xj, tj)}2. (3.18)

Proof. We consider the quantity

M(2)(xα, t, τ ) = τ
1
Nα

−
x(tk)∈α

−
k

g(x(tk), tk)Γ (tk)g(x(tj), tj)0(tj). (3.19)

If the bin size is small compared to the scale in which the matrix g(x, t) varies significantly, we can replace g(x(tk), tk) by
g(xα, tk) such that

M(2)(xα, t, τ ) = τg(xα, tk)


1
Nα

−
xj∈α

−
xk∈α

0(tk)0(tj)


gT (xα, tk)

= τg(xα, tk)gT (xα, tk). (3.20)

Here, we have used the assumption of the statistical independence of the fluctuations

1
Nα

−
x(tj)∈α

−
x(tk)∈α

Γ (tk)Γ (tj) = δkj. � (3.21)

3.2.3. Higher-order cumulants
In a similar way one may estimate higher cumulants M(n) that, in the small time limit converge to the so-called

Kramers–Moyal coefficients [14,88,89]. The estimation of such quantities allows one to answer the question of whether
the noise sources actually are Gaussian-distributed random variables.

3.2.4. Lévy processes
A procedure to analyze Lévy processes along the same lines has been proposed by [90]. An important point here is the

determination of the Lévy parameter α.

3.2.5. Differentiating between stochastic process and noise data
Looking at the joint statistics of the increments extracted from given data, it may be shown that nesting of the increments

and the resulting statistics can be used to differentiate between noise-like data sets and those resulting from stochastic
processes [91].

3.2.6. Estimation of the drift and diffusion coefficients from sparsely sampled time series
As we have already discussed, the results of an analysis of data sets can be reconsidered self-consistently. This fact can

be used to extend the procedure to data sets with insufficient amount of data, or sparsely sampled time series, for which the
estimation of the conditional moments M(n)(x, t, τ ) and the subsequent limiting procedure τ → 0 cannot be performed
accurately.



100 R. Friedrich et al. / Physics Reports 506 (2011) 87–162

In this case, one may proceed as follows. In a first step one obtains a zeroth-order approximation of the drift vector
D(1)(x) and the diffusion matrix D(2)(x). Based on the estimates one performs, as the second step, a suitable ansatz for the
drift vector and the diffusion matrix that contain a set of free parameters σ

D(1)(x, σ),D(2)(x, σ) (3.22)

that defines a class of the Langevin equations. Each Langevin equation is related with a joint probability distribution

p(xn, tn; · · · ; x1, t1; σ). (3.23)

The joint probability distribution can be compared with the experimental one, p(xn, tn; · · · ; x1, t1; exp.). The best
representative of the class of the Langevin equations for the reconstruction of experimental data is then obtained by
minimizing a suitably defined distance between the two distributions:

Dist{p(xn, tn; · · · ; x1, t1; σ) − p(xn, tn; · · · ; x1, t1; exp)} = Min. (3.24)

A reasonable choice is the so-called Kullback–Leibler distance between two distributions, defined as

K =

∫
dx1dx2 · · · dxnp(xn, tn; · · · ; x1, t1, exp.) ln

p(xn, tn; · · · ; x1, t1; exp.)
p(xn, tn; · · · ; x1, t1; σ)

. (3.25)

It was shown recently how the iteration procedure can be obtained from the maximum likelihood arguments. For more
details, we refer the reader to [92,83,84]. A technical question concerns the determination of the minimum, [93] used the
limited-memory Broyden–Fletcher–Goldfarb-Shanno algorithm for constraint problems, in order to determine the solution
of the optimization problem. Estimation of Kramers–Moyal coefficients in short and nonstationary data sets has been
investigated by [94–99].

3.2.7. Multiscale construction of time series
Nawroth et al. introduced a method which allows a reconstruction of time series based on higher-order multiscale

statistics given by a hierarchical process [100]. Thismethod is able tomodel the time series not only on a specific scale but for
a range of scales. It is possible to generate complete new time series, or to model the next steps for a given sequence of data.
Themethod itself is based on the joint probability densitywhich can be extracted directly fromgivendata, thus no estimation
of parameters is necessary. The unconditional and conditional probability densities of the original and reconstructed time
series are compared and the ability to reproduce both is demonstrated [101].

3.2.8. Mapping stochastic processes onto complex networks
Recently Shirazi et al., proposed a generalmethod bywhich a given stochastic process ismapped onto a complex network

with distinct geometrical properties [103]. The relation between the statistical properties of the stochastic time series, such
as the intermittency and correlation length, and their stochastic behavior, as well as the properties of their equivalent
networks, are then studied. They showed that for such processes the corresponding time series can be reconstructed with
high precision by means of a random walk on the network equivalent, see also [104–106].

3.3. Level-crossing analysis of time series

In this subsection we provide the relation between the average frequency of crossing of the positive slope ν+
α for a

time series X(t), and the drift and diffusion coefficients of the underlying stochastic process. The level crossing has been
introduced in the context of stochastic processes [64,65], rough surfaces [66] and stock markets [107,108], fluctuations
of the velocity fields in the Burgers turbulence, and in the Kardar–Parisi–Zhang equation in [109,67]. The level-crossing
analysis of a data set has the advantage that, it yields very important global properties of the time series, without any need
for a scaling feature in the data set.

The level-crossing analysis is the complementary method to the other well-known methods such as the detrended
fluctuation analysis (DFA) [110–119], detrended moving average (DMA) [120,121], wavelet transform modulus maxima
(WTMM) [122], rescaled-range analysis (R/S) [123,124], scaledwindowedvariance (SWV) [125], detrended cross-correlation
analysis [126], multifactor analysis of multiscaling [127], etc., and is very easy to apply to any data set and does not
require a lot of computing efforts and computing time. For example, it is well known that the R/S, SWV and other non-
detrending methods work well if the records are long and do not involve trends. Moreover, in the detrending method one
must be aware that, in some cases, there exist one or more crossover (time) scales that separate regimes with different
scaling exponents [116,117,119]. In this case the investigation of the scaling behavior is more complex, as different scaling
exponents are required for different parts of the series [128,129]. Therefore, one needs a multitude of scaling exponents
(known as the multifractal exponents or dimensions) for a full description of the scaling behavior. Generally, the crossover
usually arises either because of the changes in the correlation properties of the series at different time (space) scales, or
often arises from the trends in the data.

The level-crossing analysis is sensitive to the correlation when the time series is shuffled, and to the PDF with fat tails
when the time series is surrogated [107]. The long-range correlations are destroyed by the shuffling procedure. In the
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Fig. 2. Positive slope crossing in a fixed α level.

surrogate method the phase of the discrete Fourier transform coefficients of the time series are replaced by a set of pseudo-
independent random variables, distributed uniformly in (−π, +π). The correlations in the surrogate series do not change,
but the PDF changes to Gaussian distribution [130–133]. Our aim for using the level-crossing method is to characterize the
statistical properties of the data set, with the hope of gaining better understanding of the underlying stochastic dynamics.

We consider a time series of length n given by {x(t1), x(t2), . . . , x(tn)}. Let N+
α denote the number of positive slope

crossing of x(t1) − x̄ = α for the interval T (see Fig. 2). Since the process is stationary (or homogeneous), if we take a
second time interval of T immediately following the first, wewill obtain the same result and, therefore, for the two intervals
together we obtain, N+

α (2T ) = 2N+
α (T ), from which it follows that, the average number of the crossing is proportional to

the time interval T . Hence, N+
α (T ) ∝ T , or, N+

α (T ) = ν+
α T , where ν+

α is the average frequency of positive slope crossing of
the level α.

We now describe how the frequency ν+
α is deduced from the underlying PDFs for x(t) − x̄. Using the drift and diffusion

coefficients, we calculate the frequency of the level crossing at a given level α. Let ν+
α denote the number of positive-

difference crossing of x(t)− x̄ = α (assuming x̄ = 0) for the interval T , which can bewritten in terms of the joint cumulative
probability distribution, Π(x(i) > α, xi−1 < α) as [41],

ν+

α = Π(xi > α, xi−1 < α) =

∫ α

−∞

∫
∞

α

p(xi, xi−1)dxidxi−1

=

∫ α

−∞

∫
∞

α

p(xi|xi−1)p(xi−1)dxidxi−1. (3.26)

The joint PDF, p(xi|xi−1) is given by the above equation in which ∆t = 1,

p(x′, t + △t|x, t) =
1

2


πD(2)(x′, t)∆t
× exp

[
−(x′

− x − D(1)(x′, t)∆t)2

4D(2)(x′, t)∆t

]
; (3.27)

where the PDF p(xi−1) is given by,

p(xi−1) = p(x) =
N

D(2)(x)
exp

[∫ x D(1)(x′)

D(2)(x′)

]
,

and N is the normalization constant [14].
For the case of continuous time the average level crossing ν+

α can be written in terms of joint PDF of x and x′, where x′ is
the time (space) derivative of stochastic series [64,65]. It can be shown that ν+

α satisfies the following relation in terms of
the joint PDF p(x, x′):

ν+

α =

∫
∞

0
p(α, x′)x′dx′, (3.28)

where, x′
= dx/dt . In the next sections we will evaluate the precision of the results for the level-crossing analysis in the

context of the oil price fluctuations. We can also define the quantity N+

tot that is given by, N+

tot =


∞

−∞
ν+

α dα, andmeasure the
total number of crossing the series with positive slope. We will discuss the quantity N+

tot more in Section 5, in the context of
rough surfaces.
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3.3.1. Numerical aspects and precision
To estimate the drift and diffusion coefficients we note that the bin size influences the results. The bin size should allow

for a reasonable number of events, such that the sums converge. It should, however, be reasonably small in order to allow for
an accurate resolution of the drift vector and the diffusion matrix. Moreover, the data should allow for the estimation of the
conditional moments in the limit, τ → 0 [134,135]. Here, a finite Markov–Einstein coherence length may cause problems.
From the studies of the properties of the Fokker–Planck equation much is known on the τ -dependence of the conditional
moments. This may be used for further improved estimations, as has been discussed by [136,88,89]. Furthermore, as we
shall discuss below, extended estimation procedures have been devised, which overcome the problems associated with the
small τ limit.

Indeed, the Langevin equation, Eq. (3.12), enables us to reconstruct a stochastic time series x(t), which is similar to the
original one in the statistical sense. However, the stochastic process that is reconstructed by iterating Eq. (3.12) yields a series
of datawithout memory. To compare the regenerated data with the original ones, we must take the temporal interval in the
numerical discretization of Eq. (3.12) to be unity (or normalize it to unity). However, the ME time scale is typically greater
than unity. Therefore, we correlate the data over the ME time scale tM , for which there are a number of methods [30,85,86].

3.3.2. Self-consistency
After determining the drift vector and the characteristics of the noise sources from data, it is straightforward to

synthetically generate data sets by iterating the corresponding stochastic evolution equations. Subsequently, their statistical
properties can be compared with the properties of the actual data. This yields a self-consistent check of the results. For a
detailed discussion we refer the reader to [20].

4. Stochastic data analysis in length scale

In the case of self-similar structures, complexity is commonly investigated by a local measure q(r, t) that characterizes
the structure on the scale r and at the time (or position) t . The local measure can be defined as increment ∆X or as the
absolute value of the increment |∆X |, what is also commonly used. Self-similarity means that in a certain range of r the
processes

q(r, t), λξq(λr, λγ t) (4.1)

should have the same statistics. The exponent γ is known as dynamical exponent [137]. More precisely, the probability
distribution of the quantity q takes the form

p(q, r) = r−ξ F(q/rξ ), (4.2)

with a universal function F(Q ). Furthermore, the moments exhibit scaling behavior,

⟨qn(r)⟩ =

∫
dq qn

1
rξ

F(q/rξ ) = Qnrnξ . (4.3)

Such properties have been called fractal scaling behavior.
There aremany experimental examples of real systems, such as turbulent fields or surface roughness, just tomention two,

forwhich such a simple picture of a complex structure is only a rough, first approximation. In fact, particularly for turbulence
for which q(r, t) is taken as a velocity increment, it has been argued that multifractal behavior is more appropriate, where
the nth-order moments scale according to

⟨qn(r)⟩ = Qnrζ (n), (4.4)

where the scaling indices ζ (n) are nonlinear functions of the order n,

ζ (n) = nξ0 + n2ξ1 + n3ξ2 + · · · . (4.5)

Such a relation can formally be obtained by assuming that the probability distribution f (q, r) has the following form

p(q, r) =

∫
dξ p(ξ , r)

1
rξ

F(q/rξ ). (4.6)

This above formula is based on the assumption that in a data set, regions with different scaling indices ξ exist, where p(ξ , r)
provides a measure of the scaling indices ξ at scale r . The major shortcoming of the fractal and multifractal approaches to
complexity in scale is the fact that, they only address the statistics of themeasure q(r, t) at a single scale r . In general though,
one expects q(r, t) and q(r ′, t) to depend on the scales considered. The question, which we will address in the following,
arises as to whether there exist methods that lead to a more comprehensive characterization of the scale disorder by the
general joint statistics

p(qN , rN; qN−1, rN−1; · · · ; q1, r1; q0, r0) (4.7)

of the local measure q at multiple scales ri.
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4.1. The Langevin dynamics in scale

Processes that depend on time and scale can be analyzed in a similar way, if we generalize the time process given by [3]
to a stochastic equation evolving in scale

q(r + dr) = q(r) + N(q, r)dr + g(q, r)dW (dr) (4.8)
where dW belongs to a random process. The aim of the data analysis is then to disentangle deterministic dynamics and the
impact of fluctuations. Loosely speaking, this amounts to detect trends and chances in data series of complex systems.

A complete analysis of experimental data, which is generated by the interplay of deterministic dynamics and dynamical
noise, has to address the following issues
• Identification of the order parameters
• Extracting the deterministic dynamics
• Evaluating the properties of the fluctuations

In the following, we summarize the description of stochastic processes in scale, focusing mainly on their Markovian nature.

4.2. Deformation of the PDF on scale and cascade of information, from large to small scales

One of the main properties of almost all the data sets is their small-scale intermittency. Its qualitative signature is the
non-Gaussian shape of the PDF of the increments defined by,∆X(τ ) = X(t+r)−X(t), for given r . The stretched exponential-
like tail of the PDF of∆X(r) changeswhen the distance r decreases from the largest inertial scales to the smallest dissipation
ones. Using stochastic analysis one can analyze the data and investigate its intermittency behavior as pointed out by [10,30].
They studied the evolution of the PDF of several stochastic properties, such as turbulent free jets, and rough surfaces, and
showed that the conditional PDF of the increments of a stochastic field, such as the increments in the velocity field in the
turbulent flow or heights fluctuations of the rough surface, satisfies the Chapman–Kolmogorov equation. This enables one
to derive a Fokker–Planck equation for describing the systems under study. We now describe the conditions under which
such a formulation can be utilized.

One computes the drift and diffusion coefficients or, more generally, the Kramers–Moyal (KM) coefficients, for the
increments of time series, ∆X(r) = X(t + r) − X(t), and check whether the first and second KM coefficients that represent,
respectively, the drift and diffusion coefficients of the Fokker–Planck equation, havewell-defined and finite values, while the
third- and fourth-order KM coefficients are small (theoretically, they should be zero). According to the Pawula theorem [14],
the KM expansion,

−
∂

∂r
p(∆X, r|∆X0, r0) =

∞−
k=1


−

∂

∂∆X

k 
D(k)(∆X, r)p(∆X, r|∆X0, r0)


, (4.9)

can be truncated after the second (diffusive) term, provided that the fourth-order coefficient D(4) vanishes. If so, which
is often the case, then the KM expansion, Eq. (4.9), reduces to a Fokker–Planck evolution equation. In that case, the
Fokker–Planck equation is numerically constructed (by computing the drift and diffusion coefficients) for the PDF p(∆X, r)
that, in turn, is used to gain information on evolution of the shape of the PDF as a function of the time scale r . The negative
sign of the left hand side of Eq. (4.9) is due to the direction of the cascade from large to smaller length scale r . In essence,
if the first two KM coefficients are found to have numerically meaningful values (i.e., not very small), while the third and
higher coefficients are small (compared with the first two coefficients), the above reconstruction method, can be also used
for the increments of the times series.

Using the increments one can investigate one of the most important issues in the time series, which is the intermittent
behavior of the fluctuations in various scaling region. Intermittency is known as the structures that arise in a random data
set and manifest themselves as high peaks at random time or length scales. The intervals between them are characterized
by a low intensity and a large size. Rare peaks are the hallmarks of PDF’s non-Gaussian tails. Such strongly non-Gaussian
activities are responsible for the information cascade from large to small scales. Intermittency is usually analyzed by means
of the statistical properties of the increments,∆X(r) = X(t+r)−X(t) [55]. The overwhelming experimental and theoretical
studied have been brought forward for characterization of the structure functions, i.e., Sp(r) = ⟨[∆X(r)]p⟩.

For this case themethod has been used as an alternative description of themultifractal behavior. Multifractals are usually
analyzed by looking at the fluctuating quantities, such as the velocity increments, temperature increments, etc., at each scale
separately as a random variable. The motivation for multifractal investigation is related to the fact that, the complexity of
most disordered systems depends on the scale at which they are observed. The derived Fokker–Planck evolution operator
for the PDF of the increments also yields important information about the changing shape of the distribution as a function of
the time interval r . In Section 6 we derive the relation between the Kramers–Moyal coefficients and the structure functions
Sp(r), for scale-invariant series, such as turbulence.

4.2.1. Multiscale correlation functions
Asmentioned above, one of the most important issues in stationary time series is the intermittent behavior of the small-

scale fluctuations. Recently, it was proposed [59,60,138] that it would be more natural for scale-invariant series to look at
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the correlations in the fluctuations of a time series increments at various scales:

Fn(r|r1, r2, . . . , rn) = ⟨∆r1X(t)∆r2X(t) · · · ∆rnX(t)⟩ (4.10)

where all the scales ri are within the scaling region. Writing Fn(t|r1, r2, . . . , rn) in terms of the structure function of each
increment is known as the fusion rules [59,60,57,58,138]. The fusion rules describe the asymptotic properties of the n-point
correlation functions, when some of the coordinates approach one. The fusion rules have been tested experimentally only
for turbulence data, and good agreement between experiment and theory has been observed [62,61]. If p < n pairs of the
coordinates of a time series increments merge, with the typical separations ri ∼ r for i ≤ p and the remaining separation
on the order of R, such that R belongs to the scaling region, the fused multiscale correlation is defined by

Fp+q(r, R) ≡ ⟨[X(t + r) − X(t)]p[X(t + R) − X(t)]q⟩

≡ ⟨[∆rX(t)]p[∆RX(t)]q⟩. (4.11)

In this section we show that the multiscale correlation functions for a wide class of processes can be written as

Fp+q(r, R) ∼ Sp(r)Sp+q(R)/Sp(R) (4.12)

where Sp(r) = ⟨[∆rX(t)]p⟩.
Suppose that one is able to determine all the Kramers–Moyal coefficients and, therefore, the solution of Eq. (4.9) for

p(Xr , r) can obviously be written as a scale-ordered exponential [14],

p(Xr , r) = T (e
 r
r0

dr ′LKM(Xr′ ,r
′)

+ p(X0, r0))

where LKM is the Kramers–Moyal (KM) evolution operator, and we have defined Xr = ∆rX(t). Using the properties
of the scale-ordered exponentials, the conditional probability density will satisfy the Chapman–Kolmogorov equation.
Equivalently, we derive that the probability density and, as a result, the conditional probability density of increments satisfy
a KM evolution equation:

−
∂p
∂r

=

∞−
n=1

(−1)n
∂n

∂Xr
n [D(n)(Xr , r)p]. (4.13)

The coefficientsD(n)(Xr , r) are the small-scale limit of the conditional moments [14]. They fully characterize the statistics
of the fluctuations as:

D(n)(X2) = lim
r1→r2

1
r1 − r2

∫
(X1 − X2)

np(X1, r1|X2, r2)dX1.

The KM coefficients are the main observable of a Markov process, from which all the terms in the KM operator are
determined. As mentioned before, it is a well-known theorem – the Pawula theorem [14] of Markov processes – that
whenever the fourth-order KM coefficient tends to zero, all the other terms with higher-order derivatives also tend to
zero. So, the distinction between Markov processes and the Fokker–Planck description when only the first two terms in the
evolution operator in scale are important should be kept in mind. Thanks to the detailed analysis carried over experimental
data, one can obtain the functional form of all the KM coefficients.

Recalling the original idea for suggesting theMarkovian property of the increments cascade in scale,we take a step further
and calculate the more general objects of the cascade, i.e., the unfused multiscale correlations. Assuming the Markovian
nature of the increments in scale and the proposed form of the evolution operator LKM(X, r), one can, in principle, calculate
any correlation among the increments in different scales [63]:

Fn(X |r1, r2, . . . , rn) = ⟨X(r1)X(r2) · · · X(rn)⟩ =

∫
dX(r1) · · · dX(rn)X(r1) · · · X(rn)p(X1, r1; X2, r2; · · · ; Xn, rn).

The joint probability p(X1, r1; X2, r2; · · · ; Xn, rn) can be calculated by taking advantage of the Markovian property in
terms of the conditional probabilities, i.e.,

p(X1, r1; X2, r2; · · · ; Xn, rn) = p(X1, r1|X2, r2) × p(X2, r2|X3, r3) · · · p(Xn−1, rn−1|Xn, rn)p(Xn, Xn). (4.14)

The conditional PDF of the increments is then written as a scalar-ordered operator as

p(X1, λ1|X2, λ2) = T (e
(
 λ1
λ2

dλLKM(X1,λ))

+ )δ(X1 − X2)

where λ1 = ln(L/r) and λ2 = ln(L/R). Therefore, in the calculation of the n-point multiscale correlations a series of
conditional operators would emerge in the integrand of (4.14). When some of the coordinates coalesce, the conditional
operator tends to a dirac delta function. The reduction of the conditional probability between the coalescing coordinates
simplify the calculations. The only remaining conditional operator will be the probability of observing the typical increment
X1 between one subclass of fused points, conditioned on observing the typical increment X2 in the other subclass of fused
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points. Explicitly, we examine the behavior of Fp+q(λ1, λ2) defined in Eq. (4.10), where λ1 = ln(L/r), λ2 = ln(L/R), and L is
the size of the data.

Fp+q(λ1, λ2) = ⟨Xp(λ1)Xq(λ2)⟩ =

∫
dX1dX2δ(X1 − X2)p(X2, λ2)(e−(λ1−λ2)L

Ď
KM(X1)Xp

1 )X
q
2 . (4.15)

For the case in which the fourth KM coefficients are small compared with the first and second coefficients, the KM
equation with a Fokker–Planck evolution kernel is interpreted as if the increment X is evaluated in ‘‘scale’’ λ (logarithmic
time scale) by the Langevin equation,

∂X
∂λ

= D̃(1)(X, λ) +


D̃(2)(X, λ)Γ (λ) (4.16)

where Γ (λ) is a white noise, and the diffusion term acts as a multiplicative noise. Resorting to the Ito’s prescription, the
multipoint correlation function can be written in the form of a path integral as

F (λ1, λ2) =

∫
DXXp(λ1)Xq(λ2)e

 λ2
λ1


∂X
∂λ

−D1(X,λ)
√

D2(X,λ)


dλ
p(X2, λ2). (4.17)

By a simple application of the Bayesian rule, the probability density in the outer scale λ2 is also written as a path integral
entering the information of the integral scale PDF. Building up all the terms in a descriptive way, the joint probability
p(X1, λ1; X2, λ2) is represented as a path integral over all the possible paths between X(λ1) and X(λ2), transferring in an
intermittent way all the information of the integral scale to the calculation. Without further attempt for calculating the
multiscale correlations by path integral representation, we turn our attention to the Langevin dynamics instead.

4.2.2. Multipliers
Almost all the experimental data with scaling behavior satisfy the following expression for the drift and diffusion

coefficients, D(1)(X) = −α1(λ)X , and, D(2)(X) = α2(λ)X2, (with very small D(n)(X), for n ≥ 3), where the resulting process
can be approximate by thewell-known Black–Scholesmultiplicative process [14]. Using the Ito prescription, one can deduce
that

∆λ1X(t) = W(λ1, λ2)∆λ2X(t). (4.18)

The multiplier W(λ1, λ2) can be easily derived in terms of α1 and α2 and Wiener process, W , at two logarithmic scales
as [63],

W(λ1, λ2) = exp


−α1 −
α2

2


(λ1 − λ2) +

√
α2[W (λ1) − W (λ2)] (4.19)

where W (λ1) is the Wiener process. Eq. (4.18) encodes a simple cascade process. Cascade processes are simple and useful
tools for describing the leading phenomenology of the intermittent information cascade in the scaling region. The structure
functions are described in terms of the multiplier, W (λ1, λ2) through Sp(r) = Cp⟨[W(r/L)]p⟩, where from the Langevin
equation pure power law arises in the scaling region, ⟨[W(r/L)]p⟩ ∼ (r/L)ζ (p). In this case the scaling exponents are,
ζ (p) = α1 + p(p − 1)α2/2.

In this approximation, when the higher-order KM are small with respect to the first and the second coefficients, one can
solve the corresponding Fokker–Planck equation. To solve the equation one needs to have the shape of the PDF at large scale.
Assuming that the PDF have the Gaussian shape at large scale, λ → 0, then the Fokker–Planck equation yields the change
of its shape when going to small scales, λ → ∞, and, consequently, give rise to intermittent behavior. The solution of the
Fokker–Planck equation as a scalar-ordered exponential can be converted to an integral representation for the probability
measure of X when D(1) ∼= −α1(λ)X and D(2) ∼= α2(λ)X2, i.e., when [139,12,63];

p(X, λ) =
eγ0(λ)

√
4πγ (λ)

=

∫
+∞

−∞

e−
s2

4γ (λ) φ(Xeγ1(λ)−s)ds (4.20)

where, γ0(λ) =
 λ

0 (−α1(λ
′) + 2α2 = (λ′))dλ′, γ1(λ) =

 λ

0 (−α1(λ
′) + 3α2 = (λ′))dλ′, and, γ (λ) =

 λ

0 α2(λ
′)dλ′. φ(X) is

the probability measure in the integral length scales (λ → 0), where one can assume its form to be Gaussian distribution
[12,63].

One can consider the Gaussian distribution, φ(X) ∼= e−mX2
in the integral scale, which is a reasonable choice, and derive

the dependence of the variance of the probability density on the scales in the limitwhen the original distribution satisfies the
conditionm ≪ 1. The result indicates an exponential dependence, such as,m → me2ζ , where ζ = 3α2 −α1. The consistent
picture with the shape change of the probability measure under the scale is that when λ grows, the width decreases and
vice versa, which has been reported in the previous works, both in the simulation and experimental studies. Moreover, we
should emphasize that the shape change is somehow complex, which gives some corrections on the order ofO(m2X4), even
in the simplifying limit that,m ≪ 1.
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Although Eq. (4.20) is equivalent to that for a log-normal cascade model, originally introduced to study fully developed
turbulence [140–144], it also describes approximately the non-Gaussian PDFs observed in awide range of other phenomena,
such as the foreign exchange markets [145–149], heartbeat interval fluctuations [150], and seismic time series [53,54].

There is a close relation between Eq. (4.20) and the Castaing equation [140–142]. For a fixed t , the fluctuations at scales
r and λr are related through the cascading rule, Xλr(t) = WλXr(t), ∀r, λ > 0, where ln(Wλ) is a random variable. Iterating
this equation forces implicitly the random variableWλ to follow a log infinitely divisible law [151–153]. One of the simplest
candidates for such processes is [148,154], Xr(t) = ζr(t) exp[ωr(t)], where ζr andωr(t) are independent Gaussian variables
with zero mean and variances σ 2

ζ and σ 2
ω . The PDF of Xr(t) has fat tails that depend on the variance of ωr , and is expressed

by Castaing equation,

p(X, r) =

∫
Fr


Xr

σ


1
σ
Gr(ln σ)d ln σ , (4.21)

where Fr and Gr are both Gaussian with zero mean and variances σ 2
r and λ2

r , respectively, e.g., Gr(ln σ) = (
√
2πλr)

−1

exp(− ln2 σ/2λ2
r ). In this case, p(X, r) is expressed by above equation and converges to a Gaussian distribution as λ2

r → 0.
Comparison of the Castaing equation (4.20) and Eq. (4.20) gives, λ2

r = 2γ (λ), where λ = ln(L/r). This means that the
Castaing parameter λ2

r is related to the diffusion coefficient α2(λ). In Section 6 we will discuss the importance of λ2
r risk

analysis of impending earthquakes.
Finally from the direct calculation by the Langevin equation one can easily determine the behavior of the multiscale

correlation function Fp+q(r, R). In the same framework, it is straightforward to show that [63],

Fp+q(r, R) ∼ ⟨[W(r, R)]p[W(R, L)]q⟩

∼


W
 r
R

p [
W


R
L

]q
∼ Sp(r)Sp+q(R)/Sp(R). (4.22)

The independence of the multipliers in two different scales is always assumed for the underlying cascade process.
Otherwise, the above relationwould not hold. Equivalently, thismodeling encodes the following requirement by the obvious
independency of increments in a Wiener process; see also [62].

5. Applications: processes in time and space

The method outlined in the previous section has been used for revealing nonlinear deterministic behavior in a variety
of problems ranging from physics, to meteorology, biology, and medicine. In most of such cases, alternative procedures
with strong emphasis on deterministic features have been only partly successful due to their inappropriate treatment
of the dynamical fluctuations. The following list (with some exemplary citations) gives an overview on the investigated
phenomena, which range from technical applications over many particle systems to biological and geophysical systems.

• Chatter in cutting processes [19,20]
• Identification of bifurcations toward drifting solitary structures in a gas-discharge system [155–157]
• Electric circuits [79,158,18]
• Wind energy converters [159–162]
• Traffic flow [25]
• Cosmic microwave background radiation [48]
• Inverse grading of granular flows [163]
• Heart rhythms [26,164,46,47,45,165]
• Tremor data [18]
• Meteorological data, such as data for El NINO [23,24,168]
• Seismic time series [52–54]
• Epileptic brain dynamics [50,51]
• Experimental chaotic time series and synchronization [169–171]
• Rhythmic human movement [94,95,89]
• Solar wind turbulence [172]
• Decoding the time evolution of the control parameters in a system of neurons modeled as FitzHugh–Nagumo

oscillators [173]
• Porous media [174]
• Gel and glass transitions [175]
• Amorphous organic films [176]
• Electrical discharge current fluctuations in plasma [177]
• Light scattering-intensity fluctuations [178]
• Brain dynamics and synchronization [179]
• Cellular automaton model of tumor–immune interactions [180]
• Random ameboid motion [181]
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• Fractal-generated turbulence [182]
• Nanocrystalline thin films [183]
• Solar granulation [184]
• Biological macromolecules [185].

See also [186,187,43,44,188–191,169,192,193] for more applications of the Markov method. The main advantage of the
method of stochastic data analysis is its independence from the modeling assumptions. It is purely data driven and is based
on the mathematical features of the Markov processes. As mentioned above, such properties can be verified and validated
self-consistently. Beforewe proceed to consider some exemplary applications, wewould like to add the following comment.
The analysis method that we describe removes from the data dynamical and measurement noise, and provides the drift
vector field, i.e., one obtains the underlying deterministic dynamical system. In turn, the system can be analyzed by the
methods for the analysis of nonlinear time series: one can determine the proper embedding, the Lyapunov-exponents,
the dimensions, fixed points, stable and unstable limit cycles, etc. [194]. We also point out that the determination of such
quantities from noisy data is usually flawed by the presence of dynamical noise.

In this sectionwe review the application of theMarkovmethod to analysis of epileptic seizures, heart interbeat dynamics,
financial time series, and characterization of rough surfaces.

5.1. Epileptic brain dynamics and stochastic qualifiers

As the first application of the analysis of nonlinear stochastic time series, we consider an important medical problem,
namely, epileptic brain dynamics.

There has been increasing interest over the last few years in the application of nonlinear dynamics theory to modeling
of brain activity. Many studies have been concerned with electroencephalographic EEG signals from intracranial or scalp
recordings, in animals or human subjects, and considered in particular epilepsy, sleep, cognitive, and evoked responses (see,
e.g., [195–197]. A standard approach is using the chaos theory [198–200,196] that allows a characterization of the dynamics
of complex systems from the analysis of a series generated by the system,which consists of a series ofmeasurements in time
of a pertinent and easily accessible variable. The EEG signals exhibit, in general, great irregularity that may have different
origins, e.g., due to noise or, otherwise, a reflection of the presence of nonlinearity and stochastic behavior. Chaos theory
allows one to distinguish the irregularities in the EEG signal due to chaos from those due to noise. In the presence of chaos,
the complexity of the dynamics can be quantified in terms of the properties of the attractor in the phase space, e.g., its
correlation fractal dimension. The fractal dimension may, therefore, provide a classification of brain activity in terms of
its complexity. However, a careful discussion is necessary in order to distinguish chaos from noise, because determining a
correlation dimension is a necessary but not sufficient condition for chaos.

There are different types of epilepsy [201] with a focal or generalized nature. Epileptic seizures may occur spontaneously
ormay be induced by variousmeans.Well-controlled intracranial EEG recordingswere performed in ratswith focal epilepsy,
and the resulting data were analyzed using the chaos theory [202] in order to test the ability of the theory to detect the
epileptogenic focus and the spread of the seizure activity. A decrease of the correlation dimension was observed at the
seizure onset. Later, the chaos analysis was applied to intracranial EEG recordings from a group of patients with unilateral
temporal lobe epilepsy [203]. Recently [204] carried out a very thorough analysis of chaos in intracranially EEG signals,
during interictal and ictal states, of temporal lobe epileptic patients. They found significant evidence of the existence of
a considerable degree of determinism in the system that generated the series. On the contrary, they found that signals
from areas that did not exhibit seizure activity were almost indistinguishable from their randomized versions, regardless
of whether they were recorded during interictal or ictal states. They then concluded that, in the particular case that they
studied, the chaos analysis yields insightful results in terms of locating the epileptogenic region and following the ictal
spread throughout the brain.

Despite the many promising findings, there are a number of problems for which there are currently no satisfactory
solutions. This can be attributed to the fact that in many cases crucial aspects of pathological brain dynamics must be
regarded as a high-dimensional stochastic process and, thus, the dynamicsmay not be captured if techniques for the analysis
of time series are used that preferentially focus on the low-dimensional deterministic part of the dynamics.

Recently [50] used the Markovian Method to analyze the EEG time series, and showed that, such dissipative dynamical
systems under the influence of noise can often be successfully modeled by a Fokker–Planck or, equivalently, the associated
Langevin equation. It was shown that using this approach, an improved characterization of pathological brain dynamics can
be achieved by explicitly taking into account the stochastic part of the dynamics. For this purpose they studied long-lasting,
multichannel EEG time series that cover physiological and pathophysiological activities from the seizure-free interval of
eight patients suffering from focal epilepsies. Despite limitations that are attributed to the fact that the EEG time series
may not entirely meet the prerequisites of the underlying theoretical framework, a one-dimensional Fokker–Planck model
appeared to be appropriate for the description of the physiological activities. It may not be possible, however, to capture all
aspects of the pathophysiological activities in such a model. Nevertheless, they were able to derive stochastic qualifiers that
allowed amore comprehensive characterization of the epileptic process. Itwas shown that the drift anddiffusion coefficients
appear to be quite useful characterizing quantities [169]. One expects that this approach, along with further improvements,
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Fig. 3. Estimated coefficients D(1) , D(2) , and D(4) for exemplary EEG time series. Left: from a distant brain region; right: from within the epileptic focus.
Shown are the estimates for time series consisting of 105 data points (squares) as well as fits with low-order polynomials (black lines).
Source: From [50].

can yield valuable information for diagnostic purposes, andmay even advance our understanding of the complex dynamical
system that epileptic brains represent.

Prusseit et al. analyzed multichannel (20–60 recording sites), multiday (5–12 days) EEG recordings from eight patients
with pharmacoresistant focal epilepsy, who had undergone evaluation for resective therapy [50]. The EEG data were
recorded from the cortex and from within the relevant structures of the brain, hence with a high signal-to-noise ratio. The
time series were sampled at 200 Hz using a 16 bit analog-to-digital converter, and filtered within a frequency band of 0.53
to 85 Hz. After surgery all the patients achieved complete seizure control, so that the brain structure responsible for seizure
generation (epileptic focus) could be assumed to be contained within the resected brain volume. They analyzed exemplary
EEG time series, recorded from within the epileptic focus and from a distant brain region during the seizure-free interval of
one patient. For epoch lengths ranging from about 2–8 min, they used the Chapman–Kolmogorov equation to estimate the
Markov–Einstein time scale, and showed that it is unity (in units of the sampling interval).

Fig. 3 shows typical examples of the drift and diffusion coefficients estimated from the EEG time series. Both coefficients
are well approximated by low-order polynomials. As expected for this one-dimensional model, D(1) indicates an overall
linear damping behavior. For the EEG time series recorded fromwithin the epileptic focus, they observed small nonlinearities
toward higher amplitude values, which is in line with the findings from studies that used nonlinear time series analysis
techniques [205]. The behavior of D(2) indicates the multiplicative influence of the noise. The fourth-order coefficient
D(4) is also shown in Fig. 3, which allows one to determine whether the driving noise process Γ (t) exhibits deviations
from a Gaussian distribution [14]. For the EEG recorded from a distant brain region, D(4) took on values slightly above
zero, but its magnitude was less than 1/20 of D(2). In contrast, for the EEG recorded from within the epileptic focus, D(4)

took on values clearly above zero. These findings indicate that a description of the pathological brain dynamics by a one-
dimensional Fokker–Planck model may be inadequate, and one needs to also take into account the effect of the higher
Kramers–Moyal coefficients. This is further corroborated by the results obtained from integrating the Langevin equation
using the estimated functionsD(1) andD(2) for both EEG time series; see Fig. 4.While both the stationary and the conditional
PDFs of the integrated model and of the EEG time series coincided quite well for the recording from a distant brain region,
[50] observedmore pronounced deviations for the recordings fromwithin the epileptic focus. These findings clearly indicate
that specific characteristics of the estimated drift and diffusion coefficients allow one to differentiate between physiological
and pathophysiological activities.
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a
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Fig. 4. Comparison of the stationary PDFs (a), and contour plots of conditional PDFs for τ = 1 (b) and (c) for the EEG time series [squares in (a), dashed
lines in (b) and (c)] and time series generated by integrating the associated Langevin equations (straight lines). (a) left plot and (b) from a distant brain
region; (a) right plot and (c) from within the epileptic focus. Contour plots were generated using an increment between contour lines of 0.02 in (b) and
0.012 in (c).
Source: From [50].

One may define various quantities based on the estimated coefficients that serve as stochastic qualifiers of epileptic
brain dynamics. As an example, consider the range covered by the values of the estimated coefficients R1,2 = |maxD(1,2)

−

minD(1,2)
|. They only took into account values of D(1,2) for which at least 100 data points were available for the estimation

procedure. For the multichannel, multiday EEG recordings from all patients, they performed a time resolved estimation of
R1,2 using a moving-window technique. The windows were of size N = 50,000 points, and windows overlapped by 50%.
This choice represents a compromise between sufficient statistics for a reliable estimation of D(1,2) and temporal resolution,
which might be of interest for further EEG analysis.

Fig. 5a shows a typical spatiotemporal distribution of R2, calculated for a multichannel EEG (52 contacts) and recorded
during the seizure-free interval, for a patient with an epileptic focus located in the right hemisphere of the brain. When
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a b

c

Fig. 5. (a) Time resolved estimates of R2 calculated from amultichannel EEG recording (approximately 19 h) of a patient suffering from a right-sided focal
epilepsy (patient F ). (b) Implantation scheme of intracranial electrodes: hippocampal depth electrodes (10 contacts each, D), lateral (4–16 contacts, TL),
and basal (4 contacts each, TB) strip electrodes. (c) Spatiotemporal means of R1 and R2 for all investigated patients. Black bars denote values from the focal
and gray bars from the nonfocal hemisphere.
Source: From [50].

comparing findings from the left and right brain hemisphere, one observes the highest values of R2 confined to regions close
to or within the epileptic focus.

Since these values exhibit only little variance over time, for each contact, their temporal average, (⟨R1,2⟩t), was calculated
and eventually averaged over all contacts c from each hemisphere (R1,2 = ⟨⟨R1,2⟩t⟩c). This allowed further condensing of
the information contained in the spatiotemporal distribution of the stochastic qualifiers, and to investigate retrospectively
whether they can provide diagnostically relevant information. One can refer to the brain hemisphere that contains the
epileptogenic focus (determined by the presurgical workup and by the postoperative complete seizure control) as the focal
side, whereas the opposite hemisphere is referred to as the nonfocal side; see Fig. 5b. In six of the eight patients R1 was
higher on the focal side. Interestingly, it was observed that R2 allowed correct identification of the focal side in all the
patients; see Fig. 5c.

5.2. Heart interbeat fluctuations

As the second example of the application of themethods described above, we consider the application ofMarkovmethod
to complex heart interbeat fluctuations. Cardiac interbeat intervals fluctuate in a complex manner [206,110,207–212,26,46,
47,45,165–167]. Recent studies reveal that, under normal conditions, beat-to-beat fluctuations in the heart ratemay display
extended correlations of the type typically exhibited by dynamical systems far from equilibrium. It was shown in [209], for
example, that the various stages of sleep may be characterized by long-range correlations in the heart rates, separated by a
large number of beats.

In general, interbeat fluctuations are nonstationary processes. In addition, they exhibit extended correlations. Thus,
deducing their statistical properties by the standard methods of analyzing such processes is very difficult. One approach
to analyze such processes was proposed by Stanley et al. [110,111,213,210,212,214–216] and others [217,218,206,219,220].
They studied data for heart-rate fluctuations for both healthy subjects and thosewith congestive heart failure (CHF), in terms
of self-affine fractal distributions, such as the fractional Brownian motion (FBM). The FBM is a nonstationary stochastic
process that contains long-range correlations, the successive increments of which are, however, stationary and follow a
Gaussian distribution. The power spectrum of a FBM is given by, S(f ) ∝ f −(2H+1), where H is the Hurst exponent that
characterizes the type of the correlations that the data contain. Thus, one may distinguish healthy subjects from those with
the CHF in terms of the numerical value of H associated with the data: negative or antipersistent correlations for H < 1/2,
as opposed to positive or persistent correlations for H > 1/2. The analysis of Stanley et al. indicated that there may be long-
range correlations in the heart-rate fluctuations data that may be characterized by the FBM and similar fractal distributions.
In addition, the data for the healthy subjects seem to be characterized byH < 1/2, whereas those with the CHF byH > 1/2.
This was a significant discovery over the traditional methods of analyzing nonstationary data for heart-rate fluctuations.

However, values of the Hurst exponent H associated with the two groups of subjects are nonuniversal. Thus, it would,
for example, be difficult to distinguish the two groups of subjects if their associated Hurst exponents are both close to 1/2.
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Fig. 6. Interbeats fluctuations of healthy subjects (top) and their returns (bottom).
Source: From [47].

In addition, the FBM is a non-self-averaging distribution, i.e., given a fixed Hurst exponent H , each realization of a FBMmay
be significantly different from its other realizations with the same H . As a result, estimating H alone and characterizing the
data by a FBM cannot enable one to predict the future trends of the data. One may also analyze such data by the deterended
fluctuating analysis [209–212] that, inmany cases, is capable of yielding accurate and insightful information about the nature
of the data.

In the next subsection, we present and describe the results of the application of the Markovin method to the analysis
of nonstationary interbeat data, and show that the method may potentially lead to a novel way of distinguishing healthy
subjects from those with the CHF.

5.2.1. Markov analysis of nonstationary heart interbeat data
Given a (discrete) nonstationary time series ri, i.e., the interbeat data, we introduce a quantity xi, called the return of ri,

defined by [47];

xi = ln(ri+1/ri), (5.1)

where ri is the value of the stochastic quantity at step i. If there are long-range positive correlations in the series, then ri
and ri+1 are close in their values and, therefore, we expect the series xi to have very small values for all t . For positive white
noise, as well as data that exhibit negative or anti-correlations, ri and ri+1 can be completely different and, therefore, the
time series xi will fluctuate strongly. Figs. 6 and 7 present the typical data for ri and the corresponding returns xi for healthy
subjects and thosewith the CHF. The number of data points is of the order of 30,000–40,000, taken over a period of about 6 h.
It is evident that the returns series for the subjects with the CHF has small amplitudes, implying that the ri data set contains
long-range positive correlations, which is consistent with the previous analysis [110]. It can be verified straightforwardly
that the series xi is stationary, by measuring the stability of its average and variance in a moving window (that is, over a
period of time that varies over the length of the series).

Due to the stationarity of the series x(t), we can construct an effective stochastic equation for the returns series of the
two groups of the subjects, and distinguish the data for healthy subjects from those with the CHF. We apply the Markovin
method to the fluctuations in the human heartbeats of both healthy subjects and those with the CHF. Ghasemi et al. showed
that the drift and diffusion coefficients of the data that appear in the effective stochastic continuum equations that describe
the data have distinct behavior for healthy subjects and patients with the CHF, when analyzed by the Markovin method,
hence enabling one to distinguish the two groups of the subjects [47].

They analyzed both daytime (12:00 pm to 18:00 pm) and nighttime (12:00 am to 6:00 am) heartbeat time series of
healthy subjects, and the daytime records of patients with the CHF. The data base included 10 healthy subjects (7 females
and 3 males with ages between 20 and 50, and an average age of 34.3 years), and 12 subjects with the CHF (3 females and
9 males with ages between 22 and 71, and an average age of 60.8 years). Figs. 6 and 7 present the data. In Fig. 8 the spectral
density of the return for healthy patients and those with the and CHF is plotted, which shows that there is no long-range
order in the return signals.

Ghasemi et al. computed the Markov–Einstein time scale tM for the returns series of the interbeat fluctuations [using the
chi-square method described by Eq. (3.8), [47]. In Fig. 9 the results for the χ2

ν values for a subject with the CHF are shown.
For the healthy subjects the average tM for the returns for both the day- and nighttime data, was computed to be (all the
values are measured in units of the average time scale for the beat-to-beat times of each subject), tM = 10. On the other
hand, for the daytime records of the patients with the CHF, the estimated average tM was, tM = 20. Therefore, the data for
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Source: From [47].

0.003

0.006

0.009

0.012

χ

10 20 30 40 50 60 70 80 90 100

t3 – t2

2

Fig. 9. χ2
ν values for a typical subject with the CHF for several time scales.

Source: From [47].

the healthy subjects are characterized by tM values that are smaller than those of the patients with the CHF by a significant
factor of 2.

The validity of the CK equation for several x1 was also checked for triplets by comparing the directly evaluated conditional
probability distributions p(x3, t3|x1, t1) with the ones calculated according to right side of Eq. (2.26). In Fig. 10, the two
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Fig. 10. Test of the Chapman–Kolmogorov equation for the time separation between t3 and t1 equal to the Markov time scale, for x1 = −6 × 10−2 ,
x1 = 0, and x1 = 6 × 10−2 . Squares and triangles represent, respectively, the directly evaluated PDF and that computed PDF according to the right side of
Eq. (2.26). For clarity, the PDFs are shifted in the vertical directions.
Source: From [47].

differently computed PDFs are compared. Assuming the statistical errors to be proportional to the square root of the number
of events in each bin, the two PDFs are statistically identical.

Using Eqs. (2.40) and (2.41) directly, one can calculate the drift and diffusion coefficients,D(1)(x) andD(2)(x), for the entire
set of data for the healthy subjects, as well as those with the CHF. The corresponding D(1)(x) and D(2)(x) are displayed in
Fig. 11 [47]. It is found that these coefficients provide another important indicator for distinguishing the ill from the healthy
subjects: the drift D(1) and the diffusion coefficients D(2)(x) follow, respectively, linear and quadratic approximants in x
with distinct coefficients for the healthy subjects and patients with the CHF. The analysis of the data yielded the following
estimates for the healthy subjects (averaged over the samples) [47],

D(1)(x) = −0.1x,

D(2)(x) = 3.7 × 10−5
− 6.6 × 10−5x + 0.06x2, (5.2)

with −0.15 < x < 0.15, whereas for the patients with the CHF the results were,

D(1)(x) = −0.06x,

D(2)(x) = 8.6 × 10−6
− 2.7 × 10−5x + 0.03x2. (5.3)

with −0.04 < x < 0.04. Thus, Ghasemi et al. found two important differences between the heartbeat dynamics of the two
classes of subjects [47]:

(1) Compared with the healthy subjects, the drift and diffusion coefficients for the patients with the CHF are small.
(2) The fluctuations of the returns for healthy subjects are distinct from those with the CHF. They also fluctuate over

different intervals, indicating that the returns data for the healthy subjects fluctuate over large interval. The fluctuations
intervals are,−0.04 < x < 0.04 and−0.15 < x < 0.15 for patients with the CHF and healthy subjects, respectively. Hence,
Ghasemi et al. suggested that one may use the magnitudes of the drift and diffusion coefficients, as well as the fluctuations
intervals for the returns, for characterizing the dynamics of human heartbeats, and to distinguish healthy subjects from
those with the CHF [47].

5.2.2. Comparison with other methods
Lin et al. argued that the daytime heart-rate variability of healthy subjects may exhibit discrete scale invariance (DSI)

[221]. A stochastic process x(t) possesses continuous scale-invariant symmetry if its distribution is preserved under a change
of variables, t → λt and x → x/µ, where λ and µ are real numbers, so that,

x(t) =
1
µ
x(λt). (5.4)

If Eq. (5.4) holds only for a countable (discrete) set of values of λ, x(t) is said to possess DSI, which implies a power-law
behavior for x(t) that has a log-periodic correction of frequency 1/ log λ, so that

x(t) = tγ F(log t/ log λ), (5.5)

with, γ = logµ/ log λ, with F(x) = F(x + 1) being a period scaling function. Generally speaking, one may write,
x(t) = c(t)tζ , with, ζ = γ + 2nπ i/ log λ, with n = 1, 2, . . . The existence of log-periodicity was first suggested by
Novikov [222] in small-scale energy cascade of turbulent flows. It has been argued in [223,224] that log-periodicity may
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exist in the dynamics of stock market crashes [225], turbulence [226], earthquakes [227], diffusion in disordered material
[228,229] and in fracture of materials near the macroscopic fracture point [230]. The log-periodicity implies the existence
of a cascade for the multifractal spectrum of HRV, previously reported by others.

TheMarkovianmethod distinguish the healthy subjects from those with CHF in terms of the differences between the drift
and diffusion coefficients of the Fokker–Planck equations that one construct for the returns data, which provide a clearer
andmore physical way of understanding the differences between the two groups of the subjects. It might eventually provide
a diagnostic tool for detection of CHF in patients with small amounts of data.

5.3. Econophysics: financial data

Since Bachelier’s pioneeringwork dating back to 1900 [231], the complex statistical properties of economic systems have
attracted the attention of many researchers, and an extensive literature has evolved for modeling fluctuations of financial
markets. Traditionally, fluctuations of financial assetswere viewed andmodeled as randomvariables.Well-knownexamples
are the ARCH-type models (see, for example, [232–236] and stochastic volatility (SV) models [237–241]).

Since advances in computer technology have made high frequency data available, many physicists have joined the field,
adapting methods from statistical physics in order to analyze financial data. This has given rise to the field of econophysics.
One line of studies within econophysics focusses on the statistical properties of financial time series, such as stock prices,
stock market indices, and currency exchange rates. Rather than comparing the predictions of the models with the various
aspects of empirical data (which is the traditional approach), physicists try to extract information about the stochastic
processes that govern financial markets by analyzing empirical data. There is already an extensive literature on the subject
[242–256,234,236,257,233,258–262,188,263–275].

Despite all the efforts spent, some of the most basic questions concerning the statistics of financial assets remain
unanswered. In particular, the mechanism leading to the fat-tailed (leptokurtic) probability distributions of the fluctuations
on small time scales is still unknown. Compared to a Gaussian, the PDFs of such fluctuations predict an unexpectedly
high probability for large fluctuations. Quantifying the risks of such large fluctuations is of utmost importance for the risk
management and the pricing of options.

In the next subsections a summary of the application of the Markov method to the oil price [41] and fluctuation of
currency exchange rates [42] are given.

5.3.1. Analysis of the fluctuations in the daily price of oil
Fig. 12 shows the daily fluctuations in the oil price x(t) in the period 1998–2006. It is not difficult to show that the

fluctuations do not constitute a stationary process by, for instance, showing that the variance of x(t) in some window is not
stable under increasing its size. As before, let us define the returns y(t) by, y(t) = ln[x(t+1)/x(t)] [243]. The resulting series
for y(t) is shown in Fig. 13. It can be shown straightforwardly, by measuring the average and variance of y(t) in a moving
window, that y(t) is stationary. Moreover, one can compute the spectral density S(f ) of y(t) in order to check whether there
are long-range, and in particular nondecaying, correlations in y(t). The result, S(f ) ∝ f β with β ≃ 0, indicates the absence
of such correlations in y(t). In addition, the Hurst exponent was calculated by the deterended fluctuation analysis (DFA) and
the rescaled-range analysis (R/S), the return can be considered as a stationary series [110]. Indeed, the Hurst exponent of
the return time series is, H = 0.51 ± 0.2.

The method for analyzing the fluctuations in y(t) is then based on constructing a Langevin equation for y(t); see
also [245]. The construction of the Langevin equation is carried out in two steps. Since long-range, nondecaying correlations
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the time series have been shifted on the t-axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Source: From [41].

are absent in y(t), but short-range decaying correlations do exist, one first checks whether the time series follows a Markov
chain, in which case one estimates its Markov–Einstein time scale tM . Using the least squares method, one determines the
Markov–Einstein time scale of the y(t). Fig. 14 shows the normalized χ2

ν as a function of the t3 − t1, where, χ2
ν = χ2/N ,

with N being the number of degrees of freedom. The minimum value of χ2
ν is ≈0.6, corresponding to tM = t3 − t1 ≃ 1 day.

Fig. 15 shows the likelihood function of the Markov–Einstein time scale of the y(t). Using the method proposed in Section 2,
one estimates the Markov–Einstein time scale via a direct check of the CK equation. The result is again tM ≃ 1 day.

For the data for oil price fluctuations, one finds that, D(4)
≃ 10−2D(2), where values of y(t) are measured in units of the

maximum of the time series, ymax. This allows the truncation of the KM expansion. In that case, the KM expansion reduces
to a Fokker–Planck (FP) equation [i.e., Eq. (4.9) with D(k)(y, t) = 0 for k ≥ 3]. It also turns out that the resulting drift and
diffusion coefficients, estimated directly from the data, are, respectively, linear and quadratic functions of y, and are well
represented by the approximates,

D(1)(y) = −1.09y,

D(2)(y) = 0.0033 − 0.003y + 0.716y2. (5.6)
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Fig. 14. The χ2 test for estimation of Markov time scale of the time series of the returns, indicating that the Markov time scale tM is 1 day.
Source: From [41].

Fig. 15. Relative likelihood function for the Markov–Einstein time scale of the y(t) fluctuations, as a function of t3 − t1 .
Source: From [41].

Estimates ofD(1)(y) andD(2)(y) becomepoor for large y and, thus, the uncertainty in the estimates increases. Eq. (5.6) enables
us to reconstruct a time series for y(t) which is similar to the original one in the statistical sense. In Fig. 13 the original and
reconstructed time series for y(t) are shown.

Next, one evaluates the precision of the reconstructed y(t). This is done by reconstructing the conditional PDF through
the numerical solution of the FP equation for the conditional PDF, which is very sensitive to the errors in D(1) and D(2). The
solution of the FP equation for small ∆t is given by,

p(y2, t + △t|y1, t) =
1

2


πD(2)(y2)∆t
exp

[
−(y2 − y1 − D(1)(y2)∆t)2

4D(2)(y2)∆t

]
. (5.7)

Eq. (5.7) enables one to predict the probability of an ‘‘observation’’ y2 at time t + △t , if one knows y1 at time t . In Fig. 16 we
show the computed conditional PDFs using the data, and those using Eq. (5.7), for three values of y1 with∆t = 1. To domore
checking, we used the Kolmogorov–Smirnov test [276,279] to compare the cumulative distribution function for the original
and reconstructed time series. With 1682 data points one finds the maximum difference between the two cumulative PDFs
to be about 0.030. Forα−levels of %10, %5 and %1, one finds the critical values to be, 0.042, 0.046 and 0.056, respectively [41].

To make predictions, one uses the definition of y(t) to write x(t + 1) in terms of x(t). But, since the reconstructed data
have unit variance and zero mean, we have

x(t + 1) = x(t) exp{σy[y(t) + ȳ]}, (5.8)
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Fig. 16. Comparison of the directly evaluated PDFs using the actual data, and the PDFs obtained from Eq. (2.24). Values for y1 , from left to right, are −0.1,
0.0, and 0.1 [measured in units of ymax(t)]. For better presentation, the PDFs have been shifted on the horizontal axis.
Source: From [41].
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Fig. 17. The level crossing ν+α for the returns time series.
Source: From [41].

where ȳ and σy are the mean and standard deviations of y(t). To use Eq. (5.8) to predict x(t + 1), one needs [x(t), y(t)]. It is
possible to select three consecutive points in the series y(t) and search for three consecutive points in the reconstructed
series of y(t) that have the smallest difference with the selected points. Shown in Fig. 12 are the actual data and the
predictions for some interval in the oil price x(t), beginningwith t ≃ 2006 (blue). Moreover, it is possible to predict the time
series using the multiscale reconstruction of time series [100,101] or mapping the time series to a complex network [103].

Finally, using the calculated drift and diffusion coefficients, one computes the frequency of the level crossings at a given
level α (see Section 6). This quantity is given by, ν+

α = P(yi > α, yi−1 < α), where ν+
α is the number of positive-difference

crossings of y(t), y(t) − ȳ = α, in the interval T . The time scale T (α) = 1/ν+
α is then the average time interval that one

should wait in order to observe the given y = α again. The frequency ν+
α is given by Eq. (3.26) with ∆t = 1. Figs. 17 and

18 represent the computed level-crossing frequency and T (α), in units of the data (days) over a time interval, for both the
actual data set and the one reconstructed by Eq. (5.6). The Maximum and minimum of y are 0.4 and −0.4, respectively.

5.3.2. Fluctuations in the currency exchange rates
In this subsection we give a summary of the results of the application of the Markovin method to analyzing the data for

the rates of exchange of various currencies versus the US dollar. The method analyzes the return time series of the data as a
Markov process, and develops an effective equation which reconstructs the data. It is found that the Markov–Einstein time
scale is one day for the majority of the daily exchange rates.
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Fig. 18. The average waiting time for observing y(t) = α again.
Source: From [41].

Table 1
The Markov–Einstein time scale tM , and the drift and diffusion coefficients for the various exchange rates
versus the US dollar. The results are, from top to bottom, for French, German (Mark), Dutch, Swiss, Japanese,
Austrian, British, and Canadian currencies [42].

Currency tM D(1) D(2)

FRNFR/US 1 −1.0328r 0.0081 + 0.0096r + 0.4133r2

GERDM/US 1 −0.0082 − 0.9474r 0.0078 + 0.0110r + 0.5942r2

DTCHG/US 1 −0.0033 − 1.0071r 0.0043 − 0.0007r + 0.7134r2

SWISF/US 1 −0.0051 − 1.0142r 0.0067 + 0.0087r + 0.4736r2

JAPYN/US 1 −0.0033 − 1.0571r 0.0029 − 0.0088r + 0.6716r2

AUSTR/US 1 −0.0014 − 1.1629r 0.0080 + 0.0126r + 0.6385r2

BRITP/US 1 −0.0013 − 0.9439r 0.0053 + 0.0117r + 0.5853r2

CDNDL/US 1 −0.0008 − 1.0460r 0.0039 + 0.0091r + 0.7006r2

EURO/US(hourly) 1 −0.04242 − 0.0287r 0.00069+0.00123r+0.00045r2

Let us start with applying the method to construct the fluctuations in the rates of exchange of various currencies versus
theUS dollar, by calculating theMarkov–Einstein time scale tM [42]. For this purpose, one first, as usual, constructs the return
series ri. Then, to determine tM , the validity of the CK equation for various r1 is checked by comparing the directly evaluated
conditional probability distributions p(r2, t2|r1, t1) with those calculated according to right side of Eq. (2.26). The data were
taken from the source, (http://finance.yahoo.com/), and are all related to the same time period, namely, 31 December, 1979
to 31December, 1998. Except for the hourly price of the EUROover a period of 4months (30 January to 31May, 2003), the rest
had been recorded for each trading day. In Table 1, the Markov–Einstein time scale tM for different currencies versus the US
dollar are given. Since the price index returns can be represented by a Markov process, we can derive an effective stochastic
equation that describes the fluctuations of the returns rn. From the analysis of the data set one obtains the approximates
that are presented in Table 1. To estimate the drift and diffusion coefficients, they are measured in units of the σ , where σ
is the standard deviation of r; see Figs. 19 and 20 [42].

To make predictions for the future trends, one can use the definition of r(t) to write x(t + 1) in terms of x(t). But, since
the reconstructed data have a variance equal to 1 and a zero mean, we have, x(t + 1) = x(t) exp{σr [r(t) + r̄]} where r̄ and
σr are the mean and standard deviations of r(t). To use this equation for predicting r(t + 1), we need [x(t), r(t)]. We select
again three consecutive points in the series r(t) and search for three consecutive points in the reconstructed series of r(t)
that have the smallest difference with the selected points. Shown in Fig. 21 are the actual data and the predictions for some
interval in the time series for the hourly rates of EURO versus the US dollar.

5.4. Rough surfaces

So far, we considered stochastic data that vary in time. We now consider those that vary in space.

5.4.1. Reconstruction of rough surfaces
Studying the formation, growth, and the morphology of interfaces has been a recent research field of much interest,

because of its high technical importance and rich theoretical value [137,280]. The Markov method is applicable to

http://finance.yahoo.com/
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Fig. 19. The drift coefficient for the EURO versus the US dollar.
Source: From [42].

Fig. 20. The diffusion coefficient for the EURO versus the US dollar.
Source: From [42].

the analysis of such surfaces and interfaces. As an example, we summarize in this section the measurement of the
Kramers–Moyal (KM) coefficients for the fluctuating field h(x), the height of a deposited copper film [30]. It is shown that the
first and secondKMcoefficients havenonzero values,while the third- and fourth-order coefficients in theKMexpansion tend
to zero. Thus, the first and second KM coefficients for the fluctuations of h(x) enable us towrite down a Langevin equation for
the evolution of the height h(x)with respect to x. Using this equation one reconstructs the surface with statistical properties
similar to the original one, obtained by atomic forcemicroscopy (AFM). An application of this stochastic description of rough
surfaces to a variety of different surfaces, like road surfaces, steel crack surfaces or gold films, can be found in [31].

The reconstruction of a surface is known as the inverse method. There are other inverse approaches introduced in the
literature [281,282]. In the previous attempts, in order to regenerate the surface, an evolution equation for h(x, t) vs t was
evaluated. The Markov method enables one to develop an evolution equation for h(x) vs. x, for a given time.

A copper film was deposited on a polished Si (100) substrate by the resistive evaporation method in a high vacuum
chamber. The pressure during evaporation was 10−6 Torr (see [30], for details of the experiment). The resulting surface was
then analyzed using the AFM.

It is a common procedure to characterize the complexity of a rough surface by checking the scaling behavior of the
moments Cq = ⟨|h(x1)− h(x2)|q⟩ in terms of the length scale ∆x = |x1 − x2|. Jafari et al. investigated the scaling behavior of
the q-th moment Cq and observed that all of themoments (up to q = 20) behave as |x1 − x2|ξq within the scaling region∼10
to 150 nm [30]. They found a nonlinear relation between ξq and q, indicating that the height fluctuations are intermittent
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or multifractal (see [283,284] and references therein). The roughness exponent α is related to the exponent ξ2 as α = ξ2/2.
For the stationary samples with thickness 440 nm, the roughness exponent α was found to be 0.83 ± 0.03.

From the stochastic point of view, one must recall that the multifractality is based on properties of the roughness on
distinct length scales. However, checking the scaling behavior does not explain a possible correlation between the roughness
measures on different scales. Moreover, it is noted that the methods based on multifractality are limited to the subclass of
rough surfaces that exhibit scaling properties. The Markov method, on the other hand, is a general method that can explain
the complexity of the surface roughness, with no scaling feature to be explicitly required. The method yields an effective
stochastic equation in the form of a Fokker–Planck equation. The connection between the multifractality and the Markov
approach was discussed by Friedrich and Peinke [10].

As usual, one checks the Markov nature of the fluctuations in the height, h = h(x) − h̄ of the Cu film surface. One then
finds the following expression for D(1)(h) and D(2)(h):

D(1)(h) = −0.01h

D(2)(h) = 0.088 − 0.004h + 5.19 × 10−5h2. (5.9)

The height field is measured in units of the standard deviation of h(x). Thus, we write a Fokker–Planck equation for the PDF
of h(x). As usual, the Fokker–Planck equation is equivalent to the following Langevin equation (using the Ito interpretation):

d
dx

h(x) = D(1)(h) +


D(2)(h)f (x). (5.10)

Here, f (x) is a random force with zero mean and Gaussian statistics, δ-correlated in x, i.e., ⟨f (x)f (x′)⟩ = 2δ(x − x′).
Furthermore, with the last expression, it becomes clear that the method is able to separate the deterministic and the noisy
components of the surface height fluctuations in terms of the coefficients D(1) and D(2). Eq. (5.10) enables us to reconstruct
rough surfaces that are similar to the original one (in the statistical sense). In Fig. 22 the AFM and reconstructed images
are shown. The reconstructed surface is very similar, in a statistical sense, to the original one. All reconstructed patterns
are statistically similar. To demonstrate this fact we show, for example, in Fig. 23 a plot of the second moment of the
structure function C2 for the AFM and a reconstructed surfaces. Their roughness exponents were found to be, 0.83 ± 0.03
and 0.83 ± 0.01, respectively (see [30], for more details).

5.4.2. Controlling surface statistical properties using bias voltage
As an another examplewe consider the effect of voltage bias on the statistical properties of rough surfaces, and investigate

its stochastic nature via the Markovin method. In practice, an effective way of modifying the roughness of the surfaces
is applying a negative voltage bias during deposition of thin films [285], while their sample size and thickness are held
constant. In bias sputtering, the electric fields near the substrate are modified to vary the flux and energy of the incident
charged species. This is achieved by applying either a negative DC or RF bias to the substrate. Due to charge exchange
processes in the anode dark space, very few discharge ions strike the substrate with full voltage bias. A rather broad low
energy distribution of ions bombard the growing films. Generally, bias sputtering modifies the films’ properties, such as
the surface morphology, resistivity, stress, density, adhesion, and so on through the roughness improvement of the surface,
elimination of the interfacial voids and the subsurface porosity, creation of a finer and more isotropic grain morphology,
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Fig. 22. The AFM and regenerated surface images (from up to bottom), which we have regenerated the rough surface using the Langevin equation for
dynamics of h(x). As drift term D(1)(h) = −0.01h and as diffusion term D(2)(h) = 0.088 − 0.004h + 5.19 × 10−5h2 .
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Fig. 23. Log–log plot of the second moment of height difference vs. l, for real sample and regenerated sample. The roughness exponents for real and
regenerated are 0.83 ± 0.03 and 0.83 ± 0.01, respectively.
Source: From [30].

and the elimination of columnar grains [285]. Here, the effect of voltage bias on the statistical properties of a surface, i.e., its
roughness exponent, the level crossing, the probability density function, as well as the drift and diffusion coefficients, has
been studied [35].

It is known that to derive a quantitative information of a surface morphology one may consider a sample of size L and
define the mean height of a growing film, h, and its roughness w by the following expressions [286,287]: h(L, t, λ) =

L−1
 L/2
−L/2 h(x, t, λ)dx, and, w(L, t, λ) = [⟨(h − h)2⟩]1/2, where t is proportional to the deposition time, and ⟨· · ·⟩ denotes

an averaging over different samples. Moreover, one can introduce λ as an external factor that can be applied in order to
control the surface roughness of thin films. We introduce a parameter, λ ≡ V/Vopt, where V and Vopt are the applied and
the optimal voltage biases, so that for λ = 1 the surface exhibits its optimal properties. For simplicity, one can assume that
h = 0, without loss of generality. Starting from a flat interface (one of the possible initial conditions), one conjectures that
a scaling of space by a factor b and of the time by a factor bz (z is the dynamical scaling exponent) rescales the roughness
w by a factor bχ , so that, w(bL, bz t, λ) = bχ(λ)w(L, t, λ), which implies that, w(L, t, λ) = Lχ(λ)f (t/Lz, λ). If for large t and
fixed L(t/Lz → ∞), w saturates and, f (x, λ) → g(λ), as x → ∞. However, for fixed and large L and t ≪ Lz , one expects
that correlations of the height fluctuations are set up only within a distance t1/z and, thus, must be independent of L. This
implies that for x ≪ 1, f (x) ∼ xβg ′(λ), with, β = χ/z. Thus, dynamic scaling postulates that

w(L, t, λ) =


tβ(λ)g(λ) ∼ tβ(λ), t ≪ Lz =;

Lχ(λ)g ′(λ) ∼ Lχ(λ), t ≫ Lz .
(5.11)
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Fig. 24. AFM surface images (all 1 × 1 µm2) of Co (3 nm)/NiO (30 nm)/Si (100) thin films deposited at the voltage biases of, from the top, (a) 0; (b) −20;
(c) −40, and (d) −60 V.
Source: From [35].

The roughness exponentχ and the dynamic exponent z characterize the self-affine geometry of the surface and its dynamics,
respectively. The dependence of the roughness w on the h or t indicates that w has a fixed value for a given time.

The common procedure to measure the roughness exponent of a rough surface is based on the use of a surface structure
function that depends on the length scale△x = r , which is defined by, S(r) = ⟨|h(x+ r)−h(x)|2⟩ [288,289]. It is equivalent
to the statistics of the height–height correlation function C(r) for stationary surfaces, i.e., S(r) = 2w2(1−C(r)). The second-
order structure function S(r) scales with r as, S(r) ∼ rξ2 , where χ = ξ2/2.

Sangpour et al. analyzed the surface of Co (3 nm)/NiO (30 nm)/Si (100) structure [as a base structure in the magnetic
multilayers, e.g., spin valves operated using giant magnetoresistance (GMR) effect [290,291], fabricated by bias sputtering
method at different voltages biases [35]. The behavior of the statistical characterizations obtained by the nanostructural
analysis has been also comparedwith that of the sheet resistancemeasurement of the films deposited at the different voltage
biases. The details of the experiments are given by [35]. To study the effect of the voltage bias on the surface statistical
characteristics, Sangpour et al. utilized the AFM method for obtaining microstructural data from the Co layer deposited at
the various voltage biases in the Co/NiO/Si (100) system. Fig. 24 shows the AFM micrographs of the Co layer deposited at
various negative voltage biases of −20, −40, −60, and −80 V, as compared with the unbiased samples [35].

Fig. 24a presents, for the unbiased very thin Co layer, a columnar structure of the Co grains, grown over the evaporated
NiO underlaying surface. Fig. 24b shows, however, that by applying the negative voltage bias during the Co deposition, the
columnar growth is eliminated. Moreover, Fig. 24c and d show that, by increasing the voltage bias up to−60 V, the grain size
of the Co layer is increased which means a more uniform and smoother surface is formed. But, for the voltage bias of −80 V,
due to the initiation of resputtering of the Co surface by the high energy ion bombardment, one obtains a nonuniform surface,
even at the macroscale. Therefore, based on the AFMmicrographs, the optimum surface morphology of the Co/NiO/Si (100)
system was achieved at the voltage bias of −60 V for the experimental conditions.



R. Friedrich et al. / Physics Reports 506 (2011) 87–162 123

–0.04

–0.02

0

0.02

0.04

0.06

–30 –20 –10 0 10 20 30

Fig. 25. Drift coefficient of the surface at various voltage biases.
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Now, by using the statistical parameters introduced in Sections 2–6, it is possible to obtain some quantitative information
about the effect of the voltage bias on the surface topography of the Co/NiO/Si (100) system. It has been shown that the
surface grown at the optimal voltage bias (−60 V) exhibits a minimum roughness with χ ≃ 0.60, which should be
compared with what is obtained with the other biased samples, χ ≃ 0.75, 0.70, and 0.64 for V = −20, −40, and −80
V, respectively [35]. For the unbiased sample, one finds two roughness exponents, 0.73 and 0.36, due to the nonisotropic
structure of the surface (see Fig. 24a).

For the unbiased sample, it is shown that it has two correlation lengths of 30 and 120 nm, due to the columnar structure
of the grains. However, by applying the voltage bias, one attributes just one correlation length to each curve, indicating
the elimination of the columnar structure in the biased samples. For the voltage bias of −20 V, the correlation length r∗ is
determined to be 56 nm. By increasing the value of the bias voltage to−40 and−60 V, it was shown that r∗

= 76 and 95 nm,
respectively [35]. However, at −80 V, due to the initiation of the destructive effects of the high energy ions on the surface,
the correlation length is reduced to 76 nm. Thus, based on the above analysis, if one assumes that Vopt = −60 V, then, the
roughness exponent and the correlation length may be expressed in terms of the parameter λ as follows, respectively,

χ(λ) = 0.61 + 0.16 sin2(2πλ/3.31 + 1.07) (5.12)

r∗(λ) = 53.50 + 40.23 sin2(2πλ/3.00 + 2.62) (nm). (5.13)
To obtain the stochastic continuum equation for describing the surface, one needs, as usual, to measure the drift

coefficient D(1)(h) and diffusion coefficient D(2)(h). Fig. 25 shows D(1)(h) for the surfaces at the various voltage biases. It
can be seen that the drift coefficient exhibits a linear behavior with h:

D(1)(h, λ) = −f (1)(λ)h (5.14)

where

f (1)(λ) = [0.55 + 1.30 sin2(2πλ/3.50 + 1.40)] × 10−4. (5.15)

The minimum value of f (1)(λ) for the biased samples at λ = 1 indicates that the deterministic component of the height
fluctuations for the samples is smaller than the other biased and unbiased ones.

Fig. 26 presents D(2)(h) for the several voltage biases. For λ = 0, the maximum value of the diffusion coefficient is
obtained for any h, as compared with the other cases. By increasing the voltage bias, the value of D(2) is decreased, as can
be seen for λ = 1/3 and 2/3. The minimum value of D(2), which is nearly independent of h, is achieved when λ = 1.
This indicates that the noisy component of the surface height fluctuation at λ = 1 is negligible, when compared with the
unbiased and the other biased samples. The behavior of D(2) at λ = 4/3 becomes similar to that for λ = 2/3. It is seen that
the diffusion coefficient D(2) is approximately a quadratic function of h. Using the data analysis, it was found that [35];

D(2)(h, λ) = f (2)(λ)h2 (5.16)
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Fig. 27. Level crossing of the surface at various voltage biases.
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where

f (2)(λ) = [3.20 + 3.53 sin2(2πλ/3.33 + 1.34)] × 10−6. (5.17)

Now, using the Langevin equation and the measured drift and diffusion coefficients, one concludes that the height
fluctuations have their minimum value at λ = 1, which means a smoother surface at the optimal condition. Moreover,
the approximants for the coefficients [Eqs. (5.14) and (5.16)] may be used to reconstruct the rough surfaces that are similar
to the AFM images [30].

To complete the study, roughness of a surface can be also evaluated by the level-crossing analysis. Fig. 27 shows the
observed average frequency ν+

α as a function of h for several voltage biases. As λ is increased from 0 to 1, the value of ν+
α
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Fig. 28. Sheet resistance measurement of the coating layer as a function of the applied bias voltage.
Source: From [35].

decreases at any height. Once again, the optimal situation is observed for the voltage bias of −60 V, indicating that the
surface formed at λ = 1 condition is a smoother surface with lower height fluctuations than the one formed under the
other conditions. It is seen that for λ = 4/3 the height fluctuations of the surface take on the maximum value, as compared
with the other surfaces. Similar to the behavior of the roughness exponent and the correlation length in terms of λ, the
quantity N+

tot may be also expressed as:

N+

tot(λ) = [1.20 + 0.17 sin2(2πλ/3.52 + 1.40)]. (5.18)

Since the system under investigation has a thin Co layer, which is the only conductive layer, it is clear that the lower
height fluctuations correspond to smaller electrical resistivity of the surface. Fig. 28 shows the resistance of the Co surface
grown at the various voltage biases [35]. For the voltage bias ranging from 0 to −60 V, the resistance Rs is reduced from
432 to 131 �/sq. The minimum value of Rs is measured at the optimal condition of −60 V (λ = 1), which can be related
to a modified and smooth surface roughness. Elimination of interfacial voids, as well as the porosity, reduces the impurities
in the Co layer. A similar behavior was also observed at Vopt = −50 V for Ta/Si (111) system [292,293]. By increasing the
applied biased voltage to values greater than its optimal value, surface roughness increases, due to the surface bombardment
by high energy ions. This can be seen by the observed increase in the Rs value at the biased voltage of −80 V (λ = 4/3). It is
easy to approximate the variation of Rs with λ by

Rs(λ) = [135.48 + 307.74 sin2(2πλ/3.93 + 1.77)]. (5.19)

Rs behaves similar to the roughness characteristics of the surface. Therefore, it was shown that the roughness behavior
explained by the statistical characterization of the surface, whichwas obtained by usingmicrostructural analysis of the AFM,
can be related to the sheet resistance measurement of the rough surfaces, as a tool of macrostructural analysis. Moreover,
Sangpour et al. [35], studied the effect of the tip convolution [294,295] on the drift and diffusion coefficients. Their analysis
showed that, although the measured values of the surface parameters by the AFM method are different from the real ones,
the general behavior of the parameters as a function of the biased voltage is not affected by the tip convolution. In this
direction, the stochastic nature of the etching surfaces was studied by [32] (see also [33]).

6. Applications: processes in scales

In this section we describe examples on the application of Markovin method in scale for turbulence, passive scalar,
financial and seismic time series. Asmentioned in the introduction, theMarkovinmethod is also applicable to understanding
the cascade nature of processes in scale and, therefore, intermittency issue of complex series. In this particular case the
method has been used as an alternative and generalization of themultifractal description. Multifractals are usually analyzed
by looking at the fluctuating quantities, such as velocity and temperature increments, etc., at each scale separately and as
random variables.
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The stochastic analysis of such systems uses scale-dependent quantities for their characterization. As described earlier,
the term ‘‘scale’’ means that, for a data set X(t) the scale r is the distance between two arbitrary points t and t ′ with t ′−t = r
(t may denote time as well as space in this context). The increment ∆X(t, r) = X(t+r)−X(t) is a common scale-dependent
complexity measure of a given system. Traditionally, the investigation of the statistical properties is performed on distinct
scales, e.g., by means of the structure functions ⟨∆X(t, r)n⟩, given by the probability density functions (PDF) p(∆X(t, r)).
Here, using the Markovin approach we try to describe the joint statistics of the selected measure on many different scales.
This is achieved by the knowledge of the joint PDF p(∆X(t, r1); . . . ; ∆X(t, rn)). Through such joint PDFs the correlations
between the scales are also worked out, showing how the complexity is linked between scales.

Using theMarkovinmethod, one canmeasure the Kramers–Moyal (KM) coefficients for the increments. For almost of the
processes, the first and second KM coefficients are nonzero and significant, whereas the third- and fourth-order coefficients
tend to zero. Therefore, by addressing the implications dictated by the theorem, a Fokker–Planck evolution operator is
developed. The Fokker–Planck equation for p(∆X, r) is used to obtain information on changing the shape of PDF as a function
of the length scale r [10,14].

6.1. Turbulence

Small-scale turbulence is not yet fully understood. A complete theory based on the Navier–Stokes equation has not been
developed yet. Thus, our present understanding relies for themost part on phenomenological and experimental approaches.
It is typically assumed that turbulence forms a universal state which exhibits stationarity, isotropy and homogeneity in a
statistical sense [296,55]. In general, turbulence is driven on large scale, i.e., the energy is injected into large-scale motion
and is dissipated on the small scales, resulting in a net flux of energy from large to small scales [297]. The energy flux results
from the inherent instability and the subsequent breakup of vortices into smaller ones.

For locally isotropic turbulence themain challenge is to understand the spatial correlation. Usually the turbulent velocity
field U(x, t) is characterized by increments ur = e · [U(x + r, t) − U(x, t)], where e denotes a unit vector in a certain
direction, x denotes a reference point and r a displacement vector. The increments are taken as stochastic variables that
depend on the scale variable r = |r|. By varying r the correlations on various scales can be studied. In the following we
denote by ur the longitudinal increments, whichmeans that e is parallel to r, and vr to represent the transversal increments,
for which e is orthogonal to r. For a specific length ri we simply use ui and vi. The central challenge in turbulence is to
explain the statistics of the exceptional frequent occurrence of large velocity increments on small scales r , which cannot be
understood with the usual statistics. This is the so-called intermittency problem.

Thework of Kolmogorov is still the theoretical foundation of the small-scale turbulence [298,299]. The startinghypothesis
is that the possible symmetries of the Navier–Stokes equation are recovered in a statistical sense for high Reynolds number
flows. The symmetries include homogeneity, i.e., the statistics of the increments being independent of the reference point
x; isotropy, implying that the statistics do not change under rotation of the frame of reference, and stationarity, meaning
that the statistics are not time dependent. A further hypothesis is scale invariance. Loosely speaking, scale invariance
means that the structures of different scales look similar (see Eqs. (4.1)–(4.6) for more details). Kolmogorov considered
the statistics in terms of the structure functions (moments of the velocity increments), for which scale invariance reads as
⟨un

r ⟩ = (r/r1)ξn ⟨un
1⟩ implying ⟨un

r ⟩ ∝ rξn with two different scales, r and r1.
Using this hypothesis, Kolmogorov furthermore assumed that for high Reynolds number flows the statistics of the

velocity increments depend only on the energy dissipation ϵ and the scale r , and ended up by using dimensional arguments
with ⟨un

r ⟩ = Cnϵ
n/3rn/3 for η ≪ r ≪ L. Cn is called the Kolmogorov constant, η is the scale where the dissipation takes

place, and L, the integral length scale, is the largest scale of the flow. However, there are corrections due to the fluctuating
dissipation energy, leading to deviations from the exponent ξn = n/3. This property of turbulence is an other aspect of
the above mentioned intermittency. According to the refined self-similarity hypothesis (RSH) of Kolmogorov, which takes
into account the fluctuating energy dissipation ⟨ϵr⟩, averaged over a volume V with the extension r (ϵr =


V ϵdx), the scale

invariance is expressed by

⟨un
r ⟩ = cn⟨ϵn/3

r ⟩rn/3 ∝ rξn . (6.1)

The first model for the exponents ξn is Kolmogorov’s log-normal model, which results in ξn = n/3 − µn(n − 3)/18 [300].
If, instead of the structure functions, the probability density functions (PDF) p(ur) are considered, this nontrivial scaling
behavior corresponds to a change of the form of the PDFs with r . To explain the intermittency, i.e., the nontrivial scaling
behavior, is still one of the most prominent challenges in turbulence; see, for example, [301]. These scaling exponents for
Kolmogorov theories can easily been expressed by stochastic processes evolving in the scale. Following the Eq. (4.13) and
setting

D(1)(ur , r) = −


1
3

+ 2Q


·
ur

r
; D(2)(ur , r) = Q

u2
r

r

we see that the ξn = n/3 scaling is the trivial solution for Q = 0, whereas Kolmogorov’s log-normal scaling corresponds to
a cascade process with multiplicative noise, Q = µ/18 (see also [205]).
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At first, the studies were only concentrated on the longitudinal increments. There was hope that the exponent ξn can
describe the self-similarity of every quantity of the velocity field. But, recently, considerable efforts were devoted to also
understanding the transverse increments, as they seem to have essential distinct properties [302,57,58,138,303–309,128,
129,310–323,226,324,325]. This implies that the models as well as the considerations concerning only the longitudinal
increments are too specific, and a better understanding of the turbulence has to include the transverse increments.

Longitudinal and transverse increments belong to different geometric/kinematic structures in the flow. The longitudinal
increments is associated with strain-like structures, the transverse increments with vorticity-like structures. Thus, it is
natural to modify the RSH of Eq. (6.1) and to use local averaged enstrophy (squared vorticity) rather than local averaged
dissipation for the transverse increments. This is referred to as the refined similarity hypothesis (RSHT) for transverse
increments (see, for example, [128,129,310–312])

⟨vn
r ⟩ = Ct,n⟨Ω

n/3
r ⟩rn/3 ∝ rξt,n . (6.2)

If intermittency results from the fluctuating energy dissipation and enstrophy, then, the deviations from the Kolmogorov
theory of 1941 can be investigated by the scaling of ⟨ϵ

n/3
r ⟩ and ⟨Ω

n/3
r ⟩, respectively [298,299]. For infinite high Reynolds

number the scaling of the averaged dissipation and enstrophy should be the same [321], but in many experiments and
simulation one observes differences in both exponents for finite Reynolds numbers [302,306,310–312,308,309,304,315,326,
322,325,327].

At least four arguments are used to explain such observations. They are based on, (1) anisotropy, (2) the effect of the
Reynolds number, (3) the influence of the boundary conditions, and (4) the intermittency. Anisotropy typically exists in every
flowon large scales and can influence the exponent stronger than the intermittency itself [326,325]. Decreasing the Reynolds
number affects the scaling exponents in such a way that the differences between them increase [328,315,326,323,325].

The structure functions ⟨un
r ⟩ and ⟨vn

r ⟩, as well as the scaling properties involved, cannot define unambiguously the
turbulent field. For instance, flows with different structures may have the same scaling properties [327]. The same is true
for the probability distributions p(ur) and p(vr), which are in essence equivalent to the structure functions. The reason is
that these quantities are just two-point statistics.

Definitively more general and detailed are the multipoint (or multiscale) distributions p(u1, v1, r1; . . . ; un, vn, rn) (or
multiscale structure functions ⟨

∏
i u

mi
i
∏

j v
mj
j ⟩) for separate scales ri. Such probabilities also consider the joint statistics of the

longitudinal and transverse increments and, thus, enable one to also describe the interaction between them. Furthermore,
they describe the simultaneous occurrence of the increments ui, vi on several length scales ri.

In this section, we focus on theMarkovin approach to characterization of themultiscale statistics. It has been shown that,
it is possible to gain access to the joint probability distribution p(u1, r1; u2, r2; . . . ; un, rn) via a Fokker–Planck equation,
constructed directly from the measured data [10,329]. This has attracted interest and has been applied to various problems
of the complexity of turbulence, such as the energy dissipation [330–333], universality of turbulence [334], the theoretical
derivation of the Fokker–Planck equation from theNavier–Stokes equation in the limit of high Reynolds number [12] and the
analysis of stochastic time series for turbulence [335,90,336,18,39,30,21,22]. As already emphasized, the characteristic of
theMarkovinmethod is that, it is based on pure data analysis, i.e., it is a parameter-freemethod, and that the few underlying
assumptions are verifiable. Thus, no special model ideas are interwoven with the procedure.

Using the two-dimensional Fokker–Planck equation for the longitudinal and transverse increments, one can estimate the
mixed structure functions ⟨umvn

⟩ =

umvnp(u, v, r)dudv [337]:

−
∂

∂r
⟨umvn

⟩ = +m⟨um−1vnD(1)
1 (u, v, r)⟩ + n⟨umvn−1D(1)

2 (u, v, r)⟩ +
m(m − 1)

2
⟨um−2vnD(2)

11 (u, v, r)⟩

+
n(n − 1)

2
⟨umvn−2D(2)

22 (u, v, r)⟩ + mn⟨um−1vn−1D(2)
12 (u, v, r)⟩. (6.3)

This equation allowed a direct comparison of the Fokker–Planck equation with the structure functions [337]. Two data sets
measured in the central region of a wake behind a cylinder were used. The Reynolds numbers were Rλ = 180 and Rλ = 550,
respectively. Unless specified otherwise, the data set with Rλ = 180 is used. The high Reynolds number data set was used
for comparison.

6.1.1. Two-point statistics
First of all, let us characterize the data by two-point statistics (structure functions, PDF of the increments, etc.). A central

pre-assumption for many considerations of small-scale turbulence is the isotropy. To study isotropy, one uses the Kármán
equation (isotropy relation), because it is the simplest exact relation for the structure functions that rely on isotropy. The
Kármán equation connects the second-order longitudinal and transversal structure functions:

v2
r


=

u2
r


+

r
2

∂

∂r


u2
r


. (6.4)

Fig. 29 shows the left and right hand side of the Kármán equation, i.e., the second transverse structure function and the
hypothetical transverse structure function for isotropic flows, calculated based on the longitudinal one. Taking the validity
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Fig. 29. Second-order transverse structure function estimated based on the one hand directly from the data (squares) and, on the other hand, based on the
longitudinal structure function via the Kármán equation (straight line), i.e., the left and right hand side of Eq. (6.4). The relative deviations are shown by a
dashed line. For small scales r < L the Kármán equation is well fulfilled within 5% and is isotropic in this sense. On larger scales the data indicate clearly
anisotropy.
Source: From [337].

ba

Fig. 30. (a) Energy spectrum (dots) with a −5/3-power law, and (b) the compensated plot of the third-order structure function. The plateau of

|ur |

3

/r

defines the scaling range. The data are for Rλ = 180.
Source: From [337].

of the Kármán equation as indication of the isotropy, one sees that for small distances r < L the isotropic relation is well
fulfilled; the relative error is within 5%. For large distances r > L, isotropy is violated (large-scale anisotropy), with the ratio
⟨v2

r ⟩/⟨u
2
r ⟩ being approximately 0.66, which is a typical value in the literature.

Next, let us review the analysis of the data with respect to the scaling properties [337]. Fig. 30(a) shows the energy
spectrum, together with the Kolmogorov’s −5/3-law for comparison. In Fig. 30(b) the third-order structure function is
plotted in a compensated representation, i.e., ⟨|u3

r |⟩/r is plotted against r to estimate the scaling range. The maximum lies
at 10−2 m, which defines according to Kolmogorov’s 4/5-law the position and the width of the scaling range.

Because the scaling range is narrow, one can use the extended self-similarity (ESS) [338,339];
|ur |

n
∝

|ur |

3ξ ln (6.5)

⟨|vr |
n
⟩ ∝ ⟨|ur |

3
⟩
ξ tn (6.6)

to estimate the scaling exponents of the structure functions. Fig. 31 shows the application of the ESS to the third-, fourth-, and
sixth-order structure functions. The third-order structure function is of special interest, because it serves as the reference in
the ESS. It can be seen in all the three figures that the transverse exponent is smaller than the longitudinal one, ξ t

n < ξ l
n. This

result iswell accepted [306,315,313,226,128,129]. Tomake thismore clear, Fig. 32 shows the exponents ξ l
n and ξ t

n up to order
8. For the sixth-order structure function one finds, ξ l

6 = 1.76 ± 0.04. Fitting Kolmogorov’s log-normal model to the values
of ξ l

n yields the intermittency parameter µ = 0.24 [300]. Both estimates are in good agreement with the experimentally
expected values; see, for example, [340]. The transverse exponents are clearly smaller then the longitudinal exponents for
n > 3, i.e., the transverse structures are significantly more intermittent; see Fig. 32.

An other quantity that enables one to quantify intermittency is the flatness Fα ≡

α4

/

α2
2, where α is ur or vr ,

respectively. For a Gaussian distribution, Fα ≡ 3, and for an intermittent distribution, Fα > 3. As shown in Fig. 33, for
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a b c

Fig. 31. The ESS representation of the longitudinal and transverse structure functions. (a) The transverse third-order structure function versus the
longitudinal third-order structure function. The exponent is ξ t

3 = 0.87. The line has a slope of 1, which is expected from Kolmogorov’s 4/5-law for the
third-order longitudinal structure function. (b) The fourth-order structure functions, and (c) the sixth-order structure functions. Clear difference between
the longitudinal and transverse structure functions can be discerned.
Source: From [337].

Fig. 32. The scaling exponents estimatedwith the ESS. Bold squares: the scaling exponents ξ l
n up to order 8. The dotted line is the forecast of Kolmogorov’s

1941 theory. The straight line includes the intermittency corrections of Kolmogorov’s 1962 theory with the fitted intermittency parameterµ = 0.24. Open
squares: transverse exponents.
Source: From [337].

Fig. 33. Flatness of the longitudinal and transverse increments. For scales r < L the flatness lies for both components over the Gaussian value of 3.
Furthermore, the flatness is larger for the transverse component, i.e., it is more intermittent.
Source: From [337].

r < L both components are intermittent. For small r the transverse increments are considerably more intermittent than the
longitudinal one.

In Fig. 34 the probability density of the longitudinal and transverse velocity increments are plotted. The velocity
distribution on each scale is normalized with the respect to the respective standard deviation, i.e., uσ := ur/σu,r and
vσ := vr/σv,r , in order to compare only the form of the curves. In Fig. 35 the longitudinal and transversal probability
densities for two different length scales (r = L/5 and r = λ) are shown. In both figures, the intermittent character of
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a b

Fig. 34. Probability density functions (PDFs) for, (a) longitudinal, and (b) transverse increments on three different length scales r = L, L/5, λ ≈ λ. The
PDFs’ width are normalized with respect to their standard deviations and are shifted along the axis for a better representation. On the largest scale L a
Gaussian distribution is fitted for comparison. Toward smaller scales the deviations from the Gaussian form become obvious.
Source: From [337].

a b

Fig. 35. A direct comparison between the longitudinal and transverse PDFs for, (a) r = L/5, and (b) r = λ. The longitudinal PDFs are represented by black
squares, the transverse PDFs by white squares. The width of the PDFs are normalized with respect to their standard deviation. For r = L/5 the deviations
are mainly given by the skewness, for r = λ also differences in intermittency, i.e., exponential tails, occurs.
Source: From [337].

Fig. 36. The second-order transverse structure function, calculated from the data (squares) and from the longitudinal structure function via the Kármán
equation (line). Because the differences in the scaling range cannot be discerned, the relative errors between them are also plotted (dashed line). Rλ = 550.
Source: From [337].

the statistics can be seen. For r = L/5 the main difference is seen only for positive increments, i.e., the main difference is
the skewness [337].

Now, let us state briefly the results from the high Reynolds number data set. The Kármán equation is well fulfilled, i.e., the
data are isotropic to a good degree of approximation; see Fig. 36. Fig. 37a presents the energy spectrum of the longitudinal
increments that shows a distinct scaling range with the exponent −5/3, in agreement with the Kolmogorov’s theory [337].
The scaling range is more pronounced for this data set, as can be seen also from the third-order structure function; compare
Figs. 37(b) and 30(b).
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a b

Fig. 37. (a) Energy spectrum (dots) with a −5/3-power law, and (b) the third-order structure function for Rλ = 550. The plateau of

|u|3


/r defines the

scaling range.
Source: From [337].

a b

Fig. 38. (a) Contour plot of the single (straight line) and double conditioned probability distribution (dashed line), p(u1, r1|u2, r2) and p(u1, r1|u2, r2; u3 ≡

0, r3) of the longitudinal increments for the length scales, r1 = ∆r , r2 = 2∆r , and r3 = 3∆r with ∆r = 68.3 mm. The distance between the contour lines
is ∆p = 0.05. (b) Three cuts through the contour plot are presented for u2 = −2σ , u2 = 0, and u2 = −2σ . It can be seen that the Markov properties are
fulfilled.
Source: From [337].

So far, we have presented the results for the two-point statistics, i.e., the statistics of the increments for one fixed scale
separately. In the following we describe the results of the Markov analysis of the interdependence between different length
scales and the interaction between both the longitudinal and traverse increments.

6.1.2. Multipoint statistics: the Fokker–Planck analysis
In this section we present the analysis of the multipoint statistics separately for the longitudinal and transverse

increments, as was described in the previous subsection [337]. As always, there are three steps: first, one checks the validity
of the Markov properties. Second, one calculates the Kramers–Moyal coefficients to show that the data follow a diffusion
process. At last, as a verification, one integrates the resulting Fokker–Planck equation for the simple and for the conditioned
probability distribution, in order to show that the constructed Fokker–Planck equation describes correctly the data. Siefert
et al. defined the increments for the multipoint examinations according to, ur := e · [U(x + r/2) − U(x − r/2)] [337].

6.1.3. Markov properties
The foundation for using the Markov analysis is the validity of the data being Markovian. This can be tested directly

on the data by the definition, Eq. (3.6). Due to the number of the measured data points being finite, we restrict ourselves
to the verification of p(u1, r1|u2, r2) = p(u1, r1|u2, r2; u3, r3). Fig. 38 shows the plots of both sides of the equation for the
longitudinal increments for the three length scales, r1 = ∆r , r2 = 2∆r , and r3 = 3∆r , with ∆r = 68.3mm ≈ L/2. It is seen
that both distributions coincide. For a length scale (lm) below a certain threshold, the Markov properties are not fulfilled;
see Fig. 39 [28].

To quantify the results and to get a more objective and systematic measure for the Markov properties and the Markov
length, one can use theWilcoxon test, which compares two random samples with sizesm and n [87]. For theWilcoxon test,
one must count the number of inversions of two samples, here for the single and double conditioned variable u1|u2 and
u1|u2,u3 . One calculates ⟨t⟩ := |Q −⟨Q ⟩p̃=p|/σ(m, n), where Q is the number of inversions calculated from the experimental
data for the variables u1|u2 and u1|u2,u3 , ⟨Q ⟩p̃=p = mn/2, and σ(m, n) =

√
mn(m + n + 1)/12 are the number of inversions

and the standard deviation, respectively, assuming that both variables have the same distribution. Thus, it is ⟨t⟩ = 1, if both
samples come from the same universe, or have the same distribution. Fig. 40 shows the measurement and its dependence
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a b

Fig. 39. Same as in Fig. 38, but for smaller values ∆r = 2.54 mm ≈ λ/3. (a) Contour plot for the single conditioned (straight line) and double conditioned
probability distribution (dashed line). Deviations between them are visible. The distance between the lines correspond to a factor 10. (b) Three cuts through
the contour plot are presented for u2 = −2σ , u2 = 0, and u2 = −2σ . It can be seen that the Markov property is not fulfilled.
Source: From [337].

a b

Fig. 40. The expectation value ⟨t⟩ of the Wilcoxon test and its dependence on the length scale differences ∆r for the longitudinal increments with the
reference scale, r1 = 14.64 mm, (a) for u3 = 0, and (b) for u3 = σ . The constant line marks the expectation value for the fulfilled Markov properties, the
dotted line is an exponential decay.
Source: From [337].

a b

Fig. 41. The as in Fig. 40, but for the transverse increments. The only differences is in the smaller Markov length.
Source: From [337].

on ∆r . For small ∆r the Markov properties are not fulfilled, whereas for larger distances the deviations are not significant
anymore. Indeed, the distance ∆r = lm, where ⟨t⟩, drops to 1 and is the Markov–Einstein length scale. This value can
be estimated by fitting an exponential function to the data and by interpreting the passage through the value 1 as the
Markov–Einstein length, as presented in Fig. 40.

The Markov properties are also fulfilled for the transverse increments, but with a smaller Markov–Einstein length; see
Fig. 41. The Markov–Einstein length varies within 20% with respect to the condition u2, but remains about constant with
respect to r . For the longitudinal increments the Markov–Einstein length lies in the range 7.4 mm < lm,l < 9.6 mm, for the
transverse increments the Markov–Einstein length lies in the range, 5.5 mm < lm,t < 6.8 mm. The ratio is lm,l/lm,t ≈ 1.4,
as it is known for the Taylor length λ [341]. We note that lm ≈ λ [29]. The analysis of the data Rλ = 550 yield analogous
results.
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Fig. 42. The dependence of the coefficientsM(1) andM(2) on the step size∆r for r = L/2. The two upper and two lower figures show, respectively, the limit
of the drift and diffusion coefficients for the longitudinal and transverse increments. The dotted lines represent the Markov length. Circles: u, v = −2σ ,
diamonds: u, v = 0, squares: u, v = 2σ .
Source: From [337].

We conclude from the results that the ‘cascade’ of the longitudinal and transverse increments can be described by a
Markov process for step sizes larger than theMarkov–Einstein length lm, which becomes important again for the estimation
of the Kramers–Moyal coefficients, as described in the next section.

6.1.4. Kramers–Moyal coefficients
The drift coefficientsD(1) and the diffusion coefficientsD(2) are calculated according to Eqs. (2.40) and (2.41) directly from

the measured data following the procedure described above and by [29,136]. The crucial point is the estimation of the limit
lim∆r→0 M(i); see Fig. 42. Only the points with ∆r > lm are used to estimate the limit. For ∆r < lm the Markov properties
are violated, while for∆r > lm the dependence ofM(i) on∆r is linear; see Fig. 42. Thus, one can use a first-order polynomial
to extrapolate to the limit, ∆r → 0. The linear dependence is the first-order approximation of the limit; see [136].

The resulting drift coefficients D(1) and diffusion coefficients D(2) are shown in Fig. 43 for the length scale r = L/2. The
drift coefficients can be approximated by a straight line with negative slope. Small deviations from this behavior are visible
for the transverse component. For the diffusion coefficient qualitative differences between both increments are visible. In
contrast to the transverse coefficient, the longitudinal coefficient is not symmetric under the reflection, u → −u. This is
compatiblewithKolmogorov’s 4/5-law,which states that the longitudinal distributions are skewed. The diffusion coefficient
can be approximated by a second-order polynomial, so we have

D(1)(α, r) = dα
1 (r)α (6.7)

D(2)(α, r) = d2(r) + dα
2 (r)α + dαα

2 (r)α2,

where α = u, v. Due to the reflection symmetry v → −v of the transverse increments, we have dv
2(r) ≡ 0.

As described earlier, the drift and diffusion coefficients are the first two coefficients in the Kramers–Moyal expansion.
We already pointed out that, according to the Pawula theorem all higher-order coefficients vanish, if the fourth-order
coefficients are zero and, thus, the expansion simplifies to a Fokker–Planck equation. In Fig. 44 the fourth-order coefficients
are plotted for r = L/2. The coefficientD(4) for the longitudinal coefficient vanisheswithin the error bars. The corresponding
transverse coefficient has a value slightly above zero. But one can estimate with the Kramers–Moyal expansion that the
contribution of this coefficient is less than one-hundredth of the diffusion term and, therefore, can be neglected.

Next, the r-dependence indicated by Eq. (6.7) is investigated. It can be estimated by fitting the approximation (6.7) to the
numerical values of the Kramers–Moyal coefficients. The results are depicted in Fig. 45 for the longitudinal (black squares)
and transverse increments (white squares). The approximates are remarkably simple, and may be represented by

D(1)
l : du1,l(r) = αu

1,l + βu
1,lr (6.8)
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Fig. 43. The Kramers–Moyal coefficients D(1) and D(2) and their dependence on the increments u and v, respectively, for r = L/2. (a) and (b) the
longitudinal, and (c) and (d) the transverse increments.
Source: From [337].

Fig. 44. The fourth-order Kramers–Moyal coefficients D(4)(u, r) and D(4)(v, r) for r = L/2. It is seen that within the error bars the longitudinal coefficient
is zero. The transverse coefficient is slightly above zero, but its contribution to the Kramers–Moyal expansion is small.
Source: From [337].

D(1)
t : dv

1,t(r) = αv
1,t + βv

1,tr + γ v
1,tr

2

D(2)
l : d2,l(r) = β2,lr, du2,l(r) = βu

2,lr, duu2,l(r) = αuu
2,l

D(2)
t : d2,t(r) = β2,tr, dvv

2,t(r) = αvv
2,t + βvv

2,tr + γ vv
2,t r

2.

Here, we denote by Xl and Xt the longitudinal and transverse quantities, respectively.

6.1.5. Integration of the Fokker–Planck equation
Let us demonstrate how the Fokker–Planck equation can describe correctly the statistics of the turbulent field. In Fig. 46

p(u, r) and p(v, r) are shown for several length scales. The results are in good agreement with the data. It is important
to also stress that the intermittency effects and the skewness can be described well. A similar calculation has been done
for the conditional distributions p(u, r|u0, r0) and p(v, r|v0, r0), starting at the integral scale with Dirac’s delta function
p(u, r = L|u0, r0 = L) = δ(u) and p(v, r = L|v0, r0 = L) = δ(v) as the initial conditions. The solutions down to r = L/2
are shown in Figs. 47 and 48 and the dependence on the initial value u0 and v0. Comparing the conditional probability
distributions in Fig. 47 with those in Fig. 48 makes it evident that the transverse statistics relaxes faster (the contour lines
are more horizontal).

On the basis of these results one concludes that the increment statistics can be well described by a Fokker–Planck
equation, for which the drift and diffusion coefficients are given by Eq. (6.8).
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a b

c d

Fig. 45. The r-dependence of the expansions of the Kramers–Moyal coefficients according to Eq. (6.7) for the longitudinal (black squares; α = u) and
transverse increments (white squares; α = v) if the notation is unique, we omit the index l or t .
Source: From [337].

a b

Fig. 46. The solution of the Fokker–Planck equation and its comparison with the data. With the initial distribution on the scale r = L, the Fokker–Planck
equation was solved numerically. The curves belong to the scales (from top to bottom) r = 131, 74, 41, 23, and 12 mm. For a better visibility the curves
are shifted by a constant factor. (a) The solution for the longitudinal, and (b) the transverse increments. In both figures the intermittency is visible, while
for the longitudinal increments the skewness can also be seen.
Source: From [337].

a b

Fig. 47. The longitudinal conditional PDFs p(u2, r = L/2|u1, r = L), calculated from r = L down to r = L/2. (a) The contour plot for the numerical solution
(dashed line) and the PDFs calculated from the data (straight line). The distance between the contour lines is ∆p = 0.05. (b) Cuts through the contour plot
for u2 = −2.5σ , 0, 2.5σ . The lines are the solution of the Fokker–Planck equation, the symbols represent the PDFs from the data.
Source: From [337].
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a b

Fig. 48. The same as in Fig. 47, but for the transverse increments. (a) The contour plot for the numerical solution (dashed line) and the PDFs calculated
from the data (straight line). The distance between the contour lines is ∆p = 0.05. (b) Cuts through the contour plot for u2 = 0. The line is the solution of
the Fokker–Planck equation, the symbols represent the PDF from the data.
Source: From [337].

D1
1 D1

2

a b

u uv
v

Fig. 49. The u- and v-dependence of the drift vector for the scale r = L/4. (a) The drift coefficient D(1)
1 , and (b) the drift coefficient D(1)

2 . Note that the
vertical axis is rotated for a better comparison between (a) and (b). Both coefficients are purely linear and depend only on one variable.
Source: From [337].

6.1.6. Joint multipoint statistics of longitudinal and transverse increments
In the preceding sectionwe presented the results of analyzing the statistics of the longitudinal and transverse increments

separately. But the separation is restrictive because the dynamics of both components is due to one velocity field and
are, therefore, connected. They cannot be separated due to the nonlinear advection term in the Navier–Stokes equation.
Therefore, let us extend the above analysis and examine the joint stochastic properties. We select both increments as one
state with the scale parameter r . The aim is to construct a Fokker–Planck equation in terms of the two variables. One can
proceed similar to the one-dimensional analysis. The main difference is that one needs much more data and must estimate
many more coefficients, because the drift coefficients is now a vector, while the diffusion coefficient is a matrix.

The verification of theMarkov properties for two variables is difficult, because onemust estimate the double conditioned
probability function for a two-dimensional process, i.e., a six-dimensional function with a finite number of data points. One
needs approximately 104 times more data points, in comparison with the one-dimensional case, if the results are to be of
similar significance. The limiting factor is the duration of themeasurement and the amount of data. But, we know separately
for both components that the Markov properties are valid. In general, if two variables have Markov properties, the joint
statistics also have Markov properties, where as the opposite is not true in general [325]. Therefore, one can assume that
the combined process is Markovian as well.

The next step is to estimate the Kramers–Moyal coefficients. First, one must calculate the approximation of the drift
vectorM(1)

i (u, v, r, ∆r) and of the diffusionmatrixM(2)
ij (u, v, r, ∆r) and their dependence on ∆r . The shape of the drift and

diffusion coefficients are shown in Figs. 49 and 50 for the length scale L/4. The drift coefficients have a simple form: they
depend only linearly on one variable; see Fig. 49. This means the process decouples in the deterministic part. The diagonal
coefficients of the diffusionmatrix are shown in Fig. 50(a) and 50(b). Roughly spoken, they consist of a curved surface shifted
upwards with a minimum at u > 0 and v = 0. The off-diagonal coefficient D(2)

12 (it is D(2)
12 ≡ D(2)

21 ) has a saddle shape; see
Fig. 50(c).

One can approximate the form of the drift and diffusion coefficients by a low-order polynomial in u and v [337]:

D(1)
1 (u, v, r) = du1(r)u (6.9)

D(1)
2 (u, v, r) = dv

2(r)v

D(2)
11 (u, v, r) = d11(r) + du11(r)u + duu11(r)u

2
+ dvv

11(r)v
2
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D2
11 D2

22 D2
12

u u uv v v

a b c

Fig. 50. The u- and v-dependence of the diffusionmatrix for the scale r = L/4. (a) The coefficientD(2)
11 , and (b) the coefficientD(2)

22 . The diagonal coefficients
are not constant, but have a parabolic form, which is more pronounced for the D(2)

22 coefficient (multiplicative noise). Both coefficients are symmetric under
reflection with respect to v → −v, but not for u → −u. (c) The saddle-formed off-diagonal coefficient.
Source: From [337].

D(2)
22 (u, v, r) = d22(r) + du22(r)u + duu22(r)u

2
+ dvv

22(r)v
2

D(2)
12 (u, v, r) = d12(r) + dv

12(r)v + duv12(r)uv.

The d-coefficients contain the r-dependence. Their lower index labels the associated Kramers–Moyal coefficient, the upper
index the order of the coefficientwith respect to u and v. In the Fokker–Planck equation, the coefficients occur symmetrically
with respect to reflection v → −v. Thus, a reflection v → −v does not change anything, whereas the symmetry is violated
for the longitudinal increment. Of course, the Kramers–Moyal coefficients can be better approximated using higher-order
polynomials in u and v, but their contributions are small and their value are not well defined at the edges of the available
data range, because high velocities are too rare to ensure a good statistics. Note, the significance of the higher-order terms
in D(1) and D(2) is considerable for the closure of Eq. (6.3), but their investigation is not addressed here.

In order to describe the statistics with the Fokker–Planck equation completely, the r-dependence of the d-coefficients
must be estimated; see Fig. 51. They can be approximated by [337],

D(1)
1 : du1(r) = αu

1 + βu
1 r (6.10)

D(1)
2 : dv

1(r) = αv
1 + βv

1 r + γ v
1 r

2

D(2)
11 : d11(r) = β11r, du11(r) = βu

11r, duu11(r) = αuu
11, dvv

11(r) = αvv
11

D(2)
22 : d22(r) = β22r, du22(r) = βu

22r, duu22(r) = αuu
22, (6.11)

dvv
22(r) = αvv

22 + βvv
22 r + γ vv

22 r
2 (6.12)

D(2)
12 : dv

12(r) = βv
12r, αuv

12 + βuv
12 r + γ uv

12 r
2.

Indeed, it must be shown that the Fokker–Planck equation, together with the coefficients (6.9) and (6.10), can reproduce
the statistics of themeasured data. Figs. 52 and 53 show the results for the experimental measured and integrated PDFs. Due
to the good agreement one can conclude that the d coefficients can be used to characterize the statistics of the longitudinal
and transverse increments.

From the above analysis it appears that the drift and diffusion coefficients contain the information of the small-scale
statistics of the turbulence. More specifically, they contain the joint statistics of the longitudinal and transverse increments,
as well as the statistics on multiscales. It was shown that in the first approximation the longitudinal and transverse drift
and diffusion coefficients can be transformed to each other by a simple rescaling, namely, by multiplying the scale of the
longitudinal increments with the factor 3/2 [337]. With this rescaling the frequently discussed issue of the differences
between the longitudinal and transverse structure functions can be explained. Moreover, it has been found that the 3/2
rescaling can be interpreted as different speed of the longitudinal and transverse cascade, and is compatiblewith the Kármán
equation [337]. Therefore, analyzing the statistics by means of a Fokker–Planck equation provides further insights in the
complexity of the cascading process.

6.2. Passive scalar

Since Kolmogorov’s pioneering work on the ‘‘turbulent cascade’’, the structure and potential universality of small-scale
turbulence, has received much attention [298,299]. As mentioned in the previous subsection, the cascade notion relates to
the transport of kinetic energy from large to small scales. Turbulent kinetic energy is injected into a flow at the largest scales
(i.e., scales related to the boundary conditions of the flow). The inherent instability of large eddies subsequently transfers
kinetic energy to smaller and smaller scales, until the smallest eddies convert their kinetic energy into internal energy by
the action of viscosity, thus ending the cascade. The length of the cascade (which can be specified in terms of the ratio of the
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a b

c d

e f

Fig. 51. The coefficients d of Eq. (6.9), which reflect the dependence of the Kramers–Moyal equation on u and v on the linear scale variable r . In parts. (a),
(b) and (c) the argument of the transversal coefficient is rescaled by the factor 2/3. The corresponding longitudinal and transverse coefficients coincide
which each other, apart from the intermittency term dvv

22 . (e) and (f) show the coefficients for the off-diagonal diffusion coefficients.
Source: From [337].

a b

Fig. 52. Solution of the Fokker–Planck equation. (a) Contour plot of the initial condition in logarithmic scale. The simulation starts at the integral length
r = Lwith a Gaussian distribution fitted to the data. (b) The contour plots in logarithm scale of the simulated probability distribution on the scale r = 2λ.
The distance between the contour lines is chosen in logarithmic scale and correspond to a factor 10. Dashed lines are the probability calculated directly
from data, the full lines are the simulation ones. The simulation reproduces well the properties of the data.
Source: From [337].

largest to smallest scales) is related to the (turbulent) Reynolds number. At high Reynolds numbers, it has been hypothesized
that the cascade may be long enough for the smallest scales to ‘‘forget’’ the initial, large scales. Consequently, small-scale
turbulencemay adopt a universal structure. In addition, should the Reynolds number be high enough for there to be a distinct
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a b

Fig. 53. Cuts through the probability distributions shown in Fig. 52. Black circles are the PDFs of the data, the straight line is the simulation and the dashed
line the initial condition at r = L. (a) The distribution and its dependence on u for v = 0. (b) The distribution and its dependence on v for u = 0. Notice
that the skewness in (a) and the intermittency for both components are well reproduced.
Source: From [337].

separation of scales between the large and small (dissipative) eddies, a range of scales that is independent of (i) the largest
scales, and (ii) the smallest scales (and, therefore, viscosity) may exist. Such a range is called the inertial subrange.

Kolmogorov predicted the inertial-range scaling behavior of the nth-order structure function to be:

⟨(ur)
n
⟩ = f (ϵ, r) ∝ rζn , (6.13)

where, from dimensional considerations,

ζn = n/3. (6.14)

ϵ is the dissipation rate of turbulent kinetic energy (which, in the inertial subrange, is equal to the spectral energy transfer
rate) and is equal to 2ν⟨sijsij⟩. sij ≡

1
2 (∂ui/∂xj + ∂uj/∂xi) is the turbulent strain rate. It has been subsequently shown that

Eq. (6.14) does not agreewith observations of turbulence, and that the deviation increases with the structure function order,
n [342,300,343,55,340,344,314]. As mentioned before, the difference is attributed to the large variations in space and time
of ϵ, a phenomenon called internal intermittency. As a result, the PDFs of ur cannot be collapsed for different r and the
observed variation of ζn with n becomes nonlinear. The relationship between ζn and n has been the focus of much study, of
which reviews are given by [55,314].

Analogous results have been obtained for passive scalar fields, whose structure functions are given by:

⟨(∆θ(rj))n⟩ = ⟨[θ(xj + rj) − θ(xj)]n⟩, (6.15)

where θ is a turbulent scalar fluctuation, and rj a separation. Obukhov [346] and Corrsin [347] extended the notions of
Kolmogorov and predicted the inertial-range scaling behavior of the nth-order structure function of a passive scalar to be:

⟨δn
⟩ = f (ϵ, ϵθ , r) ∝ rξn , (6.16)

where δ = ∆θ(r) and from dimensional considerations,

ξn = n/3. (6.17)

Here, ϵθ ≡ 2α⟨(∂θ/∂xi)2⟩ is the rate at which scalar variance is ‘smeared’ by molecular processes, and is also known as
the scalar dissipation rate. (The latter term is technically inaccurate, given that scalar variance is not dissipated, unlike the
kinetic energy.) Eq. (6.17) does not agree with observations of turbulence [348–350,345,351,352], similar to the velocity
field. The deviations from Eq. (6.17) also increase with the order n and are more significant than those observed for the
velocity field. This is attributed to the internal intermittency of the scalar field, which is stronger than that observed for the
velocity field; see [351,352] for recent reviews of turbulent passive scalars.

An alternative to studying the moments of the increments of turbulent quantities is to study their PDFs (which can
subsequently be used to calculate the structure functions). Examples of such work include that of Castaing et al. [140] and
Yakhot [353] for the velocity field and Castaing [141], and [354–356] for the passive scalar field. To further our understanding
of turbulence, the mathematics of Markov processes has been employed in studies of the PDFs of velocity differences for
various separations. The applicability of Markov processes to experimental investigations of the PDFs of ur was investigated
by [10,12].

The principal objective of this part of the review is to present theMarkovproperties of passive scalar increments produced
by amean temperature gradient in grid-generated turbulence. In addition, the Reynolds number dependence of theMarkov
properties of the scalar fields will be examined over the range 140 ≤ Rλ ≤ 582.
Results of Markovian analysis:

In [38] the details of experimental setup is given (see also Table 2). Here, the Markov properties of passive scalar
increments will be studied and compared with those of the velocity field. Analogously, scalar increments are non-
dimensionalized by σLθ =


2⟨θ2⟩—the square root of the large-scale limit of the second-order temperature structure
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Fig. 54. Verification of the Chapman–Kolmogorov equation for temperature increments with δ3 = −σLθ and δ3 = +σLθ . Solid diamonds represent
∞

−∞
p(δ1, r1|δ2, r2)p(δ2, r2|δ3, r3)dδ2 and open circles represent p(δ1, r1|δ3, r3). r1 = λθ , r2 = ℓθ/2 and r3 = ℓθ . Rλ = 582.

Source: From [38].

Table 2
Flow Parameters. See [345] for further information on their
calculation.
Source: From [38].

Rλ 140 306 582

⟨U⟩ (m/s) 3.3 3.3 7.0
Active grid mode Synchronous Random Random
x/M 62 62 62
dT/dy (K/m) 2.5 2.7 3.6
⟨u2

⟩ (m2/s2) 0.0290 0.0911 0.583
⟨v2

⟩ (m2/s2) 0.0209 0.0594 0.424
⟨θ2

⟩ (K2) 0.176 0.800 1.07
ϵ (m2/s3) 0.0418 0.0833 0.940
ϵθ (K2/s) 0.277 0.799 1.74
ℓ (m) 0.11 0.30 0.43
ℓθ (m) 0.17 0.33 0.29
λ(m) 0.013 0.016 0.012
η (mm) 0.55 0.47 0.26

function. Most results will be presented for the highest Reynolds number (Rλ = 582). Unless otherwise specified, the results
for the lower Reynolds numbers should be assumed to be consistent with those at Rλ = 582.

Similarly to the velocity field [10], one now test, (i) the Chapman–Kolmogorov equation for passive scalar increments,
and (ii) the Markovian nature of the passive scalar increments. The Chapman–Kolmogorov equation is tested for r1 =

λθ , r2 = ℓθ/2, and r3 = ℓθ . Contour plots of the conditional PDFs of scalar increments were similar to those for the
velocity field and are, therefore, not reproduced here in the interest of brevity. Cross-sections of the contour plot for fixed
δ3 are shown in Fig. 54. From these figures, the agreement between p(δ3, r3|δ1, r1) and


∞

−∞
p(δ3, r3|δ2, r2)p(δ2, r2|δ1, r1)dδ2

is found to be good. The Markovian nature of the passive scalar increments is tested by means of Chapman–Kolmogorov
equation in Fig. 55. For the given scales under consideration, there is a reasonable agreement between (δ1, r1|δ2, r2) and
(δ1, r1|δ2, r2; δ3 = 0, r3).

For smaller separations (i.e., r1 = ℓθ/2−λθ/4, r2 = ℓθ/2, and r3 = ℓθ/2+λθ/4) the same two tests are performed. The
Chapman–Kolmogorov equation is tested in Fig. 56 and theMarkov nature of the passive scalar increments tested bymeans
of the CK equation in Fig. 57. Similar to the velocity field, at the smaller scales, one observes that the Chapman–Kolmogorov
equation continues to hold, though the passive scalar increments lose the Markovian property.

For large-scale separations, the passive scalar increments exhibit Markovian properties. For smaller separations, such
properties disappear. This can alternatively be observed in Fig. 58, where the PDFs of the conditional scalar increments,
denoted by xθ and yθ , are compared for several separations ∆r .

Lastly, it is worth remarking on the different shapes of the PDFs of the passive scalar increment. Compared to the PDFs
of velocity increments, the passive scalar increment PDFs are more pointy and possess broader tails. This is a characteristic
of the higher level of internal intermittency of a turbulent passive scalar field when compared to the velocity field [351].

It is now of interest to (i) calculate the Kramers–Moyal coefficients for the passive scalar increments, and (ii) evaluate
their relative magnitudes to determine the accuracy of modeling the PDF of the scalar increments with a Fokker–Planck
equation. As was done for the velocity field, the conditional moments of the passive scalar increments, Mk(δ, r, ∆r), are
calculated. Typical results for r = ℓθ/2 and ∆r = λθ are shown in Fig. 59. Polynomial fits of the following form are applied
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Fig. 55. Verification of the Markovian nature of the temperature increments by a comparison of the conditional PDFs in CK equation with δ2 = −σLθ and
δ2 = +σLθ . Solid diamonds represent p(δ1, r1|δ2, r2; δ3 = 0, r3), and open circles represent (δ1, r1|δ2, r2). r1 = λθ , r2 = ℓθ/2, and r3 = ℓθ . Rλ = 582.
Source: From [38].

Fig. 56. Verification of the Chapman–Kolmogorov equation for temperature increments measured with a smaller separation of the scales for δ3 = −σLθ
and δ3 = +σLθ . Solid diamonds represent


∞

−∞
(δ1, r1|δ2, r2)(δ2, r2|δ3, r3)dδ2 , and open circles represent (δ1, r1|δ3, r3). r1 = ℓθ/2 − λθ/4, r2 = ℓθ/2, and

r3 = ℓθ/2 + λθ/4. Rλ = 582.
Source: From [38].

to first four conditional moments:

M1 = O1(r, ∆r) − G1(r, ∆r)δ + K1(r, ∆r)δ2
− E1(r, ∆r)δ3 (6.18)

M2 = A2(r, ∆r) + X2(r, ∆r)δ + B2(r, ∆r)δ2
+ Z2(r, ∆r)δ3

+ W2(r, ∆r)δ4 (6.19)

M3 = O3(r, ∆r) − G3(r, ∆r)δ + K3(r, ∆r)δ2
− E3(r, ∆r)δ3 (6.20)

M4 = A4(r, ∆r) + X4(r, ∆r)δ + B4(r, ∆r)δ2
+ Z4(r, ∆r)δ3

+ W4(r, ∆r)δ4. (6.21)

At first and third orders, the form of the curve fits are identical to those used for the velocity field. However, at second
and fourth order, the order of the polynomials has been increased from 2 to 4, given the results in Fig. 59, which suggests
that a polynomial of order greater than two is required.

The Kramers–Moyal coefficients, Dk(δ, r), are calculated as before — by extrapolating the values of Mk(δ, r, ∆r) to
∆r = 0, using only data for values of ∆r for which the passive scalar field exhibits Markovian properties (i.e., ∆r ≥ 0.5λ).
They take the following form [38]:

D1(δ, r) = o1(r) − γ1(r)δ + κ1(r)δ2
− ϵ1(r)δ3 (6.22)

D2(δ, r) = α2(r) + ξ2(r)δ + β2(r)δ2
+ ζ2(r)δ3

+ ω2(r)δ4 (6.23)

D3(δ, r) = o3(r) − γ3(r)δ + κ3(r)δ2
− ϵ3(r)δ3 (6.24)

D4(δ, r) = α4(r) + ξ4(r)δ + β4(r)δ2
+ ζ4(r)δ3

+ ω4(r)δ4. (6.25)

Subsequently studied was the behavior of turbulent passive scalar increments produced by the imposition of a mean
temperature gradient upon grid-generated wind tunnel turbulence. Similarly to the velocity field, the passive scalar field
(i) satisfied the Chapman–Kolmogorov equation for all scales studied herein, and (ii) satisfied for scales larger than the
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Fig. 57. Verification of the Markovian nature of the temperature increments by a comparison of the conditional PDFs in CK equation with a smaller
separation of scales for δ2 = −σLθ and δ2 = +σLθ . Solid diamonds represent P(δ1, r1|δ2, r2; δ3 = 0, r3), and open circles represent p(δ1, r1|δ2, r2).
r1 = ℓθ/2 − λθ/4, r2 = ℓθ/2, and r3 = ℓθ/2 + λθ/4. Rλ = 582.
Source: From [38].

a b

c d

Fig. 58. Comparison of p(xθ ) (diamonds) and p(yθ ) (circles) for different scale separations. r2 = ℓθ/2 for all cases. (a) ∆r = 0.1λθ , (b) ∆r = 0.2λθ ,
(c) ∆r = 0.5λθ , and (d) ∆r = 1.0λθ . Rλ = 582.
Source: From [38].

Taylormicroscale. However, in contrastwith the velocity field, itwas found that the fourth-order term in theKramers–Moyal
expansion governing passive scalar increments was notablymore significant. Consequently, all terms in the expansionmust
be retained and the PDFs of passive scalar increments cannot be modeled by a Fokker–Planck equation (see also [332,333]).
A truncation of the Kramers–Moyal expansion at finite order would lead to nonrealizable PDFs, due to emergence of regions
where the pdf is negative.

6.3. Econophysics: financial data in scale and the measurement noise

The econophysics focusses on the statistical properties of financial time series, such as stock prices, stock market indices
or currency exchange rates. In particular, the mechanism leading to the fat-tailed probability distributions of fluctuations
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Fig. 59. Conditional moments of temperature increments. (a)M1(δ, r, ∆r), (b)M2(δ, r, ∆r), (c)M3(δ, r, ∆r), and (d)M4(δ, r, ∆r). r = ℓθ/2 and∆r = λθ .
Rλ = 582.
Source: From [38].

on small time scales is still unknown. Compared to a Gaussian, the PDFs of those fluctuations express an unexpected high
probability for large fluctuations.

Fluctuations of financial time series y(t) are usually measured by means of returns, log-returns or, equivalently, by price
increments. Here, let us consider the statistics of the price increment x(τ ) over a certain time scale τ , which is defined as:

x(τ ) = y(t + τ) − y(t). (6.26)

We suppressed dependence of the price increment x(τ ) on the time t since we assume the underlying stochastic process to
be stationary.

Here, we review the application of the Markov method in scale for financial time series [39,40] and discuss how the
existence of a Markov process can be checked empirically, and how the Fokker–Planck equation can be constructed directly
from the data. Furthermore, it has been shown that how multiplicative and additive noise sources interact, leading to the
leptokurtic distributions and volatility clustering of the exchange rates. Friedrich et al. [39] considered in detail a data set
containing 106 samples of the DM / US Dollar exchange rate from the one-year period October ’92 to September ’93.

The hypothesis concerning the Markovian properties of exchange rate data immediately fixes a framework for the
analysis of the data. First, one has to give evidence of the Markovian properties according to Chapman–Kolmogorov
equation. Secondly, the evolution of conditional probability densities p(x1, τ1|x2, τ2) has to be specified on the basis of the
Fokker–Planck equation. Indeed one has to determine the conditionalmomentsMk(x, τ , ∆τ) at different scales τ for various
values of ∆τ .

Practically, it is only possible to evaluate the lowest-order coefficients. Therefore, let us restrict our analysis to the
coefficients of order one, two, and four. Approximating the limit ∆τ → 0, we obtain the Kramers–Moyal coefficients
Dk(x, τ ). For the rest of the section, prices and price increments are given in units of the standard deviation σ of y(t). For
the data set under consideration, σ is 0.064 DM.

From the frequency spectrum (Fig. 60) of the exchange rate y(t), it becomes evident that the data are dominated bywhite
noise for high frequencies (above ≈ 10−2 Hz), comparable to the noise affecting any physical measurement. The original
signal y(t) seems to be the sum of the underlying ‘‘real’’ signal s(t) and some additive white noise n(t):

y(t) = s(t) + n(t). (6.27)

The additive noise acts on the increments in a similar way. Note that this noise differs from the dynamical noise of the
Langevin equation. n(t) can be regarded as some randomness which is added separately to the dynamical stochastic cascade
process. In physics this kind of noise is known asmeasurement noise [80,81].We shouldmention that the discussed problem
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Fig. 60. Frequency spectrum of the exchange rate data y(t). For high frequencies the data are dominated by white noise.
Source: From [40].
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Fig. 61. Samples of the time series of the original exchange rate data y(t) (cirles) and the smoothed signal s(t) (full line).
Source: From [40].

of measurement noise is closely linked to the so-called Epps effect of financial data describing the decrease of correlations
toward smaller return intervals [82].

The existence of such an additive white noise dominating the small scales causes problems in the analysis, especially in
the limit ∆τ → 0 which has to be performed according to Eqs. (2.40) and (2.41). In order to avoid these problems, one can
apply a low-pass filter to the data. Each value y(t) was replaced by the weighted average of itself and its neighboring data
points, where the weighting function was chosen to be a Gaussian centered at t with a width of 44 s. Fig. 61 shows the result
s(t) of this procedure in comparison to the original data y(t).

According to Eq. (6.27), one can extract the noise n(t) by subtracting the smoothed signal from the original data y(t).
If the assumptions leading to Eq. (6.27) are correct and the algorithm used to smooth the data is an appropriate one, the
extracted n(t) should be white noise, i.e. it should be δ-correlated with zero mean.

The ratio of the mean value ⟨n(t)⟩ to the standard deviation σn of n(t) was found to be smaller than 8 · 10−5(σn =

0.0003 DM). This result justifies the assumption of a zeromean for n(t). The autocorrelation function Rn(τ ) of n(t) decreases
from 1 to 0.08 within two seconds (see Fig. 62). Compared to the temporal resolution of the data (the smallest time
step between two subsequent data points is 2 s), R(τ ) indeed decreases rapidly. However, there appear to be small but
significantly nonzero values for time delays τ ≤ 2 min, indicating that the approximation of the ‘‘real’’ signal s(t) by the
smoothed signal is insufficient. We, therefore, restrict our analysis to time delays τ larger than a certain elementary step
τmin which, from Fig. 62, we chose to be 4 min. In units of τmin, Rn(τ ) can be considered to be δ-correlated.

Fig. 63 compares the probability density functions of price increments x(τ ) calculated from the original data y(t) and the
smoothed data s(t). It becomes evident that the influence of the noise n(t) is indeed restricted to small scales. For scales
larger than τ = 2τmin the PDFs are practically identical, see also [29].

For the rest of this section, the price increments xi(τi) are (unless it ismentioned explicitly) calculated from the smoothed
data s(t).
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6.3.1. Markov properties
Now, let us present evidence that theMarkovian property holds. The data set considered here consists of 106 data points,

allowing us to verify the condition (2.25) for N = 3:

p(x1, τ1|x2, τ2; x3, τ3) = p(x1, τ1|x2, τ2). (6.28)

In Fig. 64, the contour plots of p(x1, τ1|x2, τ2) and p(x1, τ1|x2, τ2; x3 = 0, τ3) have been superposed for the scales τ1 =

τmin = 4min, τ2 = 2τmin and τ3 = 3τmin. The proximity of corresponding contour lines yields evidence for the validity of
Eq. (6.28) for the chosen set of scales. Additionally, two cuts through the conditional probability densities are provided for
fixed values of x2.

Fig. 65 shows the same plots for a different set of scales: τ1 = 1 h, τ2 = τ1 + τmin and τ3 = τ1 + 2τmin. Again, one finds
a good agreement between corresponding contour lines.

Similar results were obtained for several other sets of scales chosen from the interval τmin ≤ τ1 ≤ 2h, with ∆τ =

τ2 − τ1 = τ3 − τ2 ranging from τmin to 3τmin. Based on these result, one concludes that the price increments of exchange
rate data obey a Markov process for the range of scales under consideration, i.e. for scales and differences of scales larger
than τmin.

6.3.2. Kramers–Moyal coefficients
According to Eqs. (2.40) and (2.41), the coefficients Mk(x, τ , ∆τ) can be calculated from the joint probability density

functions. These joint PDFs p(x̃, τ −∆τx, τ ) are easily obtained from the data by counting the numberN(x̃, x) of occurrences
of the two increments x̃ and x. Then the limit ∆τ → 0 has to be performed next in order to obtain the Kramers–Moyal
coefficients. Fig. 66 shows the coefficient M2(x, τ , ∆τ) for exemplarily chosen fixed values of x and τ as a function of ∆τ .
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Throughout the interval τmin ≤ ∆τ ≤ 3τmin, the dependence of M2 on ∆τ turns out to be linear. For values of τ < τmin/2,
the values deviate from that linear behavior. It is interesting to note that the range of scales where those deviations begin
is identical with the range of scales for which the autocorrelation function of the reconstructed additive noise n(t) has
nonzero values (see Fig. 62). The limit ∆τ → 0 is therefore performed by fitting a straight line to the Mn in the interval
τmin ≤ ∆τ ≤ 2τmin, thus avoiding problems with the values for ∆τ ≤ τmin/2 (see Fig. 66).

Fig. 66 also displays the coefficient M(y)
2 , which is obtained when instead of the smoothed signal s(t) the original data

y(t) is used to calculate the coefficientsMk. In the presence of additive white noise, the values ofM(y)
2 diverge as ∆τ goes to

zero. The limit ∆τ → 0 cannot be performed in this case. Since the coefficientsMk are nothing but conditional moments of
the increments, the reason for this behavior can easily be understood by expressing the second moment of the increment
of y(t) in terms of s(t) and n(t). Using Eq. (6.27), one obtains:

⟨( y(t + τ) − y(t) )2⟩ = ⟨(s(t + τ) + n(t + τ) − s(t) − n(t))2⟩

= ⟨( s(t + τ) − s(t))2 ⟩ + 2⟨n2
⟩. (6.29)

Due to the additive nature of the white noise n, the additional constant term 2⟨n2
⟩ arises which does not depend on the

scale τ . Similar terms also arise for the conditional moments Mk when y(t) is used instead of s(t). Dividing the conditional
moments of the increment by ∆τ according to Eqs. (2.40) and (2.41) thus leads to the diverging behavior ofM(y)

k in the limit
∆τ → 0 as shown in (Fig. 66) (see also [80]).
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Fig. 66. The coefficientM2(x, τ , ∆τ) as a function of∆τ for x = 0.05σ and τ = 15min (full circles). (a) logarithmic scale, (b) linear scale. For τ ≥ τmin,M2
is a linear function of ∆τ and can thus be extrapolated using a linear fit in the interval τmin ≤ ∆τ ≤ 2τmin (full line). The open circles represent the results
forM2 for the same values of x and τ when instead of the smoothed data s(t) the original data y(t) are used. The presence of additive white noise leads to
diverging values forM(y)

2 as ∆τ goes to zero.
Source: From [40].
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When the smoothed signal s(t) is used to calculate the coefficients Mk, the linear dependence of Mk(x, τ , ∆τ) on ∆τ is
found to hold for k = 1 and 2, several scales τ and all values of x. This enables us to calculate the coefficients D(1)(x, τ ) and
D(2)(x, τ ) from theMk using themethod of linear extrapolation described above. Fig. 67 shows the results forD(1) andD(2) as
a function of the price increment x at several scales τ . Both coefficients exhibit simple dependences on the price increment.
While D(1) is linear in x, D(2) can be approximated by a polynomial of degree two where the linear term is zero:

D(1)(x, τ ) = − γ (τ) x,

D(2)(x, τ ) = α(τ) + β(τ) x2. (6.30)

Eq. (6.30) turns out to describe the dependences of the coefficients D(k) on x for all scales τ up to two hours (see Fig. 67).
For larger scales, the statistics of the data are too poor to allow for a proper calculation of the coefficientsMk, which results in
considerable scatter ofD(1) andD(2) (as exemplarily shown for τ = 12 h in Fig. 67). Fitting theD(k)(x, τ ) by straight lines and
parabolas, respectively, therefore yields values for γ (τ), α(τ) and β(τ)which scatter considerably andwhich do not exhibit
a well-defined functional dependence on the scale τ . However, what can be concluded from the analysis of the coefficients
D(k) is that, the Kramers–Moyal coefficients are linear and quadratic functions of the price increment, respectively, with
the coefficients depending on the scale τ . According to the Pawula theorem, it is of importance to estimate the fourth-order
coefficient and to decidewhether itmay be neglected. Fig. 68 shows the coefficientM4(x, τ , ∆τ) for fixed values of x and τ as
a function of∆τ . Again, we find a linear dependence of the coefficient on∆τ for∆τ ≥ τmin. But, whereasM2(∆τ) increases
as ∆τ goes to zero,M4 decreases. Furthermore, the linear extrapolation yields a value for D4 which is small compared to the
values ofM4 for τmin ≤ τ ≤ 2τmin. This is a first hint thatM4 tends to zero in the limit ∆τ → 0.

6.3.3. Consistency checks
The results and assumptions of the preceding sections lead to Fokker–Planck equations for the PDF p(x, τ ) and the

conditional PDF p(x, τ |x0, τ0), respectively. The coefficients D(1) and D(2) which completely determine these equations
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were estimated from the data. In order to test this result, one can compare the (numerical) solution of the Fokker–Planck
equation with the distributions obtained directly from the data. The algorithm used for the numerical iteration is based
on the approximative solution of the Fokker–Planck equation for small steps ∆τ . According to [14], the conditional PDF
p(x1, τ0−∆τ |x0, τ0) is, for small∆τ and arbitraryD(1) andD(2), a Gaussian distribution in x1 withmean value x0−D(1)∆τ and
standard deviation

√
2D(2)∆τ . In order to obtain the conditional densities for larger steps, we use the Chapman–Kolmogorov

equation

p(x2, τ0 − 2∆τ |x0, τ0) =

∫
+∞

−∞

p(x2, τ0 − 2∆τ |x1, τ0 − ∆τ)p(x1, τ0 − ∆τ |x0, τ0)dx1. (6.31)

Eq. (6.31) is a direct consequence of the Markov condition. Iterating this procedure, we finally obtain the conditional PDF
p(x, τ0 − n∆τ |x0, τ0). Multiplying with p(x0, τ0) and integrating with respect to x0 yields the PDF p(x, τ0 − n∆τ).

Fig. 69, which compares the solutions of the Fokker–Planck equation for the PDF p(x, τ ) with the empirically estimated
PDFs, proves that the Fokker–Planck equation accurately describes the evolution of p(x, τ ) in τ over the range 4 min ≤ τ ≤

12 h.
As mentioned above, the Fokker–Planck equation also governs the conditional PDF p(x, τ |x0, τ0). As a further test of our

results, we calculated the solutions of the Fokker–Planck equation. Fig. 70 shows the result for τ0 = 1 h and τ = 0.5 h, again
in comparison with empirical data. Taking into account the various uncertainties and assumptions in the determination of
the coefficients D(1) and D(2), the agreement between the solution of Fokker–Planck equation and the data is remarkably
good.

The purpose of the this section was to show how the mathematical framework of Markov processes can be applied to
the analysis of empirical high frequency exchange rate data. Within the limitations due to the finite number of samples, one
was able to verify the Markovian properties of the price increment for time delays τ larger than τmin = 4min. Furthermore,
one obtained estimates for the Kramers–Moyal coefficients D(k)(x, τ ) and found hints that the fourth-order coefficient D(4)

is zero. The comparison of the solutions of the resulting Fokker–Planck equations with the empirical distributions strongly
supports our results for D(1) and D(2) [39].

6.4. Seismic time series

There are many known precursors to impending earthquakes, ranging from peculiar behavior of animals, to thermal
radiation from the earth. The challenge then is how to analyze seismic data in order to understand the precursors and their
implications for an impending earthquake, which may then be used for developing and setting up new quantities as alerts
for the earthquakes.

There are currently a large number of stations around the world that perform high quality measurements for seismic
activities. Such data are usually viewed as examples of complex stochastic time series, and can be analyzed by various
methods. Fig. 71 show the time series of earth velocity which is detected by broad-band station, and velocity in turbulent
media. It is evident that both time series have very complex fluctuations and behavior.

Historically, understanding the phenomena that lead to large earthquakes entails having the ability to accurately
analyze such time series and understanding their nature [357–360,53,54]. Several concepts and ideas have been advanced
over the past decades to explain certain aspects of earthquakes and the associated seismic time series, like the
Gutenberg–Richter [361] law for the number of earthquakes with a magnitude greater than a given value M , to the Omori
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Fig. 69. Comparison of the numerical solutions of the Fokker–Planck equation (solid lines) for the PDFs p(x, τ ) with the PDFs obtained directly from the
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(dashed line) and used as initial condition for the iteration of the Fokker–Planck equation. Curves are shifted in vertical direction for clarity of presentation.
Source: From [40].

law [362] for the distribution of the aftershocks, or the Bak–Tang concept of self-organized criticality [363]. Furthermore
seismic data belong to the much larger class of stochastic time series, the analysis of which has been the subject of much
research over the past years. In particular, there has been much recent interest in investigating the precursors to and the
predictability of extreme increments in a time series [364,365].

Numerous papers have reported that large events are preceded by anomalous trends of seismic activity both in time
and space. Several reports also indicate that seismic activity increases as an inverse power of the time to the main event
(sometimes referred to as an inverse Omori law for relatively short time spans), while others document a quiescence, or
even contest the existence of such anomalies at all [357,359,248]. If such anomalies can be analyzed and understood, then
one might be able to forecast future large events.

There are two schools of thought on the length of the time period over which the anomalies occur and accumulate.
One school believes that the anomalies occur within days to weeks before the main shock, but probably not much earlier
[366,367], and that the spatial precursory patterns develop at short distances from impending large earthquakes. Proponents
of this school look for the precursory patterns in the immediate vicinity of the mainshock, i.e., within distances from the
epicenter that are on the order of, or somewhat larger than, the length of the main shock rupture.

The second school believes that the anomalies may occur up to decades before large earthquakes, and at distances much
larger than the length of the main shock rupture, a concept closely linked to the theory of critical phenomena [357,359,368]
whichwas advocated [357,359,368] as early as 1964with a report [358] on the pre-monitory increase in the total area of the
ruptures in the earthquake sources in a medium magnitude range, documenting the existence of long-range correlations
in the precursors (over 10 seismic source lengths) with worldwide similarity. More recently, Knopoff et al. [369] reported
on the existence of long-range spatial correlations in the increase of medium-range magnitude seismicity prior to large
earthquakes in California.

Sornette and Sornette [370] proposed an observable consequence of the critical point model of Allègre et al. [371] with
the goal of verifying the proposed scaling laws of rupture. Almost simultaneously, but following apparently an independent
line of thought, Voight [372,373] introduced the idea of a time-to-failure analysis in the form of an empirical second-order
nonlinear differential equation, which for certain values of the parameters would lead to a time-to-failure power law, in
the form of an inverse Omori law. This failure was used and tested later for predicting volcanic eruptions. Then, Sykes and
Jaumé [374] performed the first empirical study to quantify with a specific law an acceleration of seismicity prior to large
earthquakes. They used an exponential law to describe the acceleration, and did not use or discuss the concept of a critical
earthquake. Bufe and Varnes [375] re-introduced a time-to-failure power law to model the observed accelerated seismicity
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Fig. 70. Comparison of the numerical solution of the Fokker–Planck equation for the conditional PDF p(x, τ |x0, τ0) with the empirical data. (a) Contour
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Source: From [40].

quantified by the so-called cumulative Benioff strain. Their justification of the power lawwas amechanicalmodel ofmaterial
damage. They neither referred to nor discussed the concept of a critical earthquake.

Sornette and Sammis [227] were the first to reinterpret the work of Bufe and Varnes [375], and all the previous ones
reporting accelerated seismicity, within a model in which the occurrence of large earthquakes is viewed as a critical
point phenomenon in the sense of the statistical physics framework of critical phase transitions. Their model generalized
significantly the previous works in that the proposed critical point theory did not rely on an irreversible fracture process,
but invoked a more general self-organization of the stress field prior to large earthquakes. Moreover, using insights from
the critical phenomena, Sornette and Sammis [227] generalized the power-law description of the accelerated seismicity by
considering complex scaling exponents which result in log-periodic corrections to the scaling [227,376–378,225,379].

Such a generalized power law with log-periodic corrections was shown in [230] to describe the increase in the energy
that rock releases as it undergoes fracturing. These ideas were further developed by Huang et al. [380]. Empirical evidence
for these concepts was provided by Bowman et al., [381] who showed that large earthquakes in California with magnitudes
larger than 6.5 are systematically preceded by a power-law acceleration of seismic activity in time over several decades, in a
spatial domain about 10–20 times larger than the impending rupture length (i.e., of the order of a few hundred kilometers).
The large event can, therefore, be viewed as a temporal singularity in the seismic history time series. Such a theoretical
framework implies that a large event results from the collective behavior and accumulation of many previous smaller-sized
events. Similar analysis was reported by Brehm and Braile [382] for other earthquakes.
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Fig. 71. (a) Time series of Earth velocity fluctuations and (b) velocity of turbulent fluid.

In the critical point approach to earthquakes, as the stress on rock increases, micro-ruptures develop that redistribute the
stress and generate fluctuations in it. As damage accumulates, the fluctuations become spatially and temporally correlated,
resulting in a larger number of significantly stressed large domains. The correlations accelerate the spatial smoothing of
the fluctuations, culminating in a rupture with a size on the order of the system’s size, and representing the final state in
which earthquakes occur. Numerical and empirical evidence for this picture indicates that, similar to critical phenomena,
the correlation length of the stress-field fluctuations increases significantly before a large earthquake. In this vain, Zoller and
Hainzl [383–385], recently performed novel and systematic spatiotemporal tests of the critical point hypothesis for large
earthquakes based on the quantification of the predictive power of both the predicted accelerating moment release and the
growth of the spatial correlation length, hence providing fresh support to the concept.

RecentlyManshour et al., [53,54] analyzed the fluctuations in the time series for the Earth vertical velocity and have found
that far from an earthquake the fat tails of the non-Gaussian probability density function (PDF) of the detrended increments
of the series exhibits a behaviorwhich is reminiscent of the cascading process in hydrodynamic turbulence. As an earthquake
is approached, the shape of the fat tails manifests significant changes, exhibiting a transition from the non-Gaussian PDF
to a scale-invariant behavior. The transition to the scale-invariant behavior is characterized by the change in the Castaing
parameter λ2

s , which is related to the diffusion coefficient D(2) (see Section 4), of the time series. The typical time scale over
which the PDF undergoes the transition is of the order of 5–10 h before an earthquake. Thus, the phase transition may be
used for risk analysis of impending earthquakes.

Let us begin with the time series for a large earthquake with magnitudeM = 7.1, that had occurred on May 21, 2003, in
Oran-Argel and detected in Ibiza (Balearic Islands — Spain). The data is divided into two parts: (i) data set (a) representing
the background fluctuations far from the time of the earthquake, and (ii) data set (b) close (less than 5 h) to the earthquake.

The data are first detrended in order to remove the possible trends in the time series x(t) ≡ Vz(t). To do so, x(t) is
divided into semi-overlapping subintervals [1 + s(k − 1), s(k + 1)] of length 2 s and labeled by k ≥ 1. x(t) is then fitted
to a third-order polynomial to detrend the original series in the corresponding time window. The detrended increments on
scale s are defined by Zs(t) = x∗(t + s) − x∗(t), where t ∈ [1 + s(k − 1), sk], with x∗(t) being the detrended series, i.e., the
deviation of x(t) from its fitted value.
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To fit the increments’ PDF to Eq. (4.20), one can estimate the variance λ2
s (s), using the least squares method, with the

error bars estimated by the goodness of the fit method. Deviation of λ2
s (s) from zero is a possible indicator of non-Gaussian

statistics. As shown in Fig. 72, one finds an accurate parametrization of the PDFs by λ2
s (s) for both data sets. Moreover, the

PDF of Zs for the data set (a) becomes essentially Gaussian as s increases to 800 ms, whereas it deviates from the Gaussian
distribution for the data set (b).

The scale dependence of the parameter λ2
s of the PDF is shown in Fig. 73. For the data set (a) of theM = 7.1 earthquake,

shown in Fig. 73(a), and times 200 ms < s < 500 ms, a logarithmic decay, λ2
s ∝ log s, is obtained. For the data set (b), the

logarithmic regime extends to 300 ms < s < 2000 ms. Fig. 73(b) presents similar behavior for the M = 6.1 earthquake
(the 2004, M = 6.1 event in Alhucemas—Spain). Moreover, the PDF of Zs for the data set (a) becomes essentially Gaussian
as s increases to 800 ms (λ2

s → 0), whereas it deviates from the Gaussian distribution for the data set (II). The time scale
s = 800ms forλ2

s within amovingwindowwas estimated by the plot ofλ2
s vs. s for the data set (a) (background fluctuations),

and selecting s such that λs → 0.
The importance of the results shown in Fig. 73 is that, they indicate that the increments’ PDFs for s > 2000 ms and

s > 1500 ms are almost Gaussian (λ2
s → 0) for the M = 7.1 and M = 6.1 earthquakes [for the data set (b)], respectively.

Transforming the time scales to length scales via the velocity of the elastic waves in Earth, ∼ 5000 m/s, the corresponding
length scales are about 10 and 7.5 km, for the same earthquakes, respectively, implying that larger earthquakes have larger
characteristic length scales, and that for the M = 6.1 event the active part in the fault is smaller. As one moves down the
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Fig. 73. Scale dependence of λ2
s vs log s. (a) The M = 7.1 event, far from [data set (a)] and close to [data set (b)] the earthquake. For the data set (a) and

s > 700 ms, λ2
s → 0, implying that the increments’ PDF is Gaussian, but for the data set (b) λ2

s deviates strongly from 0 for 700 ms < s < 1500 ms.
(b) Same as in (a), but for theM = 6.1 event. When λs → 0 the error bars are about the same size as the symbols.
Source: From [53].

cascade process from the large to small scales, one expects the statistics to increasingly deviate from Gaussianity, in order
to arrive at Eq. (4.20). Note that, a non-Gaussian PDF with fat tails on small scales indicates an increased probability of
occurrence of short-time extreme seismic fluctuations.

It is shown that this analysis may be used as a new precursor for detecting an impending earthquake. A window
containing one hour of data is selected and moved with ∆t = 15 min to determine the temporal dependence of λ2

s . Guided
by Fig. 7, the local temporal variations of λ2

s for s = 800 ms are investigated. According to Fig. 73, for s ≃ 800 ms, the
difference between the values of λ2 is large enough for the background data and the data set near the earthquakes. Hence,
such a time scalemay be used as the characteristic time for the dynamics of the non-Gaussian indicator λ2

s . Fig. 74(b) and (d)
display a well-pronounced, systematic increase in λ2

s as the earthquakes are approached. Taking into account the estimated
error of λ2

s for the background fluctuations in Fig. 74, we see that about 7 and 5 h before the earthquakes values of λ2
s are

larger, by more than two standard deviations, than those for the background.
Due to the attenuation of elastic waves in Earth [386–389], stations that are far from an earthquake epicenter cannot

provide any clue to the occurrence of the earthquakes. It is checked for several earthquakes. Shown in Fig. 75 are the results
for the M = 5.4 California earthquake, occurred at (40.837 N, 123.499 W). The station at a distance d ≃ 128 km from the
epicenter does provide an alert of about 3 h for the earthquake, whereas that at d ≃ 400 km does not.

They also analyzed several other earthquakes of various magnitudes. It is examined that for events with M ≤ 5 the
increase in λ2

s is not large, even if the data are collected in stations as close as 100 km from the epicenters. When the data
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a
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Fig. 74. The local temporal dependence of λ2
s and the flatness for s = 800 ms, over a one-hour period, for the M = 7.1 and M = 6.1 events, indicating a

gradual, systematic increase on approaching the earthquakes.
Source: From [53].

for large earthquakes in Pakistan and Iran were analyzed, they exhibited the same types of trends as those presented above,
for the time variations of λ2

s close to the earthquakes. For example, for theM = 7.6 earthquake that occurred on August 10,
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a
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c

Fig. 75. (a) The data for the M = 5.4 earthquake in California. (b) and (c) Show the local temporal dependence of λ2
s for s = 500 ms, collected at stations

with a distance d from the epicenter. The station at d = 128 km provides the alert, whereas the other station does not.
Source: From [53].

2005, in Pakistan, the transition in the value of λ2
s occurred about 10 h before the event, and for the M = 6.3 earthquake

that occurred in northern Iran on May 28, 2004, it happened about 4 h before the earthquake.
The same transition in earthquakes in Algeria, California, China, Indonesia, Iran, Japan, Pakistan, Peru, Spain, and Italy has

been observed and reported in [54].
In summary, the temporal dependence of the fat tails of the PDF of the increments of the vertical velocity Vz(t) of Earth,

collected at broad-band stations near earthquakes’ epicenters, exhibits a gradual, systematic increase in the probability of
the appearance of large values on approaching a large or moderate earthquake, which is interpreted as an alert for the
earthquake. To estimate the alert time one must first estimate the time scale s for moving λ2

s by plotting it vs. s for the data
set (a), and selecting s such that λ2

→ 0. On this scale the difference between λ2
s for the data sets (a) and (b) will be large

enough to yield ameaningful alert for the earthquake. Onemust also estimate λ2
s or the flatness in somewindows andmove

it over the time series, in order to observe its variations with the time [53,54].

7. Conclusions and outlook

The description of complex systems on the basis of stochastic processes, which include nonlinear dynamics, seems to be
a promising approach for the future. The challenge will be to extend the understanding to more complex processes, such as
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the Lévy processes, processes with no white noise, or higher-dimensional processes, to name but a few. As has been shown
in this review, for these problems it should be possible to derive from precise mathematical results general methods of data
series analysis.

Besides the further improvement of the method, we are convinced that there is still a wide range of further applications.
Advanced sensor techniques enable scientists to collect huge data setsmeasuredwith high precision. Based on the stochastic
approach we have presented here, the question is no longer how to invest much efforts into noise reduction but, to the
contrary, the involved noise can help one to derive a better characterization and, thus, a better understanding of the system
considered. Thus, there are many applications in the inanimate and the animate world, ranging from technical applications
over socio-econo systems to biomedical applications. An interesting feature will be the extraction of higher correlation
aspects, such as the question of the cause and effect chain, which may be unfolded by asymmetric determinism and the
reconstructed noise terms from data.

It would be interesting to extend the methods of data analysis reviewed in the present contribution to anomalous
diffusion processes, which have been reviewed in [390–393]. Recently, continuous representations of Lévy flights have been
discussed [394] as well as certain generalized Langevin equations for anomalous diffusion have been derived [395–399].
However, it should be noticed that these processes are, in general, non-Markovian and, therefore, multiple time correlations
have to be considered as well [400–403]. It would be interesting to extend the tools discussed in the present review to this
class of stochastic processes.
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