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Motion in One Dimension




Kinematics

Kinematics

® |n kinematics, you are interested in the description
of motion

® Not concerned with the cause of the motion




Position and Displacement

A

Position Is defined Iin terms of
a frame of reference

Frame A: x>0 and x>0

FrameB: x <O but x >0

lonal, so generall

>
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Ax




Position and Displacement._.

Position Is defined in terms of
a frame of reference

® One dimensional, so
generally the x- or y-axis

Displacement measures the
change in position
® Represented as Ax (if

horizontal) or Ay (if
vertical)

® \ector quantity

+ or - is generally sufficient
_to indicate direction for one-




Displacement

(example)  m Displacement measures
the change in position

J represented as Ax or Ay
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Ax=+70m

Ax, = x,
=80m—-10m

=+70m

Ax, =x, —x,
=20m-80m

=—-60m



Distance or Displacement?

Distance may be, but is not necessarily, the
magnitude of the displacement
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Displacement

Distance




Position-time graphs

Position x(m) © 2002 Brooks Cole Publishing - a division of Thomson Learning
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ConcepTlest 1

An object (say, car) goes from one point in space
to another. After it arrives to its destination, its
displacement is

either greater than or equal to
always greater than

always equal to

either smaller or equal to
either smaller or larger

than the distance it traveled.




ConcepTlest 1

An object (say, car) goes from one point in space
to another. After it arrives to its destination, its
displacement is

either greater than or equal to
always greater than

always equal to

either smaller or equal to
either smaller or larger

than the distance it traveled.




ConcepTlest 1 (answer)

An object (say, car) goes from one point in space
to another. After it arrives to its destination, its
displacement is
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Average Velocity

It takes time for an object to undergo a displacement

The average velocity is rate at which the displacement
occurs

—

average

It Is a vector, direction will be the same as the direction
of the displacement (At is always positive)

® + or - is sufficient for one-dimensional motion




More About Average
Velocity

Units of velocity:

Units
S1 Meters per second (m/s)
CGS Centimeters per second (cm/s)

Note: other units may be given in a problem, but
generally will need to be converted to these




Example:

Suppose that in both cases truck
covers the distance in 10 seconds:

y © 2002 Brooks Cole Publishing - a division of Thomson Learning

Ax=+70m

_ Ax,  +70m

\% ==
1 average
JAVS 10s

0 10 20 30 40 50 60 =+7m / g
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Ax=-60m

_ Ax, -60m

% —_ -
2 average
At 10s

=-6m/s

x;=80m



Speed

Speed is a scalar quantity
® same units as velocity
® speed = total distance / total time

May be, but is not necessarily, the magnitude of
the velocity




Graphical Interpretation of Average
Velocity

Average velocity can be determined from a
position-time graph

Position x(m) © 2002 Brooks Cole Publishing - a division of Thomson Learning
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Instantaneous Velocity

Instantaneous velocity is defined as the limit of
the average velocity as the time interval becomes
infinitesimally short, or as the time interval
approaches zero

The instantaneous velocity indicates what is
pening at every point of time




Uniform Velocity

Uniform velocity is constant velocity

The instantaneous velocities are always the same

e All the instantaneous velocities will also equal the
average velocity




Graphical Interpretation of
Instantaneous Velocity

Instantaneous velocity is the slope of the tangent
to the curve at the time of interest

Position © 2002 Brooks Cole Publishing - a division of Thomson Learning
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Average vs Instantaneous Velocity
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ConcepTest 2

The graph shows position as a function of time
for two trains running on parallel tracks. Which
of the following is true:

at time tg both trains have the same velocity

both trains speed up all the time

both trains have the same velocity at some time before tg
train A is longer than train B

all of the above statements are true

U0 s

position

A

<~
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The graph shows position as a function of time
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ConcepTlest 2 (answer)

The graph shows position as a function of time
for two trains running on parallel tracks. Which
of the following is true:

1. at time tz both trains have the same velocity
2. both trains speed up all the time
both trains have the same velocity at some time before tg
4. train A is longer than train B
5. all of the above statements are true

position

A

<

Note: the slope of curve B is parallel to
line A at some point t<tp |




Average Acceleration

Changing velocity (non-uniform) means an
acceleration Is present

')

Average acceleration is the rate of change of the
velocity

Av

—_

aaverage — At -




Average Acceleration

When the sign of the velocity and the
acceleration are the same (either positive or
negative), then the speed is increasing

When the sign of the velocity and the
acceleration are opposite, the speed is
decreasing

Units

S1 Meters per second squared (m/s?)




Instantaneous and Uniform
Acceleration

Instantaneous acceleration is the limit of the
average acceleration as the time interval goes to

Z€ero

When the instantaneous accelerations are always
the same, the acceleration will be uniform

® The instantaneous accelerations will all be
| to the average acceleration




Graphical Interpretation of
Acceleration

Ave ra ge acceleratlon |S v © 2002 Brooks Cole Publishin
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Example 1: Motion

Diagrams

Uniform velocity (shown by red arrows maintaining the
same size)

Acceleration equals zero




Example 2:

v =g —_— —_— — —

Velocity and acceleration are in the same direction

Acceleration is uniform (blue arrows maintain the
same length)

elocity is increasing (red arrows are getting longer).

e




Example 3:

“‘; ‘.‘; “‘ ‘.‘ N “\-‘

Acceleration and velocity are in opposite directions

Acceleration is uniform (blue arrows maintain the
same length)

Velocity is decreasing (red arrows are getting shorter
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One-dimensional Motion With
Constant Acceleration

If acceleration is uniform (im ):

t

|
|
|
|
|
|
|
|
|
|
|
[
|
4

Shows v=|ocity as a function of acceleration and time



One-dimensional Motion With
Constant Acceleration

Used in situations with uniform acceleration

2

Vy

L

Ax =v t+—at

2
=V’ +2aAx

Y

V,=v,+at

AN

Velocity changes
uniformly!!

34



AVEERY { =

average

Gives displacement as a function of time, velocity and

acceleration
2 2
=V +2aAx

Vy

Gives velocity as a function of acceleration and 35
displacement



Summary of kinematic
equations

-8 Equations for Motion in a Straight Line
Under Constant Acceleration

Equation Information Given by Equation
v= v+ al Velocity as a function of time
Ax = %(vo + v)t Displacement as a function of velocity and time
Ax = vyt + %at2 Displacement as a function of time
v® = yy> + 2aAx  Velocity as a function of displacement

Note: Motion is along the x axis. At ¢ = 0, the velocity of the particle is vy.
© 2003 Thomson - Brooks/Cole




Near the surface of the Earth, all objects

experience approximately the same acceleration
due to gravity.

This is one of the most
common examples of
motion with constant

acceleration.




© Jim Sugar/CORBIS

Figure 2-12 A feather and an apple free

fall in vacuum at the same magnitude of
acceleration g. The acceleration increases
the distance between successive images. In
the absence of air, the feather and apple
fall together.

(a)

Copyright ©® 2005 Pearson Prentice Hall, Inc

In the absence of air
resistance, all objects
fall with the same
acceleration, although
this may be hard to tell
by testing in an
environment where
there is air resistance.




https://www.youtube.com/
watch?v=E43-CfukEgs

N



Acceleration
due to

W -p----r=0
y1=490m
(After 1.00 s)

y2=19.6 m
(After 2.00 s)
The acceleration due to
L gravity at the Earth’s
surface is approximately
9.80 m/s2.

y +-‘v

<<
a 2
(@) 40 Z
2 %0 :
= =
10 Galileo Galilei
Italian physicist and astronomer
(o) et e e e (1564-1642)

1(s)
Copyright © 2005 Pearson Prentice Hall, Inc.




Free Fall

All objects moving under the influence of only
gravity are said to be in free fall

All objects falling near the earth’s surface fall with
a constant acceleration

This acceleration is called the acceleration due to
gravity, and indicated by g




Acceleration due to Gravity

Symbolized by g

g = 9.8 m/s? (can use g = 10 m/s? for estimates)

g is always directed downward
® toward the center of the earth!!




Free Fall -- an Object
Dropped

Initial velocity Is zero

Frame: let up be positive

Use the kinematic equations
® Generally use y instead
o of x since vertical




Free Fall -- an Object
Thrown Downward

a=§g

e With upward being positive,
acceleration will be negative,
g =-9.8 m/s?

Initial velocity # O

e With upward being positive,
initial velocity will be
negative




Free Fall -- object thrown
upward

Initial velocity Is upward,

SO positive Voo

The instantaneous
velocity at the maximum
height Is zero

a = g everywhere in the
motion

® g s always
downward, negative




Thrown upward

The motion may be symmetrical
® then t,, = tyown
® then v, =-v,

The motion may not be symmetrical

® Break the motion into various parts
generally up and down




t=2.04s

Non-symmetrical ) e
Free Fall

t=4.08s
Ay=0
v=-20.0 m/s

Need to divide the
motion into segments

Possibilities include

e Upward and
downward portions

Bulusea uoswoy) Jo UOISIAIp B - Buiysiqnd 2109 s)o0.g 200Z ©

t=5.00s
® The symmetrical . ooy
portion back to the
release point and
then the non-
mmetrical
by tom,

- e



Combination Motions

Buluiea uoswoy] Jo UoISIAIp e - Bulysiiqngd 2109 s)}00.g Z00Z ©

Phase 2
a=-9.80 m/s’ 4

|

+y
Rocket &
fuel \
burns (
out
Phase 1

a=29.4m/s2

—

Maximum
hclgh" ymax
'Uj= 0

Phase 3
a=-9.80 m/s>

:

Rocket crashes
after falling

from ymax




Fun QuickLab: Reaction time

Co-worker’s
hand

Ruler

Bujuieay uoswoyy jo uoisiap e - Buysigng 310 sx00Ig Z00Z ©

Your hand




example

39. Why s the following situation
impossible? Emily challenges
her friend David to catch a
$1 bill as follows. She holds
the bill vertically as shown in
Figure P2.39, with the cen-
ter of the bill between but
not touching David’s index
finger and thumb. Without
warning, Emily releases the Figure P2.39

bill. David catches the bill

without moving his hand downward. David’s reaction time

is equal to the average human reaction time.

® Cengage Learning/George Semple




Another Look at Constant Acceleration*

The first two equations in Table 2-1 are the basic equations from which the others
are derived. Those two can be obtained by integration of the acceleration with
the condition that a is constant. To find Eq. 2-11, we rewrite the definition of ac-
celeration (Eq. 2-8) as

dv =adt.

We next write the indefinite integral (or antiderivative) of both sides:

[iv= [at

Since acceleration a is a constant, it can be taken outside the integration. We obtain

[ =

or v=at+ C. (2-25)

To evaluate the constant of integration C, we let =0, at which time v = v,.
Substituting these values into Eq. 2-25 (which must hold for all values of t,
including ¢ = 0) yields

vo=(a)(0)+ C=C




To derive Eq. 2-15, we rewrite the definition of velocity (Eq. 2-4) as
dx=vdt
and then take the indefinite integral of both sides to obtain

[i=[va

Next, we substitute for v with Eq. 2-11:

[dx = [(vo + at) dt.

Since v, is a constant, as is the acceleration a, this can be rewritten as
[ fi

x=vo +5at’ + C, (2-26)

Integration now yields

where (' is another constant of integration. At time = 0, we have x = x;,. Sub-
stituting these values in Eq. 2-26 yields x, = C'. Replacing C" with x; in Eq. 2-26
gives us Eq. 2-15.




Graphical Integration in Motion Analysis

Integrating Acceleration. When we have a graph of an object’s acceleration a

versus time f, we can integrate on the graph to find the velocity at any given time.
Because a is defined as a = dv/dt, the Fundamental Theorem of Calculus tells us that

L
Vi — vy = La dt. (2-27)

The right side of the equation is a definite integral (it gives a numerical result rather
than a function), v is the velocity at time £,, and v, is the velocity at later time #,. The
definite integral can be evaluated from an a(f) graph, such as in Fig. 2-14a. In particular,

I 1
J @ di = ( area between acceleration curve). (2-28)

ty and time axis, from #; to f,

If a unit of acceleration is 1 m/s* and a unit of time is 1 s, then the correspond-
ing unit of area on the graph is

(1 m/s?)(1s)=1m/s,
which is (properly) a unit of velocity. When the acceleration curve is above the time
axis, the area is positive; when the curve is below the time axis, the area is negative.

Integrating Velocity. Similarly, because velocity v is defined in terms of the
position x as v = dx/dt, then

L
X;— Xg= Lv dt, (2-29)




Integrating Velocity. Similarly, because velocity v is defined in terms of the
position x as v = dx/dt, then

L
X;— Xp= Lv dt, (2-29)

where x; is the position at time #;, and x, is the position at time #;. The definite
integral on the right side of Eq. 2-29 can be evaluated from a v() graph, like that
shown in Fig. 2-14b. In particular,

1, ;
] b d = (arca between velocity curvc). (2-30)

ty and time axis, from #; to t,

If the unit of velocity is 1 m/s and the unit of time is 1s, then the corre-
sponding unit of area on the graph is

(I1m/s)(1s)=1m,

which is (properly) a unit of position and displacement. Whether this area is posi-
tive or negative is determined as described for the a(f) curve of Fig. 2-14a.

a Area
, This area gives the
l } ‘ change in velocity.
fo f
(a)
v
Area This area gives the

| change in position.

(5

Figure 2-14 The area between a plotted
curve and the horizontal time axis, from
time f, to time f,, is indicated for (a) a
graph of acceleration a versus f and (b) a
graph of velocity v versus £.




Examples:

\I’ /) This is a graph
of position x + o
versus time t. gl Vag= slope of this line —
_rise_Ax
2 “run At End of interval

To find average velocity, 1
Figure 2-4 Calculation of the first draw a straight line, 0 l 3 : e
average velocity betweent =1 start to end, and then -1 This vertical distance is how far
and ¢ = 4 s as the slope of the line find the slope of the 9 / / it moved, start to end:
that connects the points on the line. V.4 Ax=2m-(4m)=6m
x(t) curve representing those times. -3 x{ f)
The swirling icon indicates that a —4 === T N . .
figure is available in WileyPLUS . ool disiance is how lmg
as an animation with voiceover. Start of interval / At=4s-1s=3s
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Slopes on the x versus ¢ graph
are the values on the v versus f graph.
Slopes on the v versus { graph
are the values on the a versus f graph.
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Sample Problem 2.03 Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by
x=4-2T7t+ 1,

with x in meters and 7 in seconds.

(a) Because position x depends on time ¢, the particle must
be moving. Find the particle’s velocity function v(f) and ac-
celeration function a(t).




(1) To get the velocity function v(f), we differentiate the po-
sition function x(f) with respect to time. (2) To get the accel-
eration function a(r), we differentiate the velocity function
v(t) with respect to time.

Calculations: Differentiating the position function, we find

v = —27 + 312, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a = +6t, (Answer)
with @ in meters per second squared.

(b) Is there ever a time when v = 0?

Calculation: Setting v(f) = Oyields

0= 27 + 3%
which has the solution
t=*3s. (Answer)
Thus, the velocity is zero both 3 s before and 3 s after the

clock reads 0.

| (c) Describe the particle’s motion for ¢ = 0.




Table 2-1 Equations for Motion with

Constant Acceleration”
Equation Missing
£l Number Equation Quantity
2-11 vV =v, + at X — X
2-15 X — Xp = vt + %at2 v
2-16 vi=vi+ 2a(x — xp) t
2-17 x —xp=3(vy + V)t a

2-18 X — xo = vt — 3at’ Vo

“Make sure that the acceleration is indeed
constant before using the equations in this table.

M Checkpoint 4

The following equations give the position x(¢) of a particle in four situations: (1) x =
3t — 4;(2) x = —5¢> + 4% + 6;(3) x = 2/t* — 4/t;(4) x = 5¢* — 3.To which of these
situations do the equations of Table 2-1 apply?




https://www.youtube.com/
watch?v=4J[9m--|2F4

gplanetvids.com



Figure 2-10 A jet airplane, a car, and a motorcycle just after
accelerating from rest.

A popular web video shows a jet airplane, a car, and a mo-
torcycle racing from rest along a runway (Fig. 2-10). Initially
the motorcycle takes the lead, but then the jet takes the lead,
and finally the car blows past the motorcycle. Here let’s focus
on the car and motorcycle and assign some reasonable values
to the motion. The motorcycle first takes the lead because its
(constant) acceleration a,, = 8.40 m/s? is greater than the car’s
(constant) acceleration a. = 5.60 m/s%, but it soon loses to the
car because it reaches its greatest speed v,, = 58.8 m/s before
the car reaches its greatest speed v, = 106 m/s. How long does
the car take to reach the motorcycle?

motorcycle

E
e Motorcycle — >//
400

Acceleration —
ends _\
200 ]

Car

L~
o//

15

0 oy 10
t(s)
Figure 2-11 Graph of position versus time for car and motorcycle.

20



Sample Problem 2.05 Time for full up-down flight, baseball toss

In Fig. 2-13, a pitcher tosses a baseball up along a y
an initial speed of 12 m/s.

axis, with

g 3

(a) How long does the ball take to reach its maximum height?

ght, baseball toss B)allq y
v=0at

highest point

S

Lo

During ascent,
a=-g

speed decreases,
and velocity
becomes less

positive

N During
descent,
a=-g
speed
increases,
and velocity
becomes
more
negative

- - e - ———— - - -

U == o o e o - ————

Figure 2-13 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

— y=0



Table 2-1 Equations for Motion with

Constant Acceleration”
Equation Missing
Number Equation Quantity
7 2-11 v =v,+at X — X
2-15 X — Xp = vt + %at2 v
2-16 vi=vi+ 2a(x — xp) t
2-17 x —xp=3(vy + V)t a

2-18 X — xo = vt — sat’ Vo

“Make sure that the acceleration is indeed
constant before using the equations in this table.

8 The following equations give the velocity
v(t) of a particle in four situations: (a) v = 3;(b)
v=4t2+2t—6:(c)v =3t —4;(d) v =5 - 3.
To which of these situations do the equations of
Table 2-1 apply?




«8 —%& @ Panic escape. Figure 2-24 shows a general situation in
which a stream of people attempt to escape through an exit door
that turns out to be locked. The people move toward the door at
speed v, = 3.50 m/s, are each d = 0.25 m in depth, and are sepa-
rated by L =1.75m. The

arrangement in Fig. 2-24 l—1—| |—1—| |~—L—]

occurs at time ¢ = 0. (a) At %% * )
what average rate does the "@'
layer of people at the door  —|; |~ —=|g4|= —|dl|=
increaset what time Locked

does the layer’s depth reach door
5.0 m? (The answers reveal
how quickly such a situation
becomes dangerous.)

Figure 2-24 Problem 8.




w12 —%& Traffic shock wave. An abrupt slowdown in concen-
trated traffic can travel as a pulse, termed a shock wave, along the
line of cars, either downstream (in the traffic direction) or up-
stream, or it can be stationary. Figure 2-25 shows a uniformly
spaced line of cars moving at speed v = 25.0 m/s toward a uni-
formly spaced line of slow cars moving at speed v, = 5.00 m/s.
Assume that each faster car adds length L = 12.0 m (car length
plus buffer zone) to the line of slow cars when it joins the line, and as-
sume it slows abruptly at the last instant. (a) For what separation dis-
tance d between the faster cars does the shock wave remain
stationary? If the separation is twice that amount, what are the (b)
speed and (c) direction (upstream or downstream) of the shock wave?

L+ d——sf=—L—f+— d——={=—L—f=—L—}+—L—~|

Figure 2-25 Problem 12.
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Module 2-4 Constant Acceleration
*23 ssM An electron with an initial velocity v, = 1.50 X 10° m/s

enters a region of length LL = 1.00
cm where it is electrically acceler- Nonaccelerating Accelerating

ated (Fig. 2-26). It emerges with region regton
v = 5.70 x 10° m/s. What is its ac-
celeration, assumed constant? L
——————— ——— e ———
Path of
electron

Figure 2-26 Problem 23.
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74 A pilot flies horizontally at 1300 km/h, at height # =35m
above initially level ground. However, at time ¢ = 0, the pilot be-
gins to fly over ground sloping upward at angle # = 4.3° (Fig. 2-41).
If the pilot does not change the airplane’s heading, at what time ¢
does the plane strike the ground?

Figure 2-41 Problem 74.







69. Two thin rods are fastened to ®
the inside of a circular ring as
shown in Figure P2.69. One \
rod of length D is vertical, and \
the other of length L makes an \
angle 0 with the horizontal. The

13 two rods and the ring lie in a \
vertical plane. Two small beads L

are free to slide without friction
along the rods. (a) If the two ©

beads are released from rest

simultaneously from the posi- Figure P2.69
tions shown, use your intuition

and guess which bead reaches the bottom first. (b) Find
an expression for the time interval required for the red
bead to fall from point ® to point © in terms of gand D.
(c) Find an expression for the time interval required for
the blue bead to slide from point ® to point © in terms of
g, L, and 6. (d) Show that the two time intervals found in
parts (b) and (c) are equal. Hint: What is the angle between
the chords of the circle ® ® and ® ©? (e) Do these results
surprise you? Was your intuitive guess in part (a) correct?
This problem was inspired by an article by Thomas B.
Greenslade, |r.,, “Galileo’s Paradox,” Phys. Teach. 46, 294
(Mav 2008).
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66.

e —— .y —— i —— % = ———— ——

A man drops a rock into a well. (a) The man hears the
sound of the splash 2.40 s after he releases the rock from
rest. The speed of sound in air (at the ambient tempera-
ture) is 336 m/s. How far below the top of the well is the
surface of the water? (b) What If? If the travel time for
the sound is ignored, what percentage error is introduced
when the depth of the well is calculated?




