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/-1 What is Physics?
Energy:

Technically, energy is a scalar quantity associated with
the state of one or more objects.

Energy can be transformed from one type to another and transferred from one
object to another, but the total amount is always the same (energy is conserved).
No exception to this principle of energy conservation has ever been found.




Energy:

Forms of energy:

v’ Mechanical

v Chemical

v Electromagnetic
v Internal

» Energy can be transformed from one form to another
Essential to the study of physics, chemistry, biology, geology, astronomy

be used in place of Newton’s laws to so




Internal Energy

https://www.youtube.com/watch?
time_continue=62&v=grgktnmAO3c



Kinetic Energy

For an object of mass m whose
speed v is well below the speed of
light,

K= -m(v.v) = —m|v|*




Sample Problem 7-1
In 1896 in Waco, Texas, William Crush of the “Katy” railroad

parked two locomotives at opposite ends of a 6.4-km-long track,
fired them up, tied their throttles open, and then allowed them to

crash head-on at full speed in front of 30,000 spectators.

Hundreds of people were
hurt by flying debris;
several were Kkilled.
Assuming each locomotive
weighed 1.2 x 10° N and
its acceleration along the
track was a constant 0.26
m/s?2, what was the total
Kinetic energy of the two
locomotives just before the
collision?




SOLUTION:

vi=v, +2a(x—x,)

V' =0+2(026 m/s*)(3.2%10° m)
v=40.8m/s
~12%10°N

- 98m/s>
K=21mv*)=(1.22%10" kg)(40.8 m/s)’
=2.0%10°J

=1.22%107kg




Section /-2

7-2 WORK AND KINETIC ENERGY

Learning Objectives

After reading this module, you should be able to . . .

7.03 Apply the relationship between a force (magnitude and
direction) and the work done on a particle by the force
when the particle undergoes a displacement.

7.04 Calculate work by taking a dot product of the force vec-
tor and the displacement vector, in either magnitude-angle

or unit-vector notation.

Key Ideas

® Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object
is positive work, and from the object, negative work.

® The work done on a particle by a constant force F during
displacement d is

W=Fdcos = F-d

(work, constant force),

in which ¢ is the constant angle between the directions of F
and d.

® Only the component of F thatis along the displacement d
can do work on the object.

7.05 If multiple forces act on a particle, calculate the net work
done by them.

7.06 Apply the work—kinetic energy theorem to relate the
work done by a force (or the net work done by multiple
forces) and the resulting change in kinetic energy.

® When two or more forces act on an object, their net work is
the sum of the individual works done by the forces, which is
also equal to the work that would be done on the object by
the net force F,, of those forces.

@ For a particle, a change AK in the kinetic energy equals the
net work W done on the particle:

AK=K;,— K, =W
in which K; is the initial kinetic energy of the particle and Kis
the kinetic energy after the work is done. The equation
rearranged gives us

(work —kinetic energy theorem),

K=K, +W.



Work

3 Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.




Work

(Done by a Constant! Force)

» Provides a link between force and energy

» [he work, I/, done by a constant force on an
object is defined as the product of the
COMpPONENL or the force along the. direction of
displacement and the magnitude of the
aisplacement

s the
component of the force
In the direction of the
displacement

o IS the displacement



~ This gives no information about

the time it took for the displacement to occur
the velocity or acceleration of the object

work is zero when
» there is (holding a bucket)
» force and displacement are

, as cos 90° = 0 (if we are
carrying the bucket horizontally, gravity
does no work)

(different from everyday “definition” of work)



Example

Work done by forces that oppose the direction
of motion, such as friction, will be negative.

~
// 1 \\ Centripetal forces do no
/ N work, as they are always
4 \ perpendicular to the
P , direction of motion.




Example

As long as this person does
not lift or lower the bag of
groceries, he is doing no work
on it. The force he exerts has
no component in the direction
of motion.

Copynght € 2005 Pearson Prentice Hall, Inc.



Work

v |f there are multiple forces acting on an
object, the total work done is the algebraic

sum of the amount of work done by each

force.




» \Work can be positive or negative

Positive if the force and the displacement are in the
same direction

Negative if the force and the displacement are in the
opposite direction
» Example 1: lifting a cement block...

Work done by the person:

is when lifting the box
is when lowering the box

= Example 2: ... then moving it horizontally
Work done by gravity:

is when lifting the box
is when lowering the box
15 when moving it horizontally

T

lifting lowening moving total




Example: cleaning the dorm
room

John decided to clean his dorm
room with his vacuum cleaner.
While doing so, he pulls the
canister of the vacuum cleaner with
a force of magnitude F=55.0 N at
an angle 30.0°. He moves the
vacuum cleaner a distance of 3.00
meters. Calculate the work done by
all

the forces acting on the canister.




Work and Kinetic Energy

(Constant Force 1D)

F. = ma,

F’m

v =i + 2a,d

Lo 1 5

s imvo = F,.d




Work and Kinetic Energy

(Constant Force 3D)

F, = ma, Fy, = may, F, = ma,
2 .2 _ 2 .2 _ 2 .2 _
Vo — Vo, = 20,7 v, — VU, = 204y v, — Uy, = 20,2
1 1 1 1 1 1
2 2 _ 2 2 _ o2t 2
5 MW — 5MWog = Iz G iy = 5 W, — 5, = £22

1 1

—m|v|? — Em\vo\z =F-r

2




Work—Kinetic Energy
Theorem

AK=K;—K;=W

_ [net work done on

change in the kinetic
B the particle /-

energy of a particle

Kf:Ki—FW

- kinetic energy after
the net work is done

_ kinetic energy N the net
~ \ before the net work work done /”




M Checkpoint 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from —3 m/s to —2 m/s
and (b) from —2 m/s to 2 m/s? (c¢) In each situation, is the work done on the particle
positive, negative, or zero?




Sample Problem 7.02 Work done by two constant forces, industrial spies

Figure 7-4a shows two industrial spies sliding an mltlally Spy 001 Spy 002 Only force components
stationary 225 kg floor safe a displ=ze

parallel to the displacement
8.50 m. The push F, of spy 001 i do work.

swnwarZ—om the horizontal; S 1S Fu %
a < bove the horizontal. The magnitudes and di- Safe R 0°
sefions Orw€se forces do not change as the safe moves, and g
the floor and safe make frictionless contact. = 7 BF
14
(a) What is the net work done on the safe by forces F,and F, (a) (®) )
during the displacement d? 7-4 (a) Two spies move a floor safe through a displacement

.(b) A free-body diagram for the safe.

(b) During the displacement, what is the work W, done on the
safe by the gravitational force F and what is the work Wy
done on the safe by the normal force Fy from the floor?




KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7
(W = Fd cos ¢) or Eq. 7-8 (W = F- d) to calculate those
works. Let’s choose Eq. 7-7.

Calculations: From Eq.7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by F, is
W, = Fid cos ¢, = (12.0 N)(8.50 m)(cos 30.0°)
= 88.33 ],
and the work done by Fis

W, = Fad cos ¢, = (10.0 N)(8.50 m)(cos 40.0°)

=65.111.
Thus, the net work Wis
W=W,+W,=8833J +65.111]

=1534J =153 1. (Answer)

During the 8.50 m displacement, therefore, the spies transfer
153 J of energy to the kinetic energy of the safe.

KEY IDEA

Because these forces are constant in both magnitude and
direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

W, = mgd cos 90° = mgd(0) = 0 (Answer)
and Wy = Fyd cos 90° = Fd(0) = 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed v, at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by F and F

Calculations: We relate the speed to the work done by  done is 153.4 J. Solving for v, and then substituting known
combining Eqgs. 7-10 (the work—kinetic energy theorem) and  data, we find that

7-1 (the definition of kinetic energy): AW [205340)
W =K, — K; = tmv} — tmv]. "TN"m \ 225kg
= 1.17 m/s.

The initial speed v; is zero, and we now know that the work (Answer)




Sample Problem 7.02 Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (—3.0m)i
whlle a steady wind pushes against the crate with a force

= (20N)1 + (— 60N)] The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq.7-7 (W =
Fd cos ¢) or Eq. 7-8 (W = F- d) to calculate the work. Since
we know F and d in unit-vector notation, we choose Eq.7-8.

Calculations: We write
W =F-d = [(20N)i + (—6.0N)j]-[(—3.0 m)i].

Of the possible unit-vector dot products, only i, ] ], and
k -k are nonzero (see Appendix E). Here we obtain

W = (20 N)(—3.0m)i-i + (—6.0 N)(—3.0 m)j-i
= (=6.01)(1) +0=—601. (Answer)

WILEY O

PLUS Additional examples, video, and practice available at WileyPLUS

The parallel force component does
negative work, slowing the crate.

Figure 7-5 Force F slowsa .
crate during displacement d.

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy o

of displacement d,what is its kinetic enesgy at the end of d?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work—Kkinetic energy theorem in

the form of Eq.7-11, we have
K=K, +W=10J + (—-6.0J)=4.01. (Answer)

Less kinetic energy means that the crate has been slowed.




S

7-3 WORK DONE BY THE GRAVITATIONAL FORCE

Learning Objectives

After reading this module, you should be able to . ..

7.07 Calculate the work done by the gravitational force
when an object is lifted or lowered.

Key Ideas

7.08 Apply the work—kinetic energy theorem to situations
where an object is lifted or lowered.

® The work W, done by the gravitational force fg ona
particle-like object of mass m as the object moves through a
displacement dis given by

W, = mgd cos ¢,

in which ¢ is the angle between 1_3';, andd.

® The work W, done by an applied force as a particle-like
object is either lifted or lowered is related to the work W,

done by the gravitational force and the change AK in the
object’s kinetic energy by

AK=KI—K,= Wa+ Wg.
If K; = K; then the equation reduces to
Wa - _Wg,

which tells us that the applied force transfers as much energy
to the object as the gravitational force transfers from it.




&)

A

Work Done by the
Gravitational Force

4 e

F.
I The force does negative

work, decreasing speed
and kinetic energy.

¥
F“I

Figure 7-6 Because the gravitational force 1_7;
acts on it, a particle-like tomato of mass m
thrown upward slows from velocity ¥ to
velocity v during displacement d. A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from
K,(= 3mv}) to K; (= 3mv?).

W, = mgd cos 180°

Wg = mgd cos ¢ (work done by gravitational force).

=mgd(—1) = —mgd.

W, = mgd cos 0° = mgd(+1) = +mgd.




Work Done in Lifting and
Lowering an Object

AK =K;,— K;= W, + W,

W, + W,=0

W, =—W,

W,= —mgdcos ¢ (work done in lifting and lowering; K; = K,),

u



Sample Problem 7.05 Work done on an accelerating elevator cab

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration @ = g/5 (Fig. 7-9a).

(a) During the fall through a distance d = 12 m, what is the
work W, done on the cab by the gravitational force F ?

(b) During the 12 m fall, what is the work W7 done on the
cab by the upward pull T of the elevator cable?

(c) What is the net work W done on the cab during the fall?

(d) What 1s the cab’s kinetic energy at the end of the 12 m fall?

Figure 7-9 An elevator
cab, descending with
speed v;, suddenly
begins to accelerate
downward. (a) It
moves through a dis-
placement d with
constant acceleration
da = g/5.(b) A free-
body diagram for the
cab, displacement
included.

Elevator
cable

(b)

Does
negative
work

Does
positive
work



Sample Problem 7.05 Work done on an accelerating elevator cab

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
to fall with constant acceleration @ = g/5 (Fig. 7-9a).

During the fall through a distance d = 12 m, what is the
/ F2

k W, done on the cab by the gravitational force F,?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12
(W, = mgd cos ¢) to find the work W,.

Calculation: From Fig. 7-9b, we see that the angle between
the directions of ?g and the cab’s displacement 7 is 0°. So,

W, = mgd cos 0° = (500 kg)(9.8 m/s?)(12 m)(1)
=5.88x104J =~ 59 kJ. (Answer)

D uring the 12 m fall, what is the work Wy done on the

«0 by the upward pull T of the elevator cable?

KEY IDEA

We can calculate work W with Eq. 7-7 (W = Fd cos ¢) by
first writing Fiey = may for the components in Fig. 7-9b.

Calculations: We get
T - Fy=ma. (7-18)

Solving for 7, substituting mg for F,, and then substituting
the result in Eq. 7-7, we obtain

Wr=Td cos ¢ = m(a + g)d cos ¢. (7-19)

Next, substituting —g/5 for the (downward) acceleration @ and
then 180° for the angle ¢ between the directions of forces T
and m_g’, we find

4
Wr=m(—%+g) dcos¢=?mgdcos¢

= % (500 kg)(9.8 m/s%)(12 m) cos 180°

=470 x 10°J = —47 kJ. (Answer)

Figure 7-9 An eleva-

tor cab, descending Does
with speed v, sud- T negative
denly begins to accel- work
erate downward.

(a) It moves through

a displacement T Doe.s,
with constant accel- # positive
eration @ = g/5. work
(b) A free-body

diagram for the

cab, displacement
included.

(B)

Caution: Note that Wy is not simply the negative of W,
because the cab accelerates during the fall. Thus, Eq. 7-16
(which assumes that the initial and final kinetic energies are

equal) does not apply here.
at is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W=W,+Wr=588x10*J —470x 10*J
=1.18x10*J = 12kJ. (Answer)
(d) What is the cab’s kinetic energy at the end of the 12 m fall?

KEY IDEA

The kinetic energy changes because of the net work done on
the cab, according to Eq. 7-11 (K;= K, + W).

Calculation: From Eq. 7-1, we write the initial kinetic
energy as K, = ymv2. We then write Eq. 7-11 as
Ki= K+ W=3mvi + W
= (500 kg)(4.0 m/s)? + 1.18 x 10*J

=158 x 10°J = 16 kJ. (Answer)




/-4 WORK DONE BY A
SPRING FORCE

Key Ideas
® The force f{ from a spring is ® A spring force is thus a variable force: It varies with the
I—?: — —kd (Hooke's law), displacement of the spring’s free end.
) ) L @ If an object is attached to the spring’s free end, the work W,
where d is the displacement of the spring’s free end from done on the object by the spring force when the object is
its position when the spring is in its relaxed state (neither moved from an initial position x, to a final position x, is
. . ] f
compressed nor extended), and k is the spring constant
(a measure of the spring's stiffness). If an x axis lies along the W, = 3ka? — 3kx}.

spring, with the origin at the location of the spring’s free end

when the spring is in its relaxed state, we can write If x; = 0 and x; = x, then the equation becomes

F, = —kx (Hooke’s law).




Work Done by a Spring
Force

Hooke’s law I?’S = —kd




Work Done by a Varying
Force




Three-Dimensional Analysis

F =Fi+ Fj + Fk,
d¥ = dxi + dyj + dzk.

() aw = F-a7 = Fodx + Fydy + F. dz.

Ty Xy ¥r
W=fdw=f F;dx+f F,dy +
rl xl yl

i
J' F, dz.
%




Example

Force F = (3x2N)i + (4 N)j, with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-

ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?




Calculation: We set up two integrals, one along each axis:

0 3 0
4dy=3[x2dx+4f dy
2

3
W=f 3x? dx +
2 3

)

3
= 3B + 4y = [3* — 2°] + 4[0 - 3]
=17.01. (Answer)




In terms of components

Area = AA=F, Ax

Split total displacement (Xx¢x;)
into many. small displacements AX
For each small displacement:

Thus, total work is:
X
W = J fF(:c) dx  (work:variable force).

X

which is



In three dimensions

Ty Xy ¥r iy
W=Idw=f P;dx+f Fydy+f F, dz.
T, X, Y %

— o



The Work Done by a Spring
Force

Xy Xy
W‘:f —kxdx=—kf x dx

= (—3h) XY = (—3h)(x7 — x7).

W, %kx? = %kx} (work by a spring force).

Work W/ is positive if the block ends up closer to the relaxed position (x = 0) than
it was initially. It is negative if the block ends up farther away from x = 0. It is zero
if the block ends up at the same distance from x = 0.




The Work Done by a Spring
Force

x; =0 W, = —% kx*  (work by aspring force).




Work—-Kinetic Energy
Theorem

O - [rre e

ad —dx.
madx =m—




Sample Problem 7.06 Work done by a spring to change kinetic energy

When a spring does work on an object, we cannot find the
work by simply multiplying the spring force by the object’s
displacement. The reason is that there is no one value for
the force—it changes. However, we can split the displace-
ment up into an infinite number of tiny parts and then ap-
proximate the force in each as being constant. Integration
sums the work done in all those parts. Here we use the
generic result of the integration. f—d —
In Fig. 7-11, a cumin canister of mass m = 0.40 kg slides Stop First touch

across a horizontal frictionless counter with speed v = 0.50 m/s.  Figure 7-11 A canister moves toward a spring.

The spring force does
negative work, decreasing
speed and kinetic energy. L

k

/— Frictionless m

It then runs into and compresses a spring of spring constant Calculations: Putting the first two of these ideas together,
k = 750 N/m. When the canister is momentarily stopped by we write the work —kinetic energy theorem for the canister as
th ing, by what distance d is th i ed?

e spring, by wha nce d is the spring compress K, — K, = _% Kd.

KEY IDEAS Substituting according to the third key idea gives us this
expression:

1. The work W; done on the canister by the spring force is 0—1Llm? = —1kd?

related to the requested distance d by Eq. 7-26 (W, = = 2

—% kx?),with d replacing x. Simplifying, solving for d, and substituting known data then
2. The work W, is also related to the kinetic energy of the S

canister by Eq.7-10 (K; — K; = W). \/? [ 0.40 kg

e . d=v,[—=(050m/s), [ ————

3. The canister’s kinetic energy has an initial value of K = k 750 N/m

%mv2 and a value of zero when the canister is momen-
tarily at rest.

12X 102m=12cm. (Answer)

LUS Additional examples, video, and practice avallable at WileyPLUS



Sample Problem 7.07 Work calculated by graphical integration

In Fig. 7-13b, an 8.0 kg block slides along a frictionless floor
as a force acts on it, starting at x;, = 0 and ending at x; = 6.5 m.
As the block moves, the magnitude and direction of the
force varies according to the graph shown in Fig. 7-13a. For

(Note that this latter value is displayed as —20 N.) The
block’s kinetic energy at x; is K; = 280 J. What is the
block’s speed at x; = 0,x, = 4.0 m,and x; = 6.5 m?

example, from x = 0 to x = 1 m, the force is positive (in
the positive direction of the x axis) and increases in mag-
nitude from 0 to 40 N. And from x = 4 m to x = 5 m, the
force is negative and increases in magnitude from 0 to 20 N.

F(N)

(=}

2 4\_7 x (m)

v v
1 2
Y 7
| T e T W
2

0

(&)

Figure 7-13 (a) A graph indicating the magnitude and direction of a
variable force that acts on a block as it moves along an x axis on
. afloor, (b) The location of the block at several times.



(1) At any point, we can relate the speed of the block to its
kinetic energy with Eq. 7-1 (K = Imv?). (2) We can relate
the kinetic encrgy K at a later point to the initial kinctic K;
and the work W done on the block by using the work-
kinetic energy theorem of Eq. 7-10 (K; — K; = W). (3) We
can calculate the work W done by a variable force Ax) by
integrating the force versus position x. Equation 7-32 tells
us that

W= J‘.’F(x) dx.

We don’t have a function F(x) to carry out the integration,
but we do have a graph of Flx) where we can integrate by
finding the arca between the plotted line and the x axis
Where the plot is above the axis, the work (which is equal to
the areca) is positive. Where it is below the axis, the work is
negative.

Calculations: The requested speed at x = 0 is casy because
we already know the kinctic energy. So, we just plug the
kinetic energy into the formula for kinetic energy:

Kl = lfnv?v
280 J = 3(8.0 kg)vi,
and then

vy = 837 m/s = 84 m/s. (Answer)

As the block moves from x = 0 to x = 4.0 m, the plot in
Figure 7-13a is above the x axis, which means that positive
work is being done on the block. We split the area under the
plot into a triangle at the left. a rectangle in the center,and a
triangle at the right. Their total arca is

H4ON)(1 m) + (4ON)(2m) + H4ON)(1 m) = 120N-m
=1201.

This mecans that between x = 0 and x = 4.0 m, the force
does 120 J of work on the block, increasing the kinctic en-
ergy and speed of the block. So, when the block reaches
x = 4.0 m, the work—kinetic energy theorem tells us that
the kinetic energy

K2=K1+W

=280J +120] =400).

Again using the definition of kinetic energy, we find

K! = 'Ifnv;~

4003 = X(8.0 kg)vi.

and then

v; = 10 mbs. (Answer)
This 1s the block’s greatest speed because fromx = 4.0 m to
x = 65 m the force is negative, meaning that it opposes the
block’s motion, doing negative work on the block and thus
decreasing the kinetic energy and speed. In that range, the
arca between the plot and the x axis is

H20N)(1 m) + (20N)(1 m) + H20N)(0.5m) = 35N-m
=351
This means that the work done by the force in that range is
—35 ). At x = 40, the block has K = 400 J. At x = 6.5 m, the
work-kinetic energy theorem tells us that its kinetic energy
Kg — Kz + W
=400 -35) =365).
Again using the definition of kinetic energy, we find
K; = "zm"i

365) = (8.0 kghd.
and then

v; = 955 m/s = 9.6 mfs. (Answer)
The block is still moving in the positive direction of the
x axis, a bit faster than initially.




Conservative Forces

A force Is conservative If the work it does on
an object moving between two points is

Independent of the path the objects take
between the points

v' The work depends only upon the initial and final
positions of the object

v' Any conservative force can have a potential
energy function associated with it

Note: a force is conservative if the work it does on an object moving
h any closed path is zero.




Nonconservative Forces

A force is nonconservative if the work it
does on an object depends on the path
taken by the object between its final and
starting points.

» Examples of nonconservative forces
v Kinetic friction, air drag, ....




Example: Friction as a

Nonco

nservative Force

» [ he friction fo
of the object |
associated wit

ce transforms Kinetic energy.
1to a type off energy

1 temperature

the objects are warmer than they were before
the movement

Internal Energy is the term used for the energy
associated with an object’ s temperature

R —



If friction is present, the work done depends not
only on the starting and ending points, but also
on the path taken. Friction is called a

nonconservative force.

Copyright © 2005 Pearsan Prentice Hall, Inc.



TABLE 6-1 Conservative
and Nonconservative Forces

Conservative Nonconservative
Forces Forces
Gravitational Friction
Elastic AIr resistance
Electric Tension in cord
Motor or rocket
propulsion
Push or pull by

a person

Copynight @ 2005 Pearson Prentice Hall, Inc.

Potential energy can
only be defined for
conservative forces.




/-6 POWER

Key Ideas
® The power due to a force is the rate at which that force
does work on an object.

® If the force does work W during a time interval At, the aver-
age power due to the force over that time interval is

@ Instantaneous power is the instantaneous rate of doing work:
_aw
=—
® For a force F atan angle ¢ to the direction of travel of the
instantaneous velocity v, the instantaneous power is

P=Fvcos¢p = F-V.




Power

W
P, = E (average power).
lwatt=1W =11J/s = 0.738 ft - 1b/s
1 horsepower = 1 hp = 550 ft-1b/s = 746 W.
P = 7 (instantaneous power).

P

_dW _ Fcosgdx dx
Codr dt _FCOS¢(dt)’

P = Fv cos ¢.

P = I_;" -V (instantaneous power).




Sample Problem 7.09 Power, force, and velocity

Here we calculate an instantaneous work—that is, the rate at
which work is being done at any given instant rather than av-
eraged over a time interval. Figure 7-15 shows constant forces
F , and ?2 acting on a box as the box slides rightward across a
frictionless floor. Force F is horizontal, with magnitude 2.0 N;
force F , is angled upward by 60° to the floor and has magni-
tude 4.0 N. The speed v of the box at a certain instant is 3.0 m/s.
What is the power due to each force acting on the box at that
instant, and what is the net power? Is the net power changing
at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Negative power.
(This force is

Positive power.
(This force is

removing energy.) supplying energy.)
Frictionless E B _vp

Figure 7-15 Two forces 1_51 and f‘z act on a box that slides
rightward across a frictionless floor. The velocity of the box is v.

Calculation: We use Eq.7-47 for each force. For force F,at
angle ¢, = 180° to velocity v, we have

Py = Fyv cos ¢, = (2.0 N)(3.0 m/s) cos 180°
= —6.0 W. (Answer)

This negative result tells us that force F,is transferring en-
ergy from the box at the rate of 6.0 J/s.
For force F,, at angle ¢, = 60° to velocity vV, we have

P2 = sz COS ¢2 = (4.0 N)(3.0 m/S) cos 60°
=6.0W. (Answer)

This positive result tells us that force F,is transferring en-
ergy fo the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers
(complete with their algebraic signs):

Poy=P,+ P,

=—60W+60W=0, (Answer)

which tells us that the net rate of transfer of cOcIEy to
or from the box is zero. Thus, the kinetic energy (K = Emvz)
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces F. 1 and F » nor the
velocity v changing, we see from Eq. 7-48 that P; and P, are
constant and thus so is P,.




Example

Provided a funny car does not lose traction. the time it
takes to race from rest through a distance D depends
primarily on the engine s power P. Assuming the power
1s constant, derive the time interms of D and P.  —AgS




Example

62 A 250 g block is dropped onto a relaxed ver-
tical spring that has a spring constant of k =
2.5 N/cm (Fig. 7-46). The block becomes attached to
the spring and compresses the spring 12 cm before
momentarily stopping. While the spring is being
compressed, what work is done on the block by
(a) the gravitational force on it and (b) the spring
force? (c) What is the speed of the block just before
it hits the spring? (Assume that friction is negligi-
ble.) (d) If the speed at impact is doubled, what is
the maximum compression of the spring?

Figure 7-46
Problem 62.




Example

29. B} A small particle of
mass m is pulled to the
top of a frictionless half-
cylinder (of radius R) by a
light cord that passes over
the top of the cylinder
as illustrated in Figure
P7.29. (a) Assuming the
particle moves at a con- Figure P7.29
stant speed, show that F = mg cos 6. Note: If the particle

moves at constant speed, the component of its acceleration

tangent to the cylinder must be zero at all times. (b) By
directly integrating W= [ ¥-d¥, find the work done in
moving the particle at

constant speed from the

bottom to the top of the

half-cylinder.




Example

=42 (@ Figure 7-41 shows a cord attached to a cart that can slide
along a frictionless horizontal rail aligned along an x axis. The left

y

Figure 7-41 Problem 42.

end of the cord is pulled over a pulley, of negligible mass and friction
and at cord height 2 = 1.20 m, so the cart slides from x; = 3.00 m to
x; = 1.00 m. During the move, the tension in the cord is a constant
25.0 N. What is the change in the kinetic energy of the cart during

the move? 4 1 . 8 J



Example:

A device called a capstan is used aboard ships in order to control a rope that is under
great tension. The rope is wrapped around a fixed drum of radius R , usually for several
turns (the drawing below shows about three fourths turn as seen from overhead).

The load on the rope pulls it with a force 7,, and the sailor holds the other end of the
rope with a much smaller force 7}, . The coefficient of static friction between the rope and
the drum is y . The sailor is holding the rope so that it is just about to slip. Can you show

that 7. =T e 49 where u_ is the coefficient of static friction and @ is the total angle
subtended by the rope on the drum?
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