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Frictional Forces

e RESISTIVE force between object and neighbors or
the medium

® Fxamples:
e Sliding a box
® Rolling resistance
® Air resistance
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Atomic origin of friction:

J. Krim, Atomic-Scale Origins of Friction, Langmuir
12, 4564, 1996.

http://www.physics.ncsu.edu/nanotribology/
publications/ref60.pdf
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Friction

e Parallel to surface, F, = mg

opposing direction of motion

® Depends on the surfaces in contact
® QObject at rest: Static friction
® QObject in motion: Kinetic friction




There is no attempt Ty
at sliding. Thus,
no friction and
no motion.

Frictional force =0

=0

(a)

Force F attempts
sliding but is balanced
by the frictional force.
No motion.

Frictional force = F

(B
Force F is now

stronger but is still
balanced by the
frictional force.
No motion.

Frictional force = F

Figure 6-1 (@) The forces on a

stationary block. (b—d) An external Force F is now even
force F, applied to the block, is stronger but is still
balanced by a static frictional force balanced by the

7,. As Fis increased, f, also increases, frictional force.

until f, reaches a certain maximum No motion.

value. (Figure continues)

Frictional force = F

Finally, the applied force < Ty
has overwhelmed the ¥ 7 Weak kinetic
static frictional force. . frictional force
Block slides and
accelerates. (@
To maintain the speed, < L o
weaken force F to match ?«-_—o-ji m%nem
the weak frictional force. —

Figure 6-1 (Continued) (e) Once f; reaches F,

its maximum value, the block “breaks

away,” accelerating suddenly in the direc- v _

tion of F. (f) If the block is now to move L froymamatue offs

with constant velocity, F must be reduced Static frictional force c 5 jcio '::(';np:omm Y e TrrTTTiT ot
from the maximum value it had just : '§ b I \

before the block broke away. (g) Some o only match growing z g : has only one valuo
experimental results for the sequence applied force. g € | (no matching).

(a) through (f). In WileyPLUS, this = i/— Breakaway

figure is available as an animation with 0

voiceover. (2 Time




Static Friction, f.

Js S UN

® Just enough force to keep object
at rest.

® UL is coefficient of static
friction

® /\is the normal force

Friction Force vs. Normal Force

e Teflon

*  Felt
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Kinetic

- — .
L = ‘I
Friction, f, i
__#_F—>
fk = MkN L3
(b)
° I IS coefficient of kinetic
friction e
® Friction force opposes
direction of motion ,
k= P
® /\is the normal force

F

y
0
|<7 Static region 4+7 Kinetic region —»
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Kinetic Friction Forces

An object is experiencing a kinetic friction force
when the object is moving relative to a surface.
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Normal Force [ N]

* Kinetic friction forces is linearly proportional to the
normal force.

» The slope of Kinetic friction forces vs. the normal force is
changing for different surfaces.



l Example 5.1 ] Experimental Determination of u, and

The following is a simple method of measuring coefficients of friction. Suppose a
block is placed on a rough surface inclined relative to the horizontal as shown in y
Active Figure 5.18. The incline angle is increased until the block starts to move.
Show that you can obtain g by measuring the critical angle 6, at which this slip-

ping just occurs. ™S
mg sin 6
SOLUTION :
mg cos 6 ey
Conceptualize Consider Active Figure 5.18 and imagine that the block tends to | ol / o
slide down the incline due to the gravitational force. To simulate the situation, \\\&llm_g’ \x

place a coin on this book’s cover and tilt the book until the coin begins to slide.

Notice how this example differs from Example 5.6. When there is no friction on ACTIVE FIGURE 5.18

an incline, any angle of the incline will cause a stationary object to begin moving. (Example 5.11) The external forces

When there is friction, however, there is no movement of the object for angles less exerted on a block lying on a rough
than the critical angle. incline are the gravitational force
mE, the normal force n, and the
Categorize The block is subject to various forces. Because we are raising the force of friction f,. For convenience,
plane to the angle at which the block is just ready to begin to move but is not mov- the gravitational force is resolved
ing, we categorize the block as a particle in equilibrium. into a component mgsin 6 along the
.......................................................................................... incline and a component mg cos ()

Analyze The diagram in Active Figure 5.18 shows the forces on the block: the perpendicular to the incline.
gravitational force mE, the normal force n, and the force of static friction ?,. We
choose x to be parallel to the plane and y perpendicular to it.



[ 5.1 cont. l

Apply Equation 5.8 to the block in both the xand y (1) D F,= mgsinf— f,=0

directions: @) 2 F,= n— mgcos6 =0

Substitute mg = n/cos 6 from Equation (2) into (3) fi= mgsinf = ( = 0) sin ) = ntan 6
cos

Equation (1):

When the incline angle is increased until the block is pn= ntanf,
on the verge of slipping, the force of static friction has
reached its maximum value g n. The angle  in this situ-
ation is the critical angle 6. Make these substitutions in
Equation (3):

p, = tan 6,

For example, if the block just slips at 8, = 20.0°, we find that p, = tan 20.0° = 0.364.

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Finalize Once the block starts to move at 8 = 8, it accelerates down the incline and the force of friction is f; = p,n. If 0 is
reduced to a value less than 6, however, it may be possible to find an angle 6, such that the block moves down the incline
with constant speed as a particle in equilibrium again (a, = 0). In this case, use Equations (1) and (2) with f replaced by
fito find p: p, = tan 6., where 6, < 6,.



Coefficients
of Friction

Coefficients of Friction?

M Mk

Steel on steel 0.74 0.57

Aluminum on steel 0.61 0.47

‘LL 2 ‘LL k Copper on steel 0.53 0.36
S Rubber on concrete 1.0 0.8
Wood on wood 0.25-0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1

Waxed wood on dry snow — 0.04

Metal on metal (lubricated) 0.15 0.06

Ice on ice 0.1 0.03

Teflon on Teflon 0.04 0.04

Synovial joints in humans 0.01 0.003

4 All values are approximate.
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I—x 0 Block F.
‘ o
z ~Zjx
F F
(a) (b)
F
Block
5
Figure 5.7 (Quick Quiz 5.7) Al T. A F,
father slides his daughter on a sled (0 (d)

either by (a) pushing down on her
shoulders or (b) pulling up on a

rope.

~ Figure 6-3 (a) A force is applied to an initially stationary block. (b)
The components of the applied force. (c) The vertical force com-
ponents. (d) The horizontal force components)




n Motion

mg
Figure 5.19 (Example 5.12) After
the puck is given an initial velocity
to the right, the only external forces
acting on it are the gravitational

force mg, the normal force n, and
—
the force of kinetic friction f,.

[ Example 5.12 ] The Sliding Hockey Puck

A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck
always remains on the ice and slides 115 m before coming to rest, determine the

coefficient of kinetic friction between the puck and ice.




[ Example 5.12 ] The Sliding Hockey Puck

A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck

always remains on the ice and slides 115 m before coming to rest, determine the a Modon
coefficient of kinetic friction between the puck and ice.

SOLUTION £

Conceptualize Imagine that the puck in Figure 5.19 slides to the right and even-

tually comes to rest due to the force of kinetic friction.

Categorize The forces acting on the puck are identified in Figure 5.19, but the mg

text of the problem provides kinematic variables. Therefore, we categorize the Figure5.19 (Example 5.12) After
problem in two ways. First, it involves a particle under a net force: kinetic fric- the puck is given an initial velocity
tion causes the puck to accelerate. Furthermore, because we model the force of to the right, the only external forces

acting on it are the gravitational
. g

force mg, the normal force n, and

the force of kinetc friction f,.

kinetic friction as independent of speed, the acceleration of the puck is constant.
So, we can also categorize this problem as one involving a particle under con-
stant acceleration.

Analyze First, let’s find the acceleration algebraically in terms of the coefficient of kinetic friction, using Newton’s sec-
ond law. Once we know the acceleration of the puck and the distance it travels, the equations of kinematics can be used to
find the numerical value of the coefficient of kinetic friction. The diagram in Figure 5.19 shows the forces on the puck.

Apply the particle under a net force model in the x direc- (1) S F=-f,=ma,
tion to the puck:

Apply the particle in equilibrium model in the y direc- (2) 2 F,=n—mg=0
tion to the puck:

Substitute n = mg from Equation (2) and f, = p,ninto — = — pmg=ma_
Equation (1): a,= — g

The negative sign means the acceleration is to the left in Figure 5.19. Because the velocity of the puck is to the right, the
puck is slowing down. The acceleration is independent of the mass of the puck and is constant because we assume p,
remains constant.

l 5.12 cont. l

Apply the particle under constant acceleration model to 0=uv?+2a X = vl — 2p,8%
the puck, using Equation 2.17, vy = v,‘,-2 + 2a,(x,— x;),
with x; = O and o,= 0:

continued

Solve for the coefficient of kinetic friction: i = 2—

~ (200mys)*
M= 9080 m/s5)(115m)

Finalize Notice that p, is dimensionless, as it should be, and that it has a low value, consistent with an object sliding on ice.

Substitute the numerical values:




Example

© 2003 Thomson - Brooks/Cole

I €
(a) (b)

The man pushes/pulls with a force of 200 N. The

child and sled combo has a mass of 30 kg and the coefficient of kinetic friction
Is 0.15. For each case:

What is the frictional force opposing his efforts?

What is the acceleration of the child?
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Example:

Given m; = 10 kg and m, = 5 kg:
a) What value of U would stop the block from sliding?
b) If the box is sliding and ;. = 0.2, what is the acceleration?

Vhat is the tension of the rope?




[ Example 513 ] Acceleration of Two Connected Objects When Friction Is Present

A block of mass m, on a rough, horizontal surface is con-
nected to a ball of mass m; by a lightweight cord over a
lightweight, frictionless pulley as shown in Figure 5.20a.
A force of magnitude Fat an angle 6 with the horizontal
is applied to the block as shown, and the block slides
to the right. The coefficient of kinetic friction between
the block and surface is ;. Determine the magnitude
of the acceleration of the two objects.

) Fsin 6
5’ I_x — >
» — > n F
5 F N T H
~~~~~ my £—L—— T B
@ —f><" Fcos@
k

5"@ ml—g) m{g’
a

b )

Figure5.20 (Example 5.13) (a) The external force F applied
as shown can cause the block to accelerate to the right. (b, ¢) Dia-
grams showing the forces on the two objects, assuming the block
accelerates to the right and the ball accelerates upward.




[ Example 513 ] Acceleration of Two Connected Objects When Friction Is Present

A block of mass my on a rough, horizontal surface is con-
nected to a ball of mass m, by a lightweight cord over a
lightweight, frictionless pulley as shown in Figure 5.20a.
A force of magnitude Fat an angle # with the horizontal ?
is applied to the block as shown, and the block slides @ oy~
to the right. The coefficient of kinetic friction between !
the block and surface is g, Determine the magnitude
of the acceleration of the two objects.

if =
SOLUTION 3 8 (O

.
Conceptualize Imagine what happens as F is applied to Figure 5.20 (Example 5.13) (a) The external force F applied
the block. Assuming i‘ is not large enough to lift the as shown can cause the block o accelerase 1o the righe. (b, ¢) Dia-
block, the block slides to the right and the ball rises. grams showing the forces on the two objects, assuming the block

. ) accelerases o the right and che ball accelerates upward.
Categorize We can identify forces and we want an accel-
eration, so we categorize this problem as one involving
. i 5.20b and 5.20c. Notice that the string exerts
F(cosf + pgsin @) — (my + uyMs)g components Feos @ and Fsin 6, respectively.
a= i the x component of the acceleration of the
m + my »h a. Let us assume the motion of the block is

* Apply the particle under a net force model to the block inthe (1) S\ £, = Fcos 8 — f — T'= mea, = mea
horizomal direction:

Because the block moves only horizontally, apply the particle (Z)EF,=u+Fsin0—u=0
in equilibrium model to the block in the vertical direction:

Apply the particle under a net force model to the ball in the @I FE=T-mg=ma =ma
vertical direction:
Solve Equation (2) for n: n = mug — Fsinf

Substitute ninto f; = pn from Equation 5.10: (4) fi = pp(meg — Fsin 0)

Substitute Equation (4) and the value of T from Equation (3) Feos® — p(myg — Fsin8) — ma+ g) = mya

into Equation (1):
Fcos @ + pysin @) — (my + pamy)g




l Example 6.3 ] What Is the Maximum Speed of the Car?

A 1 500-kg car moving on a flat, horizontal road negotiates ,
a curve as shown in Figure 6.4a. If the radius of the curve '
i5 35.0 m and the coefficient of static friction between the |
tires and dry pavement is 0.523, find the maximum speed |
the car can have and still make the turn successfully.

SOLUTION

Conceptualize Imagine that the curved roadway is partofa
large circle so that the car is moving in a circular path.

Categorize Based on the conceptualize step of the prob-

lem, we model the car as a partcle in uniform circular 3

motion in the horizontal direction. The car is not accelerar- 4
ing vertically, so it is modeled as a particle in equilibrium in

the vertical direction. f
Analyze The force that enables the car to remain in its cir- f, ﬂﬁk
cular path is the force of static friction. (It is static because e
no slipping occurs at the point of contact between road and .,
tires. If this force of static friction were zero—for example, 5 e

if the car were on an icy road—the car would continue in a

straight line and slide off the curved road.) The maximum Figure 6.4 (Example 6.3) (a) The force of scatic friction

speed v the car can have around the curve is the speed at directed woward the center of the curve keeps the car moving
which it is on the verge of skidding outward. At this point, in 2 dircular path. (b) The forces acting on the car.

the friction force has its maximum value f ... = p.n.
2
vllﬂ
Apply Equation 6.1 in the radial direction for the maxi- M) fau=pR= o
mum speed condition:

Apply the particle in equilibrium model to the car in the El;=0 = a-mg=0 - n=mg
vertical direction:

Solve Equation (1) for the maximum speed and substi- (2) v_=J“:'=J“':ﬂ=Vu,¢r
tute for nc

Substitute numerical values: Ve = V(0.523)(9.80 m/s%)(35.0m) = 13.4m/s




Example

[ Example 6.5 ] Riding the Ferris Wheel

A child of mass m rides on a Ferris wheel as shown

T
in Figure 6.6a. The child moves in a vertical circle of / 7 - v
radius 10.0 m at a constant speed of 3.00 m/s. o h_’ |

child at the bottom of the ride. Express your answer

(A) Determine the force exerted by the seat on the E E
in terms of the weight of the child, mg. ’

—

mg

8 b a

Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel.
(b) The forces acting on the child at the bottom of the path.
(c) The forces acting on the child at the top of the path.



l Example 6.5 ] Riding the Ferris Wheel

A child of mass m rides on a Ferris wheel as shown

in Figure 6.6a. The child moves in a vertical circle of / Top:

radius 10.0 m at a constant speed of 3.00 m/s. r

(A) Determine the force exerted by the seat on the

child at the bottom of the ride. Express your answer &

in terms of the weight of the child, mg ’__13_,_—'
SOLUTION

Conceptualize Look carefully at Figure 6.6a. Based &
on experiences you may have had on a Ferris wheel or

driving over small hills on a roadway, you would expect ‘—7_&

to feel lighter at the top of the path. Similarly, you Y =g ¥y mg
would expect to feel heavier at the bottom of the path. Bocom

At both the bottom of the path and the top, the nor- o u C
mal and gravitational forces on the child actin opposile  Figure 6.6 (Example 6.5) (2) A child rides on a Ferris wheel.
directions. The vector sum of these two forces gives a (b) The forces acting on the child as the bowom of the path.
force of constant magnitude that keeps the child mov- () The forces acting on the child at the wp of the path.

ing in a circular path at a constant speed. To yield net
force vectors with the same magnitude, the normal force at the bottom must be greater than that at the top.

Categorize Because the speed of the child is constant, we can categorize this problem as one involving a particle (the
child) in uniform circular motion, complicated by the gravitational force acting at all times on the child.

Analyze We draw a diagram of forces acting on the child at the bottom of the ride as shown in Figure 6.6b. The only
forces acting on himaredredowmrdgravimzionalforoe?,= mg and the upward force d,,, exerted by the seat. The
net upward force on the child that provides his centripetal acceleration has a magnitude n,_ — mg

2
Apply Newton's second law to the child in the radial S F=ny, — mg=m=—
direction:

2 2
Solve for the force exerted by the seat on the child: Ny, = Mg+ -07=-¢(l+%)

r




l 6.5 cont. l

Substitute the values given for the speed and radius:

(3.00 m/s)*
(10.0 m)(9.80 m/s*)

fp, = m[l +

= L09mg

Hence, the magnitude of the force ay, exerted by the seat on the child is greater than the weight of the child by a factor of
1.09. So, the child experiences an apparent weight that is greater than his true weight by a factor of 1.09.

(B) Determine the force exerted by the seat on the child at the top of the ride.

SOLUTION

Analyze The diagram of forces acting on the child at the top of the ride is shown in Figure 6.6¢. The net downward
force that provides the centripetal acceleration has a magnitude mg — L -

Apply Newton's second law to the child at this position:

Solve for the force exerted by the seat on the child:

Substitute numerical values:

2
2 F=mg—n,,=m—
> o
oot
_ _ (300m/s)?
== "[l (10.0 m)(9.80 m/s%)

= 0.908 mg

In this case, the magnitude of the force exerted by the seat on the child is less than his true weight by a factor of 0.908,

and the child feels lighter.

Finalize The variations in the normal force are consistent with our prediction in the Conceptualize step of the

problem.
Suppose a defect in the Ferris wheel mecha-
nism causes the speed of the child to increase to 10.0 m/s.

What does the child experience at the top of the ride in
this case?

Answer If the calculation above is performed with v =
10.0 m/s, the magnitude of the normal force at the top
of the ride is negative, which is impossible. We interpret

it to mean that the required centripetal acceleration of
the child is larger than that due to gravity. As a result, the
child will lose contact with the seat and will only stay in his
circular path if there is a safety bar that provides a down-
ward force on him to keep him in his seat. At the bottom
of the ride, the normal force is 2.02 mg, which would be
uncomfortable.




Example

[ Example 6.6 ] Keep Your Eye on the Ball

A small sphere of mass mis attached to the end of a cord of length
R and set into motion in a vertical circle about a fixed point O as
illustrated in Figure 6.9. Determine the tangential acceleration
of the sphere and the tension in the cord at any instant when the
speed of the sphere is v and the cord makes an angle # with the
vertical.

Figure 6.9 (Example 6.6) The forces acting on a
sphere of mass m connected to a cord of length Rand
rotating in a vertical circle centered at O. Forces acting
on the sphere are shown when the sphere is at the top

I and bottom of the circle and at an arbitrary location. ‘

(A) What speed would the ball have as it passes over the top of the circle if the tension in the cord goes to zero instanta-
neously at this point?

(B) What if the ball is set in motion such that the speed at the top is less than this value? What happens?




l Example 6.6 ] Keep Your Eye on the Ball

A small sphere of mass m is attached to the end of a cord of length
R and set into motion in a sertical circle about a fixed point O as
illustrated in Figure 6.9. Determine the tangential acceleration
of the sphere and the tension in the cord at any instant when the
speed of the sphere is vand the cord makes an angle & with the
vertical.

SOLUTION

Conceptualize Compare the motion of the sphere in Figure 6.9
with that of the child in Figure 6.6a associated with Example
6.5. Both objects travel in a circular path. Unlike the child in
Example 6.5, however, the speed of the sphere is nof uniform in
this example because, at most points along the path, a tangen-
tial component of acceleration arises from the gravitational force
exerted on the sphere.

Categorize We model the sphere as a particle under a net force
and moving in a circular path, but it is not a particle in ungform
circular motion. We need to use the techniques discussed in this
section on nonuniform circular motion.

Figure 6.9 (Example 6.6) The forces acting on a
....................................................................... sphere of mass m connected 10 a cord of length Rand

- - rocuing in 2 verucal circle centered ac 0. Forces acing
Analyze From tl!- force diagram in Figure 6.9: we see that an the sphere are shown when the sphere is at the 1op
the only forces acting on the sphere are the gravitational force .44 bouom of the circle and a an arbitrary bocusion.
f‘=niemted_l.:ythe£znhmdmem?mmdbydne
cord. We resolve F; into a tangential component mgsin 8 and a

radial component mg cos 6.

Apply Newton's second law to the sphere in the tangen- Ei}=a(sin0=na,
tial direction: a,= gsiné

2
Apply Newton's second law to the forces acting on the ZF,=T— m0=%
sphere in the radial direction, noting that both T and &, .
are directed toward 0. T= ;’Tz+m‘,)

Finalize Let us evaluate this result at the top and bottom of the circular path (Fig. 6.9):

o) o)

These results have similar mathematical forms as those for the normal forces n,, and i, on the child in Example 6.5,
which is consistent with the normal force on the child playing a similar physical role in Example 6.5 as the tension in
themingﬂzysinm'sen!‘nple.Keepinlnind.howwer.thmdwnmnalforteiondnechildinlinmpleﬁﬁisalm
upward, whereas the force T in this example changes direction because it must always point inward along the string. Also
note that vin the expressions above varies for different positions of the sphere, as indicated by the subscripts, whereas »
in Example 6.5 is constant.




l 6.6 cont. ]

L2 What if the ball is set in motion with a slower speed?

(A) Whatspeed would the ball have as it passes over the top of the circle if the tension in the cord goes to zero instanta-
neously at this point?

Answer Letussetthemensioneqtnlmutoind:eexpmsionfor?‘wz

0=cg(%—l)—b e = VR

(B) What if the ball is set in motion such that the speed at the top is less than this value? What happens?

Answer In this case, the ball never reaches the top of the circle. At some point on the way up, the tension in the string
goes to zero and the ball becomes a projectile. It follows a segment of a parabolic path over the top of its motion, rejoin-
ing the circular path on the other side when the tension becomes nonzero again.




Terminal Speed
Lift and Drag Forces

0

Another type of friction Is air resistance

Air resistance is proportional to the (speed)”a of
the object

When the upward force (lift) of air resistance equals
the downward force of gravity, the net force on the
object is zero

The constant speed of the object is the terminal
speed

Weight

Lift
Drag = ‘& <= Thrust e _
f —‘ C;\ »
fift




Resistive Force

R=—blv)

1)

2)

R=D :@%CpA@




Model 1: Resistive Force Proportional to Object Velocity

If we model the resistive force acting on an object moving through a liquid or gas as
proportional to the object’s velocity, the resistive force can be expressed as

R=— (6.2)
where bis a constant whose value depends on the properties of the medium and on
the shape and dimensions of the object and Vv is the velocity of the object relatwe to
the medium. The negative sign indicates that Risin the opposite direction to V.

Consider a small sphere of mass m released from rest in a liquid as in Active
Figure 6.13a. Assuming the only forces acting on the sphere are the resistive force
R = —5v and the gravitational force F let us describe its motion.! Applying New-
ton’s second law to the vertical motxon, choosing the downward direction to be
positive, and noting that £ F, = mg — by, we obtain

mg — bv = ma (6.3)
et 3 ' The sphere approaches a
v ' maximum (or terminal)
RA e
D 7 o v
A \
ro ‘ 07- —————————————————
'1 Tl 06820 _
a=0 ‘ :
I
> \ ¢
(3 | b o

The dme constant 7 is the
ume at which the sphere
reaches a speed of 0.652v,.



Terminal speed »

where the acceleration of the sphere is downward. Noting that the acceleration a is
equal to dv/dt gives

dv b

E=g—;v (6.4)

This equation is called a differential equation, and the methods of solving it may not
be familiar to you as yet. Notice, however, that initially when v = 0, the magni-
tude of the resistive force is also zero and the acceleration of the sphere is simply
£ As t increases, the magnitude of the resistive force increases and the accelera-
tion decreases. The acceleration approaches zero when the magnitude of the resis-
tive force approaches the sphere’s weight. In this situation, the speed of the sphere
approaches its terminal speed v;.

The terminal speed is obtained from Equation 6.4 by setting dv/dt = 0, which
gives

mg

mg — buvr =0 or vT=T

Because you may not be familiar with differential equations yet, we won't show

the details of the solution that gives the expression for v for all times ¢. If v = 0 at
t = 0, this expression is

v= %(l —e™) =9, (1 - ") (6.5)

m
T =m/b e’ —> OO _



Because you may not be familiar with differential equations yet, we won't show
the details of the solution that gives the expression for v for all times . If v = 0 at
t = 0, this expression is

v= %(1 —e ™) =9, (1 — ") (6.5)

This function is plotted in Active Figure 6.13c. The symbol ¢ represents the base
of the natural logarithm and is also called Euler’s number: ¢ = 2.718 28. The time
constant T = m/b (Greek letter tau) is the time at which the sphere released from
rest at t = 0 reaches 63.2% of its terminal speed; when ¢ = T, Equation 6.5 yields v =
0.632v,. (The number 0.632is 1 — e 1)

We can check that Equation 6.5 is a solution to Equation 6.4 by direct
differentiation:

dv_dImg. | ™8 ﬂ—w-)_ —H/m
dt—dt[b(l e )]-b(0+me = ge

(See Appendix Table B.4 for the derivative of ¢ raised to some power.) Substituting
into Equation 6.4 both this expression for dv/dt and the expression for v given by
Equation 6.5 shows that our solution satisfies the differential equation.




[ Example 6.8 ] Sphere Falling in Oil

A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil, where it experiences a resistive force
proportional to its speed. The sphere reaches a terminal speed of 5.00 cm/s. Determine the time constant 7 and the time
at which the sphere reaches 90.0% of its terminal speed.




l Example 6.8 ] Sphere Falling in Oil

A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil, where it experiences a resistive force
proportional to its speed. The sphere reaches a terminal speed of 5.00 cm/s. Determine the time constant 7 and the time
at which the sphere reaches 90.0% of its terminal speed.

SOLUTION

Conceptualize With the help of Active Figure 6.13, imagine dropping the sphere into the oil and watching it sink to the
bottom of the vessel. If you have some thick shampoo in a clear container, drop a marble in it and observe the motion of
the marble.

Categorize We model the sphere as a particle under a net force, with one of the forces being a resistive force that
depends on the speed of the sphere.

Analyze From v; = mg/b, evaluate the coefficient b b= o 5.00 cm/s =892g/s

T 4
. m 200g
Evaluate the time constant 7: T= ; = Fg/s = 510 x 107%s
l 6.8 cont. ]

Find the time {at which the sphere reaches a speed of 0.900v, = v,(1 — e¥7)

0.900v; by setting v = 0.9002,in Equation 6.5 and solv- 1 — & ¥ = 0.900

ing for t: ¥ = 0.100

—: = In (0.100) = —2.30

t= 2307 = 2.80(5.10 X 10~3s) = 11.7 X 10735

Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required to

reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to immediately
begin moving through the shampoo at a constant velocity.




Other kind of Drag force

In such cases, the magmtude of the drag force Dis related to the relative speed v

R=F;=D = @p A v?
e Air resistance, F ~ Area V2

Fy—D =ma

Terminal velocity: | $
1CpAV? — F, = 0,




6-2 THE DRAG FORCE AND TERMINAL SPEED

Learning Objectives

After reading this module, you should be able to . ..
6.04 Apply the relationship between the drag force on an
object moving through air and the speed of the object.

6.05 Determine the terminal speed of an object falling
through air.

Key Ideas

® When there is relative motion between air (or some _gther
fluid) and a body, the body experiences a drag force D that
opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of D
is related to the relative speed v by an experimentally deter-
mined drag coefficient C according to

D = 3CpAv?,

where p is the fluid density (mass per unit volume) and A
is the effective cross-sectional area of the body (the area

of a cross section taken perpendicular to the relative
velocity ¥).

® When a blunt object has fallen far enough through air, the |
magnitudes of the drag force D and the gravitational force F,
on the body become equal. The body then falls at a constant
terminal speed v, given by




Jomg R Prededicen/The I mage Besk) futty In et

As the cat's speed
increases, the upward
drag force increases

until it balances the .
gravitational force.
Falling il b
body
gl \ [
0
| H | -"'"':\) / — —
JdU e F E
- 4 4
I'!
v v
(a) (b) (o)

Figure 6.15 (Concepual Example
6.9) A skysurfer.




Table -1 Some Terminal Speeds in Air

Object Terminal Speed (m/s) 05% Distance® (m)
Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius = 1.5 mm) 7 6

Parachutist (typical) 5 3




Shape Drag
Coefficient

o Sphere — O 0.47
Drag Coefficient: I

Cone ——>» q 0.50

Cube —» 1.05
gt — > o
tong __ 0.82
.. Cylinder ’
Definition
Short 115
Cylinder ’

The drag coefficient Cq is defined as:

Streamlined
2F “’B"’org;“e — C_> 004
C — C — —d Streamlined 0.09
d 0 vQ A Half-body ~ 7 S
where: Measured Drag Coefficients
F 4 is the drag force, which is by definition the force component in the direction of the flow velocity

P is the mass density of the fluid,|”)
v is the speed of the object relative to the fluid and

A is the reference area.




Audi A6: 2011-present (Cd 0.26) ...
BMW i8: 2014 (Cd 0.26) ...
Mazda3 Sedan: 2012-present (Cd 0.26) ...

Mercedes-Benz B-Class: 2012-present (Cd 0.26) ...

Nissan GT-R, 2011a€"present (Cd 0.26) ...
Peugeot 508, 2011a€"present (Cd 0.25) ...
Hyundai Sonata Hybrid, 2013-present (Cd 0.25) ...
Toyota Prius, 2010-present (Cd 0.25)




Audi A6: 2011-present (Cd 0.26) ...
BMW i8: 2014 (Cd 0.26) ...
Mazda3 Sedan: 2012-present (Cd 0.26) ...

Mercedes-Benz B-Class: 2012-present (Cd 0.26) ...

Nissan GT-R, 2011a€"present (Cd 0.26) ...
Peugeot 508, 2011a€ present (Cd 0.25) ...
Hyundai Sonata Hybrid, 2013-present (Cd 0.25) ...
Toyota Prius, 2010-present (Cd 0.25)
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(a) Circular disc (Co= 1.15) (b) Cube (Ca= 1.05) (c) 80° cone (Cy=0.5)

_
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(d) Sphere {Co= 0.47) (e) Hemisphere (Co= 0.42) {f) Tear drop (Co= 0.05)




Particle Image velocimetry

(PIV)







Example

33. JEJ Assume the resistive force acting on a speed skater is
proportional to the square of the skater’s speed v and is
given by f= —kmv?, where kis a constant and m is the skat-
er’s mass. The skater crosses the finish line of a straight-
line race with speed v; and then slows down by coasting on
his skates. Show that the skater’s speed at any time ¢ after
crossing the finish line 1s v(f) = v,;/(1 + ktv;).




Example

Sample Problem 6.03 Terminal speed of falling raindrop

A raindrop with radius R = 1.5 mm falls from a cloud that is
at height 2 = 1200 m above the ground. The drag coefficient
C for the drop is 0.60. Assume that the drop is spherical
throughout its fall. The density of water p, is 1000 kg/m’,
and the density of air p, is 1.2 kg/m°.

(a) As Table 6-1 indicates, the raindrop reaches terminal
speed after falling just a few meters. What is the terminal
speed?




A raindrop with radius R = 1.5 mm falls from a cloud that is
at height A = 1200 m above the ground. The drag coefficient
C for the drop is 0.60. Assume that the drop is spherical
throughout its fall. The density of water p,, is 1000 kg/m’,
and the density of air p, is 1.2 kg/m’.

(a) As Table 6-1 indicates, the raindrop reaches terminal
speed after falling just a few meters. What is the terminal
speed?

KEY IDEA

The drop reaches a terminal speed v, when the gravitational
force on it is balanced by the air drag force on it, so its accel-
eration is zero. We could then apply Newton’s second law
and the drag force equation to find v,, but Eq. 6-16 does all
that for us.

Calculations: To use Eq. 6-16, we need the drop’s effective
cross-sectional area A and the magnitude F; of the gravita-
tional force. Because the drop is spherical, A is the area of a
circle (wR?) that has the same radius as the sphere. To find
F,, we use three facts: (1) F, = mg, where m is the drop’s
mass; (2) the (spherical) drop’s volume is V = $#R*; and
(3) the density of the water in the drop is the mass per vol-
ume, or p,, = m/ V. Thus, we find

E = Vp.g = 1nRp,g.

We next substitute this, the expression for A, and the given data
into Eq. 6-16. Being careful to distinguish between the air den-

sity p, and the water density p,,, we obtain

2F, 87Rp,g B

B 8Rp,.g
N CpA N 3CpmR

3Cp,

Ve

_ [®)AS5 X 103 m)(1000 kg/m*)(9.8 m/s?)
(3)(0.60)(1.2 kg/m’)
= 7.4 m/s = 27 km/h. (Answer)

Note that the height of the cloud does not enter into the
calculation.

(b) What would be the drop’s speed just before impact if
there were no drag force?

KEY IDEA

With no drag force to reduce the drop’s speed during the fall,
the drop would fall with the constant free-fall acceleration g,
so the constant-acceleration equations of Table 2-1 apply.

Calculation: Because we know the acceleration is g, the
initial velocity v, is 0, and the displacement x — x; is —h, we
use Eq.2-16 to find v:

v = V2gh = V/(2)(9.8 m/s?)(1200 m)
= 153 m/s = 550 km/h.

Had he known this, Shakespeare would scarcely have writ-
ten, “it droppeth as the gentle rain from heaven, upon the
place beneath.” In fact, the speed is close to that of a bullet
from a large-caliber handgun!

(Answer)



Sample Problem 6.04 Vertical circular loop, Diavolo

Largely because of riding in cars, you are used to horizon-
tal circular motion. Vertical circular motion would be a
novelty. In this sample problem, such motion seems to
defy the gravitational force.

In a 1901 circus performance, Allo “Dare Devil”
Diavolo introduced the stunt of riding a bicycle in a loop-
the-loop (Fig. 6-9a). Assuming that the loop is a circle with
radius R = 2.7 m, what is the least speed v that Diavolo and
his bicycle could have at the top of the loop to remain in
contact with it there? p= 3

Photograph reproduced with pemission of

Circus Wodd Museum




Diavolo
and bicycle

The net force

al

The normal force 7
N

is from the provides the
overhead loop. toward-the-center
acceleration.

(b)

Figure 6-8 (@) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the
loop.

Calculations: The forces on the particle when it is at the top
of the loop are shown in the free-body diagram of Fig 6-9b.
The gravitational force F_ is downward along a y axis; so is the
normal force Fy on the particle from the loop (the loop can
push down, not pull up); so also is the centripetal acceleration
of the particle. Thus, Newton’s second law for y components
(Foet, = ma,) gives us

—Fy— F,=m(—a)

2
and —Fy— mg = m(—%). (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that Fyy = 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for Fy in Eq. 6-19,solving for v,
and then substituting known values give us

Photograph reproduced with pemnission of

Circus Wodd Museum

v = VeR = V(9.8 m/s’)(2.7 m)

(a)

I = 5.1 m/s. (Answer)



Kyle Busch, driver of the #18 Snickers Toyota, leads Jeff Gordon, driver
of the #24 Dupont Chevrolet, during the NASCAR Sprint Cup Series
Kobalt Tools 500 at the Atlanta Motor Speedway on March 9, 2008 In
Hampton, Georgla. The cars travel on a banked roadway to help them
undergo circular motion on the turns. (Chris Graythen/Getty Images for

NASCAR)




Car in banked circular turn

The toward-the-
center force is due
7 to the tilted track.

Kyle Busch, driver of the #18 Snickers Toyota, leads Jeff Gordon, driver

of the #24 Dupont Chevrolet, during the NASCAR Sprint Cup Serles

Kobalt Tools 500 at the Atlanta Motor Speedway on March 9, 2008 In
Th. .

H: d roadway to help them
(a)

ud:rp dml; motion on the turns. (Chris Graythen/Getty Images for
NASCAR)

a car of mass m as it moves at a constant speed v of 20 m/s
around a banked circular track of radius R=190 m. (It is
a normal car, rather than a race car, which means that any
vertical force from the passing air is negligible.) If the fric-
tional force from the track is negligible, what bank angle @
prevents sliding?




The toward-the-
center force is due
to the tilted track.

(a)

Radial calculation: As Fig. 6-11b shows (and as you
should verify), the angle that force FN makes with the ver-
tical is equal to the bank angle @ of the track. Thus, the ra-
dial component Fy, is equal to Fy sin #. We can now write
Newton’s second law for components along the r axis
(F netr — mar) as

—Fysin @ = m(—v—z). (6-23)

R

We cannot solve this equation for the value of # because it
also contains the unknowns Fy and m.

Vertical calculations: We next consider the forces and ac-
celeration along the y axis in Fig. 6-11b. The vertical com-
ponent of the normal force is Fy, = Fy cos 6, the gravita-
tional force f on the car has the magnitude mg, and the
acceleration of the car along the y axis is zero. Thus we can

Tilted normal force
supports car and
provides the toward-
the-center force.

Track-level view
of the forces

The grawvitational force
pulls car downward.

write Newton'’s second law for components along the y axis

(Frety = may) as
Fycos 8§ — mg = m(0),

from which

Fycos 8 = mg. (6-24)
Combining results: Equation 6-24 also contains the
unknowns Fy and m, but note that dividing Eq. 6-23 by
Eq. 6-24 neatly eliminates both those unknowns. Doing so,
replacing (sin #)/(cos @) with tan @, and solving for # then
yield

2

= "'1—
6 = tan R

(20 m/s)?
(9.8 m/s2)(190 m)

-1

= 12°. (Answer)



Friction: toward the

Example : center

= y Normal force:
, Fy helps support car
Center T Car
< r
e o
R a Gravitational force:
7.-; pulls car downward
F

The toward-the-

center force is (a) Track-level view (#) Negative lift: presses

the frictional force. of the forces car downward

Figure _6;10 (a) A race car moves around a flat curved track at constant speed v. The frictional
force f, provides the necessary centripetal force along a radial axis r. (b) A free-body diagram
(not to scale) for the car, in the vertical plane containing r.

Figure 6-10a represents a Grand Prix race car of mass
m = 600 kg as it travels on a flat track in a circular arc of
radius R = 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift _F)L down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.) g "2

(a) If the car is on the verge of sliding out of the turn
when its speed is 28.6 m/s, what is the magnitude of the
negative lift fL acting downward on the car?




center

Normal force:
helps support car

Center /; Car
<t r
a Gravitational force:
pulls car downward
F,

The toward-the-
center force is (a) Track-level view (») Negative lift: presses
the frictional force. of the forces car downward

ienl7)

fsmax = usFy for f; leads us to

V2
”sFN =m (? ).

FN—mg—FL=O,
FN=mg+FL.

V2
FL:m(usR -g)

o0k ( (28.6 m/s)?
(600ke) {<0.75)(100 m)

= 663.7 N =~ 660 N. (Answer)

- 9.8 m/sz)




(b) The magnitude F; of the negative lift on a car depends
on the square of the car’s speed v?, just as the drag force
does (Eq. 6-14). Thus, the negative lift on the car here is
greater when the car travels faster, as it does on a straight
section of track. What is the magnitude of the negative lift
for a speed of 90 m/s?

F, is proportional to v2.

Calculations: Thus we can write a ratio of the negative lift
Fj g0 at v=90 m/s to our result for the negative lift F; at
v =28.6 m/s as

FL,QO (90 IIl/S)2

Fr  (28.6m/s)?*

Substituting our known negative lift of F; = 663.7 N and
solving for F o give us

Fj 99 =6572 N = 6600 N. (Answer)




Example

63. IF] A crate of weight F, is pushed by a

P
force P on a horlzontal floor as shown 0 \
in Figure P5.63. The coefficient of ‘

static friction is p,, and P is directed at
angle 6 below the horizontal. (a) Show
that the minimum value of P that will

move the crate is given by Figure P5.63
sy sec 6
P=
l — p,tan 6

(b) Find the condition on # in terms of p, for which motion
of the crate is impossible for any value of P.

ey



59.

Example

IEJ An amusement park
ride consists of a large verti-

cal cylinder that spins about
its axis fast enough that any
person inside is held up
against the wall when the
floor drops away (Fig. P6.59).
The coefficient of static fric-
tion between person and
wall is u,, and the radius of
the cylinder is R. (a) Show
that the maximum period of
revolution necessary to keep

Figure P6.59

the person from falling is T = (47m*Ru/g)"/%. (b) If the
rate of revolution of the cylinder is made to be somewhat
larger, what happens to the magnitude of each one of the
forces acting on the person? What happens in the motion
of the person? (c) If the rate of revolution of the cylinder is
instead made to be somewhat smaller, what happens to the
magnitude of each one of the forces acting on the person?

How does the motion of the person change?




Example

69.|FJ8 A car accelerates down a I

hill (Fig. P5.69), going from o &)
rest to 30.0 m/s in 6.00 s. A toy !
inside the car hangs by a string @/0

from the car’s ceiling. The ball —9
in the figure represents the toy,

of mass 0.100 kg The accel- Flgure P5.69
eration is such that the string
remains perpendicular to the

ceiling. Determine (a) the angle # and (b) the tension in
the string.




Example

67 In Fig. 6-51, a crate slides down an inclined right-angled
trough. The coefficient of kinetic friction between the crate and the

trough is ;. What is the acceleration of the crate in terms of w;, 6,
and g?

Figure 6-51 Problem 67.

g(sin@ — V2 py, cosf



Example

42. [EJ A child’s toy consists of a small
wedge that has an acute angle 6
(Fig. P6.42). The sloping side of
the wedge is frictionless, and an
object of mass m on it remains at
constant height if the wedge is
spun at a certain constant speed.
The wedge is spun by rotating,
as an axis, a vertical rod that is
firmly attached to the wedge at I
the bottom end. Show that, when

the object sits at rest at a point at

distance L up along the wedge, the

Figure P6.42

speed of the object must be v = (gL sin 6)"/2.



Example

98 InFHg.6-62,a 5.0 kg block is sent sliding up a plane inclined at
@ = 37° while a horizontal force F of magnitude 50 N acts on it.
The coefficient of kinetic friction between block and plane is 0.30.
What are the (a) magnitude and (b) direction (up or down the
plane) of the block’s acceleration? The block’s initial speed is 4.0
m/s. (¢) How far up the plane does the block go? (d) When it
reaches its highest point, does it remain at rest or slide back down
the plane?

Figure 6-62 Problem 98.



Example

61. Raindrops make an angle 6 with the vertical when viewed
through a moving train window (Fig. 3-52). If the speed
of the train is v, what is the speed of the raindrops in the
reference frame of
the Earth in which
they are assumed to
fall vertically?

FIGURE 3-52
Problem 61.




Example

78. A jet aircraft is accelerating at 3.8 m/s” as it climbs at an
angle of 18° above the horizontal (Fig. 4-67). What is the
total force that the cockpit seat exerts on the 75-kg pilot?

FIGURE 4-67
Problem 78.




Circular motion with friction

A small bead of mass m is given an initial velocity
of magnitude Ugon a horizontal circular wire. If
the coefficient of kinetic friction is Mk, determine
the distance travelled before the collar comes to

rest.




F=(m+ M)gtan(0)




P

mi + mo + m3)m29

(m? — m2)1/?



