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Chapter 8

Potential Energy and
Conservation of Energy

v 8.01 Distinguish a conservative force from a
nonconservative force.

v 8.02 For a particle moving between two points,
identify that the work done by a conservative force
does not depend on which path the particle takes.

v 8.03 Calculate the gravitational potential energy of
a particle (or, more properly, a particle-Earth
system).

ate the elastic potential




What |s Physics?
v Potential Energy U

Potential energy is energy that can be
assoclated with the configuration

(arrangement) of a system of objects
that exert forces on one another.
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Conservative and non-
conservative forces

Gravity and friction forces




Potential Energy

The potential energy change is the work done
against the conservative force




Work and Potential Energy

Potential energy function:




Work In closed loop

Consider the work done in going from point rl to point
r2, W12. If we go, now, from point r2 to rl, we have

W21 = —W12 since the total work
W12 + W21 =(U2—-U1) + (Ul —U2) =

W12+W21:/ F-dr+ F .dr

r1

W12—|‘W21=%F dr =0
F is a conservative force if
Its integral cover any closed
e . (a)




Work In closed loop

F 1s a conservative force If its integral cover any
closed path is zero.

$F-dif =0 (conservative force)




Non-conservative Force

path 2

iicion = [ F-dr = [ Fodx=-uNs =-uNAx<0
path 1

path 1

Wi

= [Fdi= [ Fdc=-uNs, <0.
piz J;z KR So > 81




Determining Potential
Energy Values

.\‘[
AU = —f F(x) dx.

M

_ _du
dU = —F(z)de F=—"7

Freedom in choosing the origin

- U.---> U+ C(constant) F-----> F




Gravitational Potential

Energy
F = —mgl%
U(z) = — [, (—mg)dz = mgz
P dU (2) — g

dz



Elastic Potential Energy
F=—kx

Xy Xy Ny
AU = ——f (—kx)dx = kj X dx = %k[f] .
AU = 1kx3 — Tkx?.

U(x) = %kx2 (elastic potential energy).

- F, = dU (x) = —kx ‘
dx




Conservation of Mechanical
Energy

W=-AU=K; - K; p




all potential
energy
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V=4+Voax

All kinetic energy

v=0 =0
Al potential The total energy Al potential
energy el energy
(it is conserved).
U K U K
(2 (c)

(d)

I All kinetic energy

U K
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Before the spring is
compressed, there is no
energy in the spring-block
system.

The spring is compressed by a
maximum amount, and the
block is held steady; there is
clastc potennal energy in the
system and no kinetic energy.

After the block is released,
the elastic potendal energy in
the system decreases and the
kinedc energy increases.

After the block loses contact
with the spring, the total

energy of the system is kinetic
energy.
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Reading a potential Energy
Curve
W=-AU=K; — K;

—(UI—U,,) =Kf—Ki
Ki+U;=Kj;+Uj = Enech = Constant

I Flx) = — dgix) (one-dimensional motion), l



Elastic potential curve
Turning Points: K=0 E=U(x), &; s = turning

points
U(x) = %—k x. (13.6.4)
F=-4U& -i(lkxz) -—kx. (13.6.5) U(x)
dx dx\2
the potential energy function for the spring force as function of x
withU(x, =0) = O (the units are arbitrary).
4 U(X)
3
E E=1/2kA2 I\\% i/l
' A ) 1
—X X
. X max max




Potential Curve

Extremums of potentials:




Stability analysis

neutral equilibrium UGx)
unstable equilibrium
B
stable equilibrium A G
C F
X
d*U(z) E
= |Z = Xyt =0 D
d2U(;,;) %
dx?2 |:L' = Tept < 0
d*U(z)

T3 T =Tegy >0
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U (1), Epee (D The flat line shows a given value of

N W e Ot
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the total mechanical energy Eqc.

/Em=5.o ]

U(x)

U (D), Epec ()

- N L W

X X2 X3 Xy X (d)

— At this position, K is zero (a turning point).
The particle cannot go farther to the left.

— At this position, K is greatest and
the particle is moving the fastest.

/Emec =501

K=5.0Jat x, AN
/ <
K=10Jat x> x;
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The difference between the total energy
and the potential energy is the

/-b;m =501

U(x) kinetic energy K.

Z

X

U (3), Epec (3)

N W & Ot O
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X3 X4 X

For either of these three choices for Eqq,
the particle is trapped (cannot escape
left or right).




Example

Potential vs. Force

T —



Example

The potential energy of an object is given by
U(x) = 5x% —4x3

where U is in joules and x is in metres.

(i) What is the force, F'(x), acting on the object?
(ii) Determine the positions where the object is in equilibrium and state
whether they are stable or unstable.
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Example

U(x) = —2z% + z*

(i) What is the force, F'(x), acting on the object?
(ii) Determine the positions where the object is in equilibrium and state
whether they are stable or unstable.
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Example

A particle of mass m moves under the influence of a
potential energy

a
X) = =+ b
U(x) . X

where a and b are positive constants and the particle is
restricted to the region x > 0. Find a point of equilibrium
for the particle and demonstrate that it 1s stable.
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Example

The potential energy associated with the force between two neutral atoms in a molecule can be modeled by the

Lennard—Jones potential energy function:
- (5 (]

where x is the separation of the atoms. The function U(x) contains two parameters ¢ and € that are determined from
experiments. Sample values for the interaction between two atoms in a molecule are ¢ = 0.263 nm and € = 1.51 X 10-22].
Using a spreadsheet or similar tool, graph this function and find the most likely distance between the two atoms.

Lennard Jones

strong repulsive
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" separation at G 12 o 6
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Analyze Stable equilibrium exists for a separation distance at which the potential energy of the system of two atoms (the

molecule) is a minimum.

Take the derivative of the function U(x):

Minimize the function U(x) by setting its derivative
equal to zero:

Evaluate x_, the equilibrium separation of the two
atoms in the molecule:

We graph the Lennard—Jones function on both sides
of this critical value to create our energy diagram as
shown in Figure 7.22.

Finalize Notice that U(x) is extremely large when the
atoms are very close together, is a minimum when
the atoms are at their critical separation, and then
increases again as the atoms move apart. When U(x) is
a minimum, the atoms are in stable equilibrium, indi-
cating that the most likely separation between them
occurs at this point.

(o) ()] - o

12
4e[ 120'

S0 =@
X = (2)"%(0.268 nm) = 2.95 X 107" m

U(10-2])

il

x (107 %m)

20 L

Flgure7.22 (Example 7.9) Potential energy curve associated
with a molecule. The distance xis the separation between the two
atoms making up the molecule.




Example

A 2.00 kg particle moves along an x axis in one-dimensional
motion while a conservative force along that axis acts on it.
The potential energy U(x) associated with the force is plot-
ted in Fig. 8-10a. That is, if the particle were placed at any
position between x = 0 and x = 7.00 m, it would have the
plotted value of U. At x = 6.5 m, the particle has velocity
vo = (—4.00 m/s)i.

(a) From Fig. 8-10a, determine the particle’s speed at
x; =4.5m.

(b) Where is the particle’s turning point located?

(c) Evaluate the force acting on the particle when it is in the
region |9m <x <4.0m.

Kinetic energy is the difference
between the total energy and

the potential energy.
J




Calculations: Atx = 6.5 m,the particle has kinetic energy
K, = 3mv} = 3(2.00 kg)(4.00 m/s)?
=16.01J.

Because the potential energy there is U = 0, the mechanical
energy is

E..=K, + U =160J+0=1601.

This value for E,. is plotted as a horizontal line in Fig. 8-10a.
From that figure we see that at x = 4.5 m, the potential

energy is U; = 7.0 J. The kinetic energy K, is the difference
between E.. and U, :

Ki=En.—U; =160 -701=901.

Because K; = 3mv?}, we find
v, =3.0 m/s. (Answer)




The turning point is where the force momentarily stops and
then reverses the particle’s motion. That is, it is where the
particle momentarily has v = 0 and thus K = 0.

Calculations: Because K is the difference between
Erec and U, we want the point in Fig. 8-10a where the plot of
U rises to meet the horizontal line of E,., as shown in Fig.
8-10b. Because the plot of U is a straight line in Fig. 8-10b,
we can draw nested right triangles as shown and then write
the proportionality of distances

16—70 20-170
d T 40-10"

which gives us d = 2.08 m. Thus, the turning point is at
x=40m—-—d=19m. (Answer)

(c) Evaluate the force acting on the particle when it is in the
region1.9m < x <4.0m.

16_\ L Bpec 167

Kinetic energy is the difference
between the total energy and
the potential energy.

U
~1
I
‘/4
&

U
20
Turning point
16 —
The kinetic energy is zero
at the turning point (the
particle speed is zero).
7L x (m)
1 it
—d—

(8)
Figure 8-10 (a) A plot of potential energy U versus position x.

(b) A section of the plot used to find where the particle turns
around.

The force is given by Eq. 8-22 (F(x) = —dU(x)/dx): The force
is equal to the negative of the slope on a graph of U(x).

Calculations: For the graph of Fig. 8-10b, we see that for
the range 1.0 m < x < 4.0 m the force is

20 —-701]

" 10m — 40m

= 43N. (Answer)




Two Dimensional Potentials

1 1
U(r) = Sk r? =Sk (z° + %)







Saddle Point




Energy Landscape




fluctuations :

metastable state




Example

Example: A particle of mass m, moving in the x-direction, is acting on by a potential

{ 3 2
U(x) = -U,l( x)

_Hla

} (10)

xl

where U, and x, are positive constants and U(0) =0.

a) Sketch U(x)/U, as a function of x/x,.

b) Find the points where the force on the particle is zero. Classify them as stable or unstable.
Calculate the value of U(x)/U, at these equilibrium points.

c) For energies E that lies in 0 < E <(4/27)U, find an equation whose solution yields the
turning points along the x-axis about which the particle will undergo periodic motion.

d) Suppose E =(4/27)U, and that the particle starts at x =0 with speed v,. Find v, .







b) The force on the particle is zero at the minimum of the potential which occurs at

dU ((3Y, (2))
F(x)-——(x)-Ull F x’- )x}-o (11)
which becomes
x*=(2x,/3)x. (12)

We can solve Eq. (12) for the extrema. This has two solutions
x=(2x,/3) and x=0. (13)

The second derivative is given by

Vo[ 2)

J x - L JJ . (14)
X

Evaluating the second derivative at x = (2x, /3) yields a negative quantity

‘Zf(x-(len))- U ((6)2x _

) - 2 (15)

=57




indicating the solution x = (2x, /3) represents a local maximum and hence is an unstable point.
At x = (2x,/3) , the potential energy is given by the value U((2x, /3)) = (4/27)U, .

Evaluating the second derivative at x = 0 yields a positive quantity

o ) - S

oy X

indicating the solution x = 0 represents a local minimum and is a stable point. At the local
minimum, x = 0, the potential energy U(0)=0.




c¢) Because the kinetic energy K(x) = E - U(x) > 0 must be always be positive, for energies in
the range of

U(0)=0< E <U(2x, /3)-% (17)

the particle will undergo periodic motion, between the values x, < x <x, <2x, /3, where x  and
x, are the turning points and are solutions to the equation

=

l 1

(12 (x)')
E= U(x)--U,l x— L—JJ (18)

U,
For E>U(2x,/3)= 7 , Eq. (18) has only one solution x_ and for all values of x > x_

the kinetic energy K(x) = E - U(x) > 0 which means that the particle can “escape” to
infinity but can never enter the region x < x .

For E <U(0) = 0 , the kinetic energy is negative for all values of x i.e.
K(x)=E-U(x)<0; - <x<+o. All regions of space are forbidden.




d) If the particle has speed v, at x =0 where the potential energy is zero U(0) =0,
the energy of the particle is constant and equal to kinetic energy

E= K(O)-%mvj. (19)
Therefore

(4/2T)U, = % my; (20)

which we can solve for the speed v,

v, =\8U, /27m . 1)




Work Done on a System by
an External Force

J Work is energy transferred to or from a system by means of an external force
acting on that system.

e System
d ‘\/-
/ \
i \
| |
\

Positive W | /

/

I

Negative W ‘\
\

N~ 7
~

(b)

Figure 8-11 (a) Positive work W done on an
arbitrary system means a transfer of
energy to the system. (b) Negative work
W means a transfer of energy from the

system.




No Friction Involved

W= AK + AU,

W = AE_ .. (work done on system,no friction involved),

Your lifting force
transfers energy to
kinetic energy and
potential energy.

\ BLTLLLS A ST -
\

——
-

-

-
———

Figure 8-12 Positive work W is done on a
system of a bowling ball and Earth, caus-
ing a change AE,,.. in the mechanical
energy of the system, a change AK in the
ball’s kinetic energy, and a change AU in
the system’s gravitational potential energy.




Friction Involved

The applied force supplies energy. So, the work done by the applied

The frictional force transfers some force goes into kinetic energy
of it to thermal energy. and also thermal energy.
/ Block—floor

vo -7 ~ - - \S)’S[Cﬂl

q vﬂ -
>,
d

=1

-~
e —

(a) ()




F — fi, = ma.

Because the forces are constant, the acceleration @lis also constant.

v? = v} + 2ad.
Fd = imv* — 3nmvi + fid

L2 — 1
smv? — smvi = AK

Fd = AK + f.d.

Fd = AE,.. + f.d.

AE, = fid (increase in thermal energy by sliding).

i S

Fd=AE,. + AE.h



Conservation of Energy

W = AE,_ .. + AE;, (work done on system, friction involved).

b’ The total energy E of a system can change only by amounts of energy that are
transferred to or from the system.

W = AE = AE,.. + AE,, + AE;,




|solated System

The total energy E of an isolated system cannot change.

AE. .. + AE,; + AE;,, = 0 (isolated system).

In an isolated system, we can relate the total energy at one instant to the total
energy at another instant without considering the energies at intermediate times.

AEmec = Lmec2 — Emec,la

Emec,2 - Emec,l _ AEth o AEint'




¢ ¢ U

Work Heat Mechanical
System waves

boundary ( ’ ' , A
\ Kinetic energy

The change in the total Potential energy
amount of energy in / Internal energy
the system is equal to

the total amount of - ‘ ' ‘ 4
energy that crosses the Matter Electrical  Electromagnetic
boundary of the system. transfer transmission radiation

\ \ \




Example

A food shipper pushes a wood crate of cabbage heads (total
mass m = 14 kg) across a concrete floor with a constant
horizontal force F of magnitude 40 N. In a straight-line dis-
placement of magnitude d = 0.50 m, the speed of the crate
decreases from vy = 0.60 m/stov = 0.20 m/s.

(a) How much work is done by force F,and on what system
does it do the work?

—
v

.
N \&\%dﬁ

(b) What is the increase AEy, in the thermal energy of the
crate and floor?



Calculation: Substituting given data, including the fact that
force F and displacement d are in the same direction, we
find

W = Fd cos ¢ = (40 N)(0.50 m) cos 0°
=201J. (Answer)

Therefore, the system on which the work is
done 1is the crate—floor system, because both energy
changes occur in that system.

W = AE .. + AE. (8-34)

Calculations: We know the value of W from (a). The
change AE,.. in the crate’s mechanical energy is just the
change in its kinetic energy because no potential energy
changes occur, so we have

AE,.. = AK = 3mv? — Zmv},
Substituting this into Eq. 8-34 and solving for AEy,, we find
AE, = W — (%mv2 = %mv%) =W — %m(v2 — vj)
=201J — %(14 kg)[(0.20 m/s)?> — (0.60 m/s)?]
=222] =221. (Answer)




Example

Figure 8-17 shows a water-slide ride in which a glider is shot
by a spring along a water-drenched (frictionless) track that
takes the glider from a horizontal section down to ground
level. As the glider then moves along ground-level track, it 1s
gradually brought to rest by friction. The total mass of the
glider and its rider 1s m = 200 kg, the initial compression of
the spring 1s d = 5.00 m, the spring constant 1s k = 3.20 X
10° N/m., the initial height 1s 4~ = 35.0 m, and the coefficient
of kinetic friction along the ground-level track is p; = 0.800.
Through what distance L does the glider slide along the
ground-level track until it stops?

Figure 8-17 A spring-loaded amusement park water slide.



Emec1 = K1+ Uag + Uy
=0 + skd* + mgh.

In the final state, with the spring now 1n its relaxed state and
the glider again stationary but no longer elevated, the final
mechanical energy of the system 1s

Enec2 = Ko + Uy + Up

=0+0+0. (8-44)
AEy, = pmgL.
0 = skd? + mgh — wmgL, (8-46)
and
kd? h
L= +
2pmg M

(320 X 10° N/m)(5.00 m)? N 35m
~ 72(0.800)(200 kg)(9.8 m/s?) | 0.800

=69.3m. (Answer)




Example

Two blocks are connected by a light string that passes over a frictionless pulley
as shown in Figure 8.12. The block of mass m, lies on a horizontal surface and
is connected to a spring of force constant k. The system is released from rest
when the spring is unstretched. If the hanging block of mass m, falls a distance
h before coming to rest, calculate the coefficient of kinetic friction between the
block of mass m,; and the surface.




AU, + AUs + Ay, =0
1
AU, =Usp — Uy = §kh2 —0

AU, = Uyp — Uy = 0 — magh
AEy, = fxh = (pxn)h = prmagh

1
—magh + §kh2 + upmigh =0

: mi14g




Example

Figure 8-19a shows the mountain slope and the valley
along which a rock avalanche moves. The rocks have a
total mass m. fall from a height y = H, move a distance
d, along a slope of angle # = 45°, and then move a dis-
tance d, along a flat valley. What is the ratio d,/H of the
runout to the fall height if the coefficient of kinetic fric-
tion has the reasonable value of 0.60? -

Rocks




Calculations: The final mechanical energy E, .., is
equal to the initial mechanical energy £ .., minus the
amount AE,; lost to thermal energy:

Emcc.Z . Emcc.l ool AEth (8’43)

Initially the rocks have potential energy U = mgH and
kinetic energy K = 0, and so the initial mechanical en-
ergy is E ..y = mgH. Finally (when the rocks stop) the
rocks have potential energy U = 0 and Kinetic energy
K =0, and so E_..» = 0. The amount of energy trans-
ferred to thermal energy is AE , = fid, during the




slide down the slope and AE, , = f.,d, during the
runout across the valley. Substituting these expressions
into Eq. 8-43, we have

0 = mgH — fud, — Fod,. (8-44)

From Fig. 8-19a, we see that d; = H/(sin 8). To ob-
tain expressions for the kinetic frictional forces, we use
Eq. 6-2 (fy = piFy). Recall from Chapter 6 that on an
inclined plane the normal force offsets the component
mg cos @ of the gravitational force (Fig. 8-195). Similarly,
recall from Chapter 5 that on a horizontal surface the nor-
mal force offsets the full magnitude mg of the
gravitational force (Fig. 8-19¢). Substituting these expres-
sions into Eq. 8-44 and solving for the ratio d»/H, we find

H

0= mgH — pi(mg cos ) T pmgd,
d> ( e ) (8-45)
tan 6



Substituting p; = 0.60 and # = 45°, we find

— = 0.67. (Answer)




Example

78. A ball of mass m = 300 g is connected by a strong string of
length L. = 80.0 cm to a pivot and held in place with the
string vertical. A wind exerts constant force Fto the right
on the ball as shown in Figure P8.78. The ball is released

Pivot

Pivot
o .
i [N
| I
L |
. ¢ o 4 |
F o F ot | .
: } T
i I PR H
@ S NPT v
8 b

from rest. The wind makes it swing up to attain maximum
height H above its starting point before it swings down
again. (a) Find H as a function of F. Evaluate H for (b) F=
1.00 N and (¢) F = 10.0 N. How does H behave (d) as F
approaches zero and (e) as Fapproaches infinity? (f) Now
consider the equilibrium height of the ball with the wind
blowing. Determine it as a function of F. Evaluate the equi-

librium height for (g) F= 10 N and (h) Fgoing to infinity.



Example

75. [E) Review. A uniform board of length L is sliding along
a smooth, frictionless, horizontal plane as shown in Fig-
ure P8.75a. The board then slides across the boundary

— V Boundary
S . .
8
fk g @ 0=0
a=-"7— v=VmgL E————
b

with a rough horizontal surface. The coefficient of kinetic
friction between the board and the second surface is p,.
(a) Find the acceleration of the board at the moment its
front end has traveled a distance x beyond the boundary.
(b) The board stops at the moment its back end reaches
the boundary as shown in Figure P8.75b. Find the initial
speed v of the board.




Example

72. [E A roller-coaster car shown in Figure P8.72 is released
from rest from a height & and then moves freely with neg-
ligible friction. The roller-coaster track includes a circular
loop of radius R in a vertical plane. (a) First suppose the
car barely makes it around the loop; at the top of the loop,
the riders are upside down and feel weightless. Find the
required height & of the release point above the bottom of
the loop in terms of R. (b) Now assume the release point
is at or above the minimum required height. Show that the
normal force on the car at the bottom of the loop exceeds
the normal force at the top of the loop by six times the
car’s weight. The normal force on each rider follows the
same rule. Such a large normal force is dangerous and very
uncomfortable for the riders. Roller coasters are therefore
not built with circular loops in vertical planes. Figure P6.19
(page 159) shows an actual design.




Example

67. B} A pendulum, comprising a

light string of length L and a small I T
sphere, swings in the vertical plane. I y./‘"o\I !
The string hits a peg located a dis- yd :_L
tance d below the point of suspen- /" Peghk
sion (Fig. P8.67). (a) Show that if () N
the sphere is released from a height A P

\‘—J”

below that of the peg, it will return
to this height after the string strikes Figure P8.67
the peg. (b) Show that if the pendu-

lum is released from rest at the horizontal position (6 =
90°) and is to swing in a complete circle centered on the
peg, the minimum value of d must be 3L/5.




Example

[65] A block of mass 0.500 kg is pushed against a horizon-
tal spring of negligible mass until the spring is compressed
a distance x (Fig. P8.65). The force constant of the spring
is 450 N/m. When it is released, the block travels along a
frictionless, horizontal surface to point @, the bottom of a
vertical circular track of radius R = 1.00 m, and continues
to move up the track. The block’s speed at the bottom of
the track is vz = 12.0 m/s, and the block experiences an
average friction force of 7.00 N while sliding up the track.

—
K;-@/ e

(a) What is x? (b) If the block were to reach the top of the
track, what would be its speed at that point? (c¢) Does the

block actually reach the top of the track, or does it fall off
before reaching the top?




64.

Example

B71 A block of mass m; = 20.0 kg
is connected to a block of mass
m, = 30.0 kg by a massless string
that passes over a light, frictionless
pulley. The 30.0-kg block is con-
nected to a spring that has negli-
gible mass and a force constant of
k = 250 N/m as shown in Figure
P8.64. The spring is unstretched
when the system is as shown in the
figure, and the incline is frictionless. The 20.0-kg block is
pulled a distance 2 = 20.0 cm down the incline of angle
6 = 40.0° and released from rest. Find the speed of each
block when the spring is again unstretched.

gl
k

Figure P8.64




63.

Example

A 10.0-kg block is released from rest at point ® in Fig-
ure P8.63. The track is frictionless except for the portion
between points ® and ©, which has a length of 6.00 m.
The block travels down the track, hits a spring of force con-
stant 2 250 N/m, and compresses the spring 0.300 m from
its equilibrium position before coming to rest momentarily.
Determine the coefficient of kinetic friction between the
block and the rough surface between points ® and ©.

Figure P8.63




Example

41. A small block of mass m = 200 g is released from rest at
point @ along the horizontal diameter on the inside of
a frictionless, hemispherical bowl of radius R = 30.0 cm
(Fig. P8.41). Calculate (a) the gravitational potential
energy of the block—Earth system when the block is at point
@ relative to point ®, (b) the kinetic energy of the block at
point @, (c) its speed at point ®, and (d) its kinetic energy
and the potential energy when the block is at point ©.

Figure P8.41 Problems 41 and 42.




Example

91 @@ Two blocks, of masses M =2.0 kg and 2M, are connected to
a spring of spring constant k = 200 N/m that has one end fixed, as

shown in Fig. 8-69. The horizontal
surface and the pulley are friction-
less, and the pulley has negligible
mass. The blocks are released from
rest with the spring relaxed.

(a) What is the combined kinetic
energy of the two blocks when the
hanging block has fallen 0.090 m?
(b) What is the kinetic energy of
the hanging block when it has
fallen that 0.090 m? (c) What maxi-

Figure 8-69 Problem 91.

mum distance does the hanging block fall before momentarily

stopping?



Example

87 ssm A massless rigid rod of
length L has a ball of mass m
attached to one end (Fig. 8-68). The
other end is pivoted in such a way
that the ball will move in a vertical
circle. First, assume that there is no
friction at the pivot. The system is
launched downward from the hori-
zontal position A with initial speed
vg. The ball just barely reaches point
D and then stops. (a) Derive an ex-
pression for v, in terms of L, m, and
g. (b) What is the tension in the rod

Figure 8-68 Problem 87.

when the ball passes through B? (c) A little grit is placed on the
pivot to increase the friction there. Then the ball just barely
reaches C when launched from A with the same speed as before.

What is the decrease in the mechanical energy during this motion?
(d) What is the decrease in the mechanical energy by the time the

ball finally comes to rest at B after several oscillations?




Example

93 A playground slide is in the form of an arc of a circle that has
a radius of 12 m. The maximum height of the slide is # = 4.0 m, and
the ground is tangent to the circle (Fig. 8-70). A 25 kg child starts
from rest at the top of the slide and has a speed of 6.2 m/s at the
bottom. (a) What is the length of the slide? (b) What average fric-
tional force acts on the child over this distance? If, instead of the
ground, a vertical line through the top of the slide is tangent to the
circle, what are (c) the length of the slide and (d) the average fric-
tional force on the child?

Figure 8-70 Problem 93.




Example

72 Two snowy peaks are at heights H = 850 m and 2 = 750 m
above the valley between them. A ski run extends between
the peaks, with a total length of 3.2 km and an average slope of
6 = 30° (Fig. 8-61). (a) A skier starts from rest at the top of
the higher peak. At what speed will he arrive at the top of
the lower peak if he coasts without using ski poles? Ignore fric-
tion. (b) Approximately what coefficient of kinetic friction

,, g ) |

between snow and skis would make him stop just at the top of
the lower peak?




Example

«+34 @ A boy is initially seated
on the top of a hemispherical ice
mound of radius R = 13.8 m. He
begins to slide down the ice, with a
negligible initial speed (Fig. 8-47).
Approximate the ice as being fric-
tionless. At what height does the
boy lose contact with the ice?

Figure 8-47 Problem 34.



Example

«32 In Fig. 8-45, a chain is held
on a frictionless table with one-
fourth of its length hanging over
the edge. If the chain has length
L =28 cm and mass m = 0.012 kg,
how much work is required to pull

the hanging part back onto the
table?

Figure 8-45 Problem 32.



Example

«19 @ Figure 8-36 shows an 8.00 kg stone
at rest on a spring. The spring is compressed
10.0 cm by the stone. (a) What is the spring
constant? (b) The stone is pushed down an
additional 30.0 cm and released. What is the
elastic potential energy of the compressed
spring just before that release? (c) What is
the change in the gravitational potential en-
ergy of the stone—Earth system when the
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Figure 8-36
Problem 19.

stone moves from the release point to its maximum height? (d) What
is that maximum height, measured from the release point?




