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Chapter 11

Rolling, Torque, and Angular Momentum

What Is Physics?

Rolling as Translation and Rotation Combined t/
The Kinetic Energy of Rolling

The Forces of Rolling

Torque

Angular Momentum v
Newton's Second Law in Angular Form

The Angular Momentum of a Rigid Body

Conservation of Angular Momentum

ecession of a Gyroscope
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What is Physics?

B =

The rolling motion of wheels

B alamy stock photo



Rolling as Translation and Rotation
Combined

a tan

One light source at the center of a The center The point on the
rolling cylinder and another at one moves in a rim moves in the
point on the rim illustrate the straight line path called a cycloid

different paths these two points take. (green line). (red curve).

Henry Leap and Jim Lehman




Cycloid

The general parametric equations for a cycloid are: x=at - asin(t) , y=a - a cos(t)

Trochoid - b<a

The general parametric equations for a frochoid are : x=at - bsin(t) , y=a - b cos(t)

Trochoid --- b>a




The Kinetic Energy of Rolling




The motion of a rolling object can be modeled as a
combination of pure translation and pure rotation

Pure rotation Pure translation Combination of
translation and rotation

=vemt Ro =2vu0y







Example:

The rolling motion of an object on a rough incline
(energy method)
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Example:

For the solid sphere shown in Active Figure 10.26, calculate the translational speed of the center of mass at the bottom of
the incline and the magnitude of the translational acceleration of the center of mass.

2gh 1/2
'UCM = [l + (%MRz/MR2) ] = (%gh)l/2

h = xsin 6.

Vol = Sgxsin 6
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[Rolling Friction]

Normal force (F,)

Applied force (F,)

Mass (m)

N

Rotational velocity (®)
E— N Translational

velocity (v)

>
Sphere _/Rolling friction (F_)
>

Table

F

R

\/ Acceleration due
Weight (W) to gravity (g)

= p,mg




The Forces of Rolling

Friction and Rolling

i
(smooth rolling motion).

Veom = OR




Rolling Down a Ramp

Forces I:_; sin 6 and f, Fysin @
determine the linear

acceleration down
the ramp.

Forces Fp and Fy cos 6
merely balance.

/

The torque due to 7;
determines the
angular acceleration
around the com.
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Example

Sample Problem 11.01 Ball rolling down a ramp

A uniform ball, of mass M = 6.00 kg and radius R, rolls
smoothly from rest down a ramp at angle 6 = 30.0° (Fig. 11-8).

(a) The ball descends a vertical height # = 1.20 m to reach the
bottom of the ramp. What is its speed at the bottom?

(b) What are the magnitude and direction of the frictional
force on the ball as it rolls down the ramp?
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Kf‘i‘ UfzK,+ Uia

Glom®? + sMvZ,) + 0 =0 + Mgh,

Veom = V(Pgh = V()(9.8 m/s?)(1.20 m)

=4.10 m/s. (Answer)
gsin 6 g sin 6
Aeomax — — 2 — 2 2 2
1 + Iom/MR 1 + sMR“/MR
_ (98m/s?)sin30.0° 350 m/2 -
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acom,x 2 ) acom,x 2
o= s R2 = _§MR - _gMacom,x

—£(6.00 kg)(—3.50 m/s?) = 8.40 N. (Answer)




Example:

A cylindrically symmetric spool of mass m and radius R sits at rest on a horizon-
tal table with friction (Fig. 10.27). With your hand on a massless string wrapped
around the axle of radius 7, you pull on the spool with a constant horizontal force
of magnitude T'to the right. As a result, the spool rolls without slipping a distance
L along the table with no rolling friction.

(A) Find the final translational speed of the center of mass of the spool.




(1) W= AK=AK__ + AK,,

€+ L=L( + 1/R).

r
(2) W= 'IL(I + E)

- Y1 9 L 179
TL 1+R sMucy T+ slw

2TL(1 + r/R)

m(1 + I/ mR?)



Movie: Pulled Spool

https://www.youtube.com/watch?v=CRg39Bh6jfo




The critical angle:

6. = cos'R,/R,.

http://www.usna.edu/Users/physics/mungan/
Publications/TPT.pdf




Cross 7into F.
TorqueTis in the
positive z direction.

;(redmwn, with
tail at origin)

(0 *
T=T X F (torque defined).
7= rFsin ¢,

T=rF,




Angular Momentum

T=7xP) C=FxP=m(7%x7V)

7 (redrawn, with
tail at origin)

€ = rmv sin ¢,

(a)




The angular momentum Lofa
partcle about an axis is a vector
perpendicular to both the
particle’s position T relative to
the axis and its momentum p.

z




Example:




Newton’s Second Law in Angular

Form
1—3" = ﬂ (single particle)
net d'
ot

== — (single particle).




e

—=m(7 Xd)=T X mad.




Example:

( =r.my v = gt

€ = rymv = Dmgt.

7= DF, = Dmg.




The Angular Momentum of a
System of Particles

E=?1+?2+?3+"'+?n=ia.

i=1




The Angular Momentum of a Rigid Body
Rotating About a Fixed Axis (1)

Ly =ripi L; =m; (mzvz) Uy = T .

_ 2
L; =m;r;w

L =Iw
d dw
aL. _ o _
dt dt

_ Rotational form of Newton's p
second law




A right hand rule:

Using your right hand, 1) curl your '_'_L /_L

fingers in the direction of the = .. 8

rotation >

2) Your thumb points in the direction | ;

of the angular momentum. { Y
iy, —




Example:

A particle moves in the xy plane in a circular
path of radius r as shown in Figure 11.5. Find
the magnitude and direction of its angular

momentum relative to an axis through O when
its velocity is V.




L = morsin 90° = mor

This value of Lis constant because all three factors on the right are constant. The direction of Lalsois constant, even
though the dlrectmn of p p = mv v keeps changing. To verify this statement, apply the right-hand rule to find the direction
of L=T x P = mr X vin Figure 11.5. Your thumb points out of the page, so that is the direction of L. Hence, we can
write the vector expression L= (mor) k. If the particle were to move clockwise, L would point downward and into the
page and L= —(mon)k. A particle in uniform circular motion has a constant angular momentum about an axis through

the center of its path.




The Angular Momentum of a Rigid Body
Rotating About a Fixed Axis

i = (r)(p)(sin 90°) = (r;)(Am; v;),

€. = €;sin @ = (r;sin 6)(Am; v;) = r,; Am; v,

L, = E b = 2 Am;vin; = zlA’"i(wr.Li)r.Li

1
=w(iAm,-ri,). V =wr,




The Angular Momentum of a Rigid
Body
Rotating About a Fixed Axis (1)

L =1Iw (rigid body, fixed axis).

More Corresponding Variables and Relations for Translational
and Rotational Motion®

Translational Rotational

Force F Torque T(=7 x F)
Linear momentum r Angular momentum (=7 xp)
Linear momentum® P(=2p) Angular momentum®” L(=2ZX¢)
Linear momentum® P=Mv,, Angular momentum® L=lw

. ~ _ dP . TR |
Newton's second law” Frat = - Newton's second law® Toet = 3

(

Conservation law? P = aconstant | Conservation law* L = a constant




Example:

A sphere of mass m; and a block of mass m, are connected by a light cord that passes
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of

the thin rim is M. The spokes of the pulley have negligible mass. The block slides on
a frictionless, horizontal surface. Find an expression for the linear acceleration of

the two objects, using the concepts of angular momentum and torque.

Figure 11.6 (Example 11.4)
When the system is released, the
sphere moves downward and
the block moves to the left.




5 T = migR B

_ _ 2, 0 .
L=1lw=MRw= MR(R("}) = M Rv Figure 11.6 (Example 11.4)
When the system is released, the
sphere moves downward and

the block moves to the left.

the total angular momentum of (1) L= mwpR+ myovR+ MvR= (my + my, + M)uR

E
dt

D Tem =
m,gR = %[(m, + my + M)vR]

- (2) mgR= (ml + my + M)R@-

\"- A ' dt

m,g

3 =
()a ml+m2+M




Conservation of Angular
Momentum

Toet = dL/dt)
T=0 di:/dl — i A

L = aconstant (isolated system).

net angular momentum) _ (net angular momentum)
at some initial time 7, / | atsome later time 7, /°

E,- = Ef (1solated system).




Conservation laws:

i
I

(if there are no energy transfers across the system boundary)

(if the net external force on the system is zero)

Ey

— —
P;= ps
-

f

(if the net external torque on the system is zero)




Example:
I,

& f (1solated system).




Example:

1. The angular speed w, we seek is related to the final
angular momentum L, of the composite body about
the stool’s rotation axis by Eq. 11-31 (L = lw).

2. The initial angular speed o,;, of the wheel is related
to the angular momentum L, of the wheel’s rota-
tion about its center by the same equation.

3. The vector addition of Lyand L,, gives the total an-

gular momentum L, of the system of student, stool,
and wheel.

4. As the wheel is inverted, no net external torque acts
on that system to change Ltot about any vertical axis.
(Torques due to forces between the student and the
wheel as the student inverts the wheel are internal to
the system.) So, the system’s total angular momen-
tum is conserved about any vertical axis.

—




Lw""’ Lwh,f= Lb,i + Lwh,b

th — 2L‘.h‘".

Initial Final




Example:

A father of mass m and his daughter of mass m, sit on opposite ends of a seesaw at equal distances from the pivot at the
center (Fig. 11.9, page 328). The seesaw is modeled as a rigid rod of mass M and length € and is pivoted without friction.
At a given moment, the combination rotates in a vertical plane with an angular speed .

(A) Find an expression for the magnitude of the system’s angular momentum.

¥

42N

mg




A% 02 (M
—1—2M€2+ ](5) +m,(§) :T(S + m,+ md)
2
L=1Iw= %(%'I+ my+ md)w

(B) Find an expression for the magnitude of the angular acceleration of the system when the seesaw makes an angle 6
with the horizontal.




€
Tp= mg B 0 (?f out of page)

¢
Ta= —mg cos 6 (7, into page)

B D Text B 2(m;— my)gcos
I e[(M/3) + my+ my]

(44




ey (M
I=5ME + med® + m,,(;) = —(— + md) + md*
D Text = Tyt Ta= mygdcos ) — smyg ¥ cos O

3 D Tex B (m;d — 3m;€)gcos 6
1 (/4 [(M/3) + m,] + md?

(44

The seesaw is balanced when the angular acceleration is zero. In this situation, both father and daughter can push off
the ground and rise to the highest possible point.

(mjd — gmy€)gcos

Find the required position of the father by setting @ = 0: a= (@/D[(M/3) + m)] + m /dz =0
m, e
d—im=0 - d=|—)=
i My ( mf) 9

In the rare case that the father and daughter have the same mass, the father is located at the end of the seesaw, d = €/2.




Bicycle Wheel
Gyroscope




Precession of a Gyroscope

(1) z

dr
dr

-

= Mgrsin 90° = Mgr

Circular path
taken by head
of Lvector




Circular path

taken byhead dL = 7 dt.
of Lvector |

dL = rdt = Mgr dt.

@ dL  Mgrdt
A= L e




Precession of a Gyroscope (2)

dL = 7, dt,

—

dl. = L sin ¢ db,

(O = do/dt,

do = dL/L sin ¢

0 — I dL T
L sin ¢ dt L sin ¢

Thet = |F X Mg| = rMgsing L




A small mass m attached to the end of a string revolves in a circle on a frictionless tabletop. The
other end of the string passes through a hole in the table (the figure (Figure 1) ). Initially, the mass

revolves with a speed v1 = 2.3 m/s in a circle of radius r1 = 0.80 m. The string is then pulled slowly
through the hole so that the radius is reduced to r2 = 0.48 m.

What is the speed, v2, of the mass now?




» A wooden block of mass M resting on a frictionless horizontal surface is attached to a rigid rod of length I and of
negligible mass. The rod is pivoted at the other end. A bullet of mass m traveling parallel to the horizontal surface and
perpendicular to the rod with speed v hits the block and becomes embedded in it.

» (a) What is the angular momentum of the bullet-block system?

» (b) What fraction of the original kinetic energy is lost in the collision?




Example:

A wooden rod of length of 40 cm and mass of 1 kg can rotate about the axis perpendicular to the rod and
passing through the center of the rod. One end of the rod gets hit by a projectile of mass of 10 g at the
speed of 200 m - s! in the direction perpendicular to both the axis and the rod. Determine the angular
speed of the rod after the projectile gets stuck in it.

Note: We assume that the projectile first very quickly buries into the rod and then the system starts
moving with the angular speed we are solving for.

http://physicstasks.eu/



Example:

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick of
length 4.0 m that is lying flat on nearly frictionless ice as
shown in the overhead view of Figure 11.12a. The disk strikes
at the endpoint of the stick, at a distance r = 2.0 m from
the stick’s center. Assume the collision is elastic and the disk
does not deviate from its original line of motion. Find the
translational speed of the disk, the translational speed of the

stick, and the angular speed of the stick after the collision.
The moment of inertia of the stick about its center of mass 1s
1.33 kg - m>.

Figure 11.12 (Example
11.9) Overhead view of
a disk striking a stick

in an elastic collision.
(a) Before the collision,
the disk moves toward

~ the stick. (b) The colli-
sion causes the stick to
rotate and move to the
right.

Before

After




Before

After

Analyze First notice that we have three unknowns, so we need three equations to solve simultaneously.

Apply the isolated system model for momentum to MUy = Mgy + M,
the system and then rearrange the result: (1) my(vg — v4) = myy,
Apply the isolated system model for angular momen- —rmyy = —rmg,t o
tum to the system and rearrange the result. Use an
axis passing through the center of the stick as the
rotation axis so that the path of the disk is a distance
r= 2.0 m from the rotation axis:

(2) —rmy(v,; — vdf) = lw

Apply the isolated system model for energy to the sys- %mdvd,-z — %mdvdjz - %m,v,2 e %Ia)2
tem, rearrange the equation, and factor the left side: B) myv, — v a/)(” +v,) = mo2+ Io?
d\"di di df sYs

Multiply Equation (1) by rand add to Equation (2): rmy(vy; — vg) = TMY,
—rmy(vy; — vy) = Iw
0=mrmuo, + lo



Solve for w:

Divide Equation (3) by Equation (1):

Substitute Equation (4) into Equation (5):

Substitute v, from Equation (1) into
Equation (6):

Solve for v, and substitute numerical
values:

Substitute numerical values into
Equation (4):

Solve Equation (1) for vdfand substitute
numerical values:

rmu,

4 o=-—

mvg — va)(va + v4) _ mp” + Jo?
mvg — vdf) mgu
Iw?*

mU

5) v,;+ vy= v, t

B rim,
6) vyt vy=v|\1+ 7

m r’m,
vy + vd,-—Ev, =v|l+ 7

B 20

“%T1+ (m/my) + (Pm/])
B 2(3.0m/s) — 1.3m/
“ 1+ (1.0kg/2.0kg) + [(20m)(1.0kg)/1.38 kg - m?2] ~ °
. (20 m)(1.0 kg)(1.83 m/s) g

0 = 133 kg - 3 = —2.0rad/s

= Es . =30m/ 1'Okg(lz'. /s) = 23m/
vq—vﬁ mdvs— om/Ss 2.0kg o IMN/S) — o IN/S




35.

Find the net torque on the wheel in Figure P10.35 about
the axle through O, taking ¢ = 10.0 cm and # = 25.0 cm.

100N

Figure P10.35




Example:

Figure P10.86

IE] A cord is wrapped around a pulley that is shaped like
a disk of mass m and radius r. The cord’s free end is con-
nected to a block of mass M. The block starts from rest
and then slides down an incline that makes an angle 6 with
the horizontal as shown in Figure P10.86. The coefficient

of kinetic friction between block and incline is y. (a) Use

energy methods to show that the block’s speed as a func-
tion of position d down the incline is

B \/4Mgd(sin 6 — pcosf)
v m+ 2M

(b) Find the magnitude of the acceleration of the block in
terms of u, m, M, g, and 6.




Example

IE] A uniform, hollow, cylin-
drical spool has inside radius
R/2, outside radius R, and
mass M (Fig. P10.81). It is
mounted so that it rotates
on a fixed, horizontal axle.
A counterweight of mass m
is connected to the end of
a string wound around the
spool. The counterweight
falls from rest at t = 0 to a
position y at time f. Show Figure P10.81
that the torque due to the

friction forces between spool and axle is

2y 5y
= Ri(e ) - Mo




Example:

[E] Review. A conical pendulum consists of a bob of mass
m in motion in a circular path in a horizontal plane as
shown in Figure P11.16. During the motion, the support-
ing wire of length € maintains a constant angle 6 with the
vertical. Show that the magnitude of the angular momen-
tum of the bob about the vertical dashed line is

(ng€3 sin* 0)“2

L= cos f

Figure P11.16




Example:

EJ A wad of sticky clay with mass m and veloc-
ity v, is fired at a solid cylinder of mass M and radius R
(Fig. P11.39). The cylinder is initially at rest and is mounted
on a fixed horizontal axle that runs through its center of
mass. The line of motion of the projectile is perpendicu-
lar to the axle and at a distance d < R from the center.
(a) Find the angular speed of the system just after the clay
strikes and sticks to the surface of the cylinder. (b) Is the
mechanical energy of the clay—cylinder system constant in
this process? Explain your answer. (c) Is the momentum of
the clay-cylinder system constant in this process? Explain
your answer.

Figure P11.39




its frictionless hinges. (a) Before it hits the door, does the
bullet have angular momentum relative to the door’s axis
of rotation? (b) If so, evaluate this angular momentum.
If not, explain why there is no angular momentum. (c) Is
the mechanical energy of the bullet—door system constant
during this collision? Answer without doing a calculation.
(d) At what angular speed does the door swing open imme-
diately after the collision? (e) Calculate the total energy
of the bullet—door system and determine whether it is less
than or equal to the kinetic energy of the bullet before the
collision.

Hit_lge
18.0 kg ~

o —

0.005 00 kg JJ

Figure P11.41 An overhead view of a bullet striking a door.



Example:

. [El A rigid, massless rod has three particles with equal
masses attached to it as shown in Figure P11.49. The rod
is free to rotate in a vertical plane about a frictionless
axle perpendicular to the rod through the point P and
is released from rest in the horizontal position at ¢ = 0.
Assuming mand d are known, find (a) the moment of iner-
tia of the system of three particles about the pivot, (b) the
torque acting on the system at { = 0, (c¢) the angular accel-
eration of the system at ¢ = 0, (d) the linear acceleration
of the particle labeled 3 at t = 0, (e) the maximum kinetic
energy of the system, (f) the maximum angular speed
reached by the rod, (g) the maximum angular momentum
of the system, and (h) the maximum speed reached by the
particle labeled 2.

Figure P11.49




Bl A projectile of mass m moves to the right with a
speed v, (Fig. P11.51a). The projectile strikes and sticks to
the end of a stationary rod of mass M, length d, pivoted
about a frictionless axle perpendicular to the page through
O (Fig. P11.51b). We wish to find the fractional change of
kinetic energy in the system due to the collision. (a) What
is the appropriate analysis model to describe the projec-
tile and the rod? (b) What is the angular momentum of
the system before the collision about an axis through 0?
(c) What is the moment of inertia of the system about an
axis through O after the projectile sticks to the rod? (d) If
the angular speed of the system after the collision is w,
what is the angular momentum of the system after the col-
lision? (e) Find the angular speed w after the collision in
terms of the given quantities. (f) What is the kinetic energy
of the system before the collision? (g) What is the kinetic
energy of the system after the collision? (h) Determine the
fractional change of kinetic energy due to the collision.

7 T
M Q) — —I .i ®
d 0
L
8 b
Figure P11.51

Example:




Example:

IE] A solid cube of wood of side 2a and mass M is resting
on a horizontal surface. The cube is constrained to rotate
about a fixed axis AB (Fig. P11.62). A bullet of mass m and

Figure P11.62

speed v is shot at the face opposite ABCD at a height of
4a/3. The bullet becomes embedded in the cube. Find the
minimum value of v required to tip the cube so that it falls
on face ABCD. Assume m <<< M.




Example:
1l

Figure P11.63

EE] A solid cube of side 2a and mass M is sliding on a fric-

tionless surface with uniform velocity v as shown in Fig-

ure P11.63a. It hits a small obstacle at the end of the table

that causes the cube to tilt as shown in Figure P11.63b.
_ Find the minimum value of the magnitude of ¥V such that
the cube tips over and falls off the table. Note: The cube
undergoes an inelastic collision at the edge.




Example:

«+13 @ Nonuniform ball. In Fig. 11-
36, a ball of mass M and radius R Figure 11-36 Problem 13.

rolls smoothly from rest down a ramp and onto a circular loop of
radius 0.48 m. The initial height of the ball is # = 0.36 m. At the
loop bottom, the magnitude of the normal force on the ball is
2.00Mg. The ball consists of an outer spherical shell (of a certain
uniform density) that is glued to a central sphere (of a different
uniform density). The rotational inertia of the ball can be ex-
pressed in the general form 7 = BMR? but Bis not 0.4 as it is for a
ball of uniform density. Determine S.




Example:

«+15 @ —%& A bowler throws a

bowling ball of radius R =11cm
along a lane. The ball (Fig. 11-38)
slides on the lane with initial speed -~ -

Veomo = 8.5 m/s and initial angular Fllllll'e 11-38 Problem 15
speed wy = 0. The coefficient of ki-
netic friction between the ball and the lane is 0.21. The kinetic fric-
tional force f; acting on the ball causes a linear acceleration of the
ball while producing a torque that causes an angular acceleration
of the ball. When speed v, has decreased enough and angular
speed w has increased enough, the ball stops sliding and then rolls
smoothly. (a) What then is v, in terms of ®? During the sliding,
what are the ball’s (b) linear acceleration and (c) angular accelera-
tion? (d) How long does the ball slide? (e) How far does the ball
slide? (f) What is the linear speed of the ball when smooth rolling
begins?




Example:

««67 (@ Figure 11-59 is an over-

head view of a thin uniform rod of

length 0.600 m and mass M rotating

horizontally at 80.0 rad/s counter-

clockwise about an axis through its center. A particle of mass
M/3.00 and traveling horizontally at speed 40.0 m/s hits the rod
and sticks. The particle’s path is perpendicular to the rod at the
instant of the hit, at a distance d from the rod’s center. (a) At
what value of 4 are rod and particle stationary after the hit?
(b) In which direction do rod and particle rotate if d is greater
than this value?

i

Figure 11-59 Problem 67.

|
|
I
Rotation axis N\ |./— Particle }
J



Example:

66 @ In Fig. 11-58, a small 50 ¢
block slides down a frictionless sur-
face through height # =20cm and
then sticks to a uniform rod of mass
100 g and length 40 cm. The rod pivots
about point O through angle #
before momentarily stopping. Find 6.

;
/|

Figure 11-58 Problem 66.




Example:

«60 In Fig.11-53,a 1.0 g bullet is fired
into a 0.50 kg block attached to the end
of a 0.60 m nonuniform rod of mass
0.50 kg. The block—rod—bullet system
then rotates in the plane of the figure,
about a fixed axis at A. The rotational
inertia of the rod alone about that axis
at A is 0.060 kg - m* Treat the block as a
particle. (a) What then is the rotational
inertia of the block—-rod-bullet system
about point A? (b) If the angular speed
of the system about A just after impact
is 4.5 rad/s, what is the bullet’s speed
just before impact?

oA

Rod

o—» Block

Bullet
Figure 11-53 Problem 60.



Example:

71 ssm In Fig. 11-60, a constant 7
horizontal force F,, of magnitude 12 o
N is applied to a uniform solid cylin- Fishing line

der by fishing line wrapped around
the cylinder. The mass of the cylinder
is 10 kg, its radius is 0.10 m, and the

cylinder rolls smoothly on the hori- Figure 11-60 Problem 71.
zontal surface. (a) What is the mag-

nitude of the acceleration of the center of mass of the cylinder? (b)
What is the magnitude of the angular acceleration of the cylinder
about the center of mass? (c) In unit-vector notation, what is the
frictional force acting on the cylinder?




Example:

81 ssm A uniform wheel
of mass 10.0 kg and radius
0.400 m is mounted rigidly
on a massless axle through
its center (Fig. 11-62). The
radius of the axle is 0.200
m, and the rotational inertia
of the wheel-axle combi-
nation about its central axis Figure 11-62 Problem 81.

is 0.600 kg -m?%. The wheel is

initially at rest at the top of a surface that is inclined at angle 6 =
30.0° with the horizontal; the axle rests on the surface while the
wheel extends into a groove in the surface without touching the
surface. Once released, the axle rolls down along the surface
smoothly and without slipping. When the wheel-axle combination
has moved down the surface by 2.00 m, what are (a) its rotational
kinetic energy and (b) its translational kinetic energy?




Example:

58. (II) A ball of mass M and radius r, on the end of a thin
massless rod is rotated in a horizontal circle of radius R
about an axis of rotation AB, as shown in Fig. 10-58.
(a) Considering the mass of the ball to be concentrated at
its center of mass, calculate its moment of inertia about AB.
(b) Using the parallel-axis theorem and considering the
finite radius of the ball, calculate the moment of inertia of
the ball about AB. (¢) Calculate the percentage error intro-

duced by the point mass approximation for r, = 9.0 cm and
Ry = 1.0m.

FIGURE 10-58
Problem 58.



Example:

96. If a billiard ball is hit in just the right way by a cue stick, the
ball will roll without slipping immediately after losing
contact with the stick. Consider a billiard ball (radius r,
mass M) at rest on a horizontal pool table. A cue stick
exerts a constant horizontal force F on the ball for a
time  at a point that is a height h above the table’s surface
(see Fig. 10-68). Assume that the coefficient of kinetic friction
between the ball and table is py . Determine the value for A
so that the ball will roll without slipping immediately after
losing contact with the stick.

( /T
‘ .
h \ )
FIGURE 10-68 ‘&

Problem 96.




Example:

102, A crucial part of a piece of machinery starts as a flat
uniform cylindrical disk of radius Ry and mass M. It then
has a circular hole of radius R drilled into it (Fig. 10-73).
The hole’s center is a distance A from the center of the disk.
Find the moment of inertia of this disk (with off-center
hole) when rotated about its center, C. [Hint: Consider a
solid disk and “subtract™ the hole; use the parallel-axis
theorem.]

FIGURE 10-73
Problem 102.




Example:

32. B Many machines employ cams for various purposes, such
as opening and closing valves. In Figure P10.32, the cam is
a circular disk of radius R with a hole of diameter R cut
through it. As shown in the figure, the hole does not pass
through the center of the disk. The cam with the hole cut
out has mass M. The cam is mounted on a uniform, solid,
cylindrical shaft of diameter R and also of mass M. What is
the kinetic energy of the cam—shaft combination when it is
rotating with angular speed w about the shaft’s axis?




Example:

53.|[E0 A uniform solid disk of radius R and mass M is free
to rotate on a frictionless pivot through a point on its rim
(Fig. P10.53). If the disk is released from rest in the position
shown by the copper-colored circle, (a) what is the speed of
its center of mass when the disk reaches the position indi-
cated by the dashed circle? (b) What is the speed of the
lowest point on the disk in the dashed position? (c) What
If? Repeat part (a) using a uniform hoop.

Figure P10.53




Example:

X1 Review. An object with a mass of m = 5.10 kg is
attached to the free end of a light string wrapped around
a reel of radius R = 0.250 m and mass M = 3.00 kg. The
reel is a solid disk, free to rotate in a vertical plane about
the horizontal axis passing through its center as shown in
Figure P10.51. The suspended object is released from rest
6.00 m above the floor. Determine (a) the tension in the
string, (b) the acceleration of the object, and (c) the speed
with which the object hits the floor. (d) Verify your answer
to part (c) by using the isolated system (energy) model.




Example:

67.| JEJ A long, uniform rod of length L and mass M is pivoted
about a frictionless, horizontal pin through one end. The
rod is nudged from rest in a vertical position as shown in
Figure P10.67. At the instant the rod is horizontal, find
(a) its angular speed, (b) the magnitude of its angular
acceleration, (c¢) the x and y components of the accelera-
tion of its center of mass, and (d) the components of the
reaction force at the pivot.

Figure P10.67




Example:

72. [EJ The reel shown in Figure P10.72 has radius R and
moment of inertia /. One end of the block of mass m is con-
nected to a spring of force constant k, and the other end is
fastened to a cord wrapped around the reel. The reel axle
and the incline are frictionless. The reel is wound coun-
terclockwise so that the spring stretches a distance d from
its unstretched position and the reel is then released from
rest. Find the angular speed of the reel when the spring is
again unstretched.

Figure P10.72



Example:

73.|[E] Review. A string is wound around "
a uniform disk of radius R and mass  } |
M. The disk is released from rest with :
the string vertical and its top end tied
to a fixed bar (Fig. P10.73). Show that
(a) the tension in the string is one third
of the weight of the disk, (b) the mag-
nitude of the acceleration of the cen-
ter of mass is 2g/3, and (c) the speed
of the center of mass is (4gh/3)"/? after
the disk has descended through distance A. (d) Verify your
answer to part (c) using the energy approach.

Figure P10.73




Example:

77. [EJ A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P10.77. It starts from
rest with the lowest point of the sphere at height i above
the bottom of the loop of radius R, much larger than r.
(a) What is the minimum value of & (in terms of R) such
that the sphere completes the loop? (b) What are the force
components on the sphere at the point Pif h = 3R?

Solid sphere of mass m
and radius r << R.

Figure P10.77




85. JEJ A spool of thread consists of a cylinder of radius R, with
end caps of radius R, as depicted in the end view shown in
Figure P10.85. The mass of the spool, including the thread,
is m, and its moment of inertia about an axis through its
center is I. The spool is placed on a rough, horiiontal sur-
face so that it rolls without slipping when a force T acting to
the right is applied to the free end of the thread. (a) Show
that the magnitude of the friction force exerted by the sur-
face on the spool is given by

I+mR1R2
S= 7 | T
I+TI¢R2

(b) Determine the direction of the force of friction.

Figure P10.85



88. A plank with a mass M = 6.00 kg rests on top of two iden-
tical, solid, cylindrical rollers that have R = 5.00 cm and
m = 2.00 kg (Fig. P10.88). The plank is pulled by a constant
horizontal force F of magnitude 6.00 N applied to the end
of the plank and perpendicular to the axes of the cylinders
(which are parallel). The cylinders roll without slipping on
a flat surface. There is also no slipping between the cylin-
ders and the plank. (a) Find the initial acceleration of the
plank at the moment the rollers are equidistant from the
ends of the plank. (b) Find the acceleration of the rollers

at this moment. (c) What friction forces are acting at this
moment?

Figure P10.88




71 ssm In Fig. 11-60, a constant
horizontal force Epp of magnitude 12
N is applied to a uniform solid cylin-
der by fishing line wrapped around
the cylinder. The mass of the cylinder
is 10 kg, its radius is 0.10 m, and the
cylinder rolls smoothly on the hori- Figure 11-60 Problem 71.
zontal surface. (a) What is the mag-

nitude of the acceleration of the center of mass of the cylinder? (b)
What is the magnitude of the angular acceleration of the cylinder
about the center of mass? (c) In unit-vector notation, what is the

frictional force acting on the cylinder?

> Eupp

\

Fishing line




88. A small mass m attached to the end of a string revolves in a
circle on a frictionless tabletop. The other end of the string
passes through a hole in the table (Fig. 8—62). Initially,
the mass revolves with a speed »; = 24 m/s in a circle
of radius r;, = 0.80 m. The string is then pulled slowly
through the hole so that the radius is reduced to r, = 0.48 m.
What is the speed, v,, of the mass now?

FIGURE 8-62
Problem 88.



91. A large spool of rope rolls on the ground with the end of
the rope lying on the top edge of the spool. A person grabs
the end of the rope and walks a distance £, holding onto it,
Fig. 8—64. The spool rolls behind the person
without slipping. What length of rope unwinds
from the spool? How far
does the spool’s center of
mass move?

FIGURE 8-64
Problem 91.




3 What happens to the initially sta-
tionary yo-yo in Fig. 11-25 if you pull it
via its string with (a) force F (the line
of action passes through the point of
contact on the table, as indicated),
(b) force F (the line of action passes

above the point of contact), and (c) force 1_7; (the line of action
passes to the right of the point of contact)?




Example 11-2: Clutch.

A simple clutch consists of two cylindrical plates that can be
pressed together to connect two sections of an axle, as needed, in
a piece of machinery. The two plates have masses M, = 6.0 kg and
My = 9.0 kg, with equal radii Ry = 0.60 m. They are initially
separated. Plate M, is accelerated from rest to an angular velocity
wy, = 7.2 rad/s in time At = 20 s. Calculate (a) the angular
momentum of M,, and (b) the torque required to have accelerated
M, from rest to w,. (c) Next, plate Mg, initially at rest but free to
rotate without friction, is placed in firm contact with freely
rotating plate M,, and the two plates both rotate at a constant
angular velocity ws,, which is considerably less than w;. Why does
this happen, and what is w,?




