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Physics
The most basic of all sciences!
® Physics:

The “Parent’ of all sciences!

® Physics =

The study the structure and dynamics of matter and fields




Modeling

>

v

Experiment vs Prediction « Results from modeling
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C H A P T E R 1

Measurement

Learning Objectives:

After reading this module, you should be able to . . .
1.01- |dentify the base quantities in the S| system.

1.02- Name the most frequently used prefixes for Sl
units.

1.03- Change units (here for length, area, and volume)
by using chain-link conversions.

1.04- Explain that the meter is defined in terms of the
speed of light in vacuum.




1. Measurements

Basis of testing theories in science

Need to have consistent systems of units for the
measurements

Uncertainties are inherent

Need rules for dealing with the uncertainties




P h VS ICS P FiNcCI D | €S are used in many practical applications, including

construction. As the photo on the right clearly shows, communication of physics principles

vetween ATChitects & Engineers 1s sometimes
essential if disaster is to be avoided!!




The Nature of Science
® Physics iIs an EXPERIMENTAL science!

Experiments & Observations:

® Are important first steps toward a scientific theory. It
requires imagination to tell what is important, to
develop a theory, & to test it in the laboratory.

Theories

® Are created to explain experiments & observations. Can
also make predictions

Experiments & Observations:
® Can tell if predictions are accurate.

® But, no theory can be absolutely 1009 verified!
® But a theory can be proven false.




Theory

A Quantitative (Mathematical) Description of
experimental observations.

e Not just WHAT is observed but WHY it is observed
as It 1Is and HOw It works the way It does.

Tests of Theories

1. Experimental Observations:

More experiments & more observation!!

2. Predictions




Model, Theory, Law

® Model: An analogy of a physical
phenomenon to something we are
familiar with.

® Theory: More detalled than a model. Puts
the model into mathematical language

Law

® A concise & general statement about how
nature behaves. Must be verified by many,
anlexpemments' Only a few laws.




How does a new theory get accepted?
® [t s Predictions:
Agree better with data than those of an old theory
® |t Explains:

A greater range of phenomena than old theory
Example

® Aristotle:
Believed that objects would return to rest once put in
motion.

® (Galileo:
Realized that an object put in motion would stay
In motion until some force stopped It.

® Newton:
Developed his Laws of Motion to put Galileo’ s

observations into mathematical language.




Measurement & Uncertainty;
Significant Figures
No measurement 1S exact.

There 1s always some uncertainty due to limited
instrument accuracy & difficulty reading results.

The photograph to the left
illustrates this — it would
w - be difficult to measure the
_ width of this wood to
"5"""' _ better than a

millimeter.




Measurement & Uncertainty

® Physics Is an EXPERIMENTAL science!

It finds mathematical relations between
physical quantities. It also expresses
those relations in math language.

This gives rise to LAWS & THEORIES

® [ xperiments are NEVER 100% accurate.

® They ALWAYS have UNCERTAINTY in the final result.

= Experimental Error.

® |t ;s common to state this precision (when
known). :




® Consider a simple measurement of the

width of a board. Suppose the result is
23.2 cm.

e However, suppose we know that our measurement Is
only accurate to an estimated 0.1 cm.

— The width Is written as (23.2£0.1) cm

+ 0.1 cm = Experimental Uncertainty

® The Percent Uncertainty 1s then:

_ +(0.1/23.2) x 100 = £ 0.4%




Significant Figures
(“sig figs™)

= The number of significant figures is the number of reliably known digits in a
number.

® |t is usually possible to tell The Number of Significant
Figures by the way the number is written:

23.21 cm has 4 significant figures

0.062 cm has 2 significant figures

(initial zeroes don’ t count)

80 km IS ambiguous:
It could have 1 or 2 significant figures.
If It has 3, it should be written 80.0 km.




Calculations Involving Several Numbers

When Multiplying or Dividing Numbers:

The number of significant digits in the result =

The same as the number used in the calculation which have the
fewest significant digits.

When Adding or Subtracting Numbers:

The answer 1s no more accurate than the least accurate number used.




Example e

e— /N.3em —m

(Not to scale!)

® (Calculate the area A of a board with dimensions

11.3cm & 6.8 cm.




Example e

e— /N.3em —m

(Not to scale!)
® (Calculate the area A of a board with dimensions
11.3 cm & 6.8 cm.
A=(11.3) X (6.8) = 76.84 cm?

11.3 has 3 sig figs & 6.8 has 2 sig figs

= A has too many sig figs!




Example -

(Not to scale!) — /3cm —
® (Calculate the area A of a board with dimensions
11.3 cm & 6.8 cm.
A=(11.3) % (6.8) = 76.84 cm?
11.3 has 3 sig figs & 6.8 has 2 sig figs
= A has too many sig figs!
Proper number of sig figs in the answer = 2

=  Round off 76.84 & keep only 2 sig figs

— A Reliable Answer for A = 77 cm?




=== (Calculators will not give you the
Duss|| right number of significant
=s==ss| figures; they usually give too

EE,'EE:@;EE many, but sometimes give too few
L f 2 fs = e . . ; oq s
mzaca  (especially if there are trailing zeroes
___after a decimal point).
| The top calculator shows the result of
E2=ecg 2.0/ 3.0.
BooGeo
et 4 The bottom calculator shows the result of
O OH N3 (E | 2 5 X 3 2

(b)
Copyright © 2005 Pearson Prentice Hall, Inc.

All digits on your calculator are NOT
significant!!




Conceptual Example 1-2:

Significant figures
Using a protractor, you measure an angle of 30°.

(a) How many significant figures should you quote in this
measurement?

(b) Use a calculator to find the cosine of the angle you
measured.

(a) Precision ~ 1° (not — . }

L BT B 1 i

So 2 sig figs & angle is ' | - - ';

30° (not 30.0°). \ T

(b) Calculator: cos(30°) = L ERBERY d) |
0.866025403. Butangle 1+ N\iE |
precision is 2 sig figsso | 2T [ i1 |

wer should also be 2 sig AREEEEF S Sa: BN

o
g p

S



Powers of 10 (Scientific Notation)

® [t is common to express very large or very small
numbers using power of 10 notation.

® Fxamples:
39,600 = 3.96 x 10%

(moved decimal 4 places to left)

0.0021 =2.1 x 103

(moved decimal 3 places to right)

_ PLEASE USE SCIENTIFIC NOTATION!!




Units, Standards, SI System

o All measured physical quant|t|es have
units.

® Units are VITAL in physics!!

® |n this cou r_se (and in most of the modern world, except
the USA!) We WIIl use (aimost) exclusively the SI
system of units.

SI = “Systéme International” (French)

More commonly called the “MKS
system (meter-kilogram-second) O MOl E Slmply,

“The Metric System




SI or MKS System

Defined in terms of standards for length, mass, & time

Length unit: Meter (m) (kilometer = km = 1000 m)

® Standard meter. Newest definition in terms of speed of light =
Lfength of Fc)l?th traveled by light in vacuum in (1/299,792,458)
of a second!

Time unit: Second (s)

® Standard second. Newest definition = time required for
9,192,631,770 oscillations of radiation emitted by cesium

atoms!

Mass unit: Kilogram (kg)

® Standard kilogram = Mass of a specific platinum-iridium alloy
cylinder kept at Intl Bureau of Weights & Measures in France




TABLE 1-4
Metric (Sl) Prefixes

Larger & smaller units defined from  Prefix  Abbreviation  Value

otta N 1pt

SI standards by powers of 10 & = =

exa E i

Greek prefixes — - —

tera T i
giga G 10°
These are the standard SI prefixes for indicating powers mega M 106
of 10. Many (k, c, m, p) are familiar; Y, Z, E, h, da, a, z, ~ BB k 10°
and y are rarely used. hecto h 10°
deka da 10!

deci d 107!

“centi (& {1074

“milli m g ©

“microf w 105%

nano n 1605

pico p iy

femto f fo="

atto a il

zepto z i

yocto y 0

" is the Greek letter “mu.”

Copyright © 2005 Pearson Prentice Hall, Inc.




Typical Lengths (approx.)

TABLE 1-1 Some Typical
Lengths or Distances
(order of magnitude)

Length Meters
(or Distance) (approximate)
Neutron or proton
(diameter) 107 m _ INEIGEN
Atom
(diameter) 107m
Virus [see Fig. 1-5a] 1077 m
Sheet of paper
(thickness) 107 m
Finger width 1072 m _ R
Football field length 10> m
Height of Mt. Everest
[see Fig. 1-5b] 10* m
Earth diameter 107 m
Earth to Sun 104 m
Earth to nearest star 10" m
Earth to nearest galaxy 10> m
Earth to farthest
galaxy visible 10 m




Typical Times (approx.)

TABLE 1-2 Some Typical Time Intervals

Time Interval Seconds (approximate)
Lifetime of very unstable subatomic particle 107% s
Lifetime of radioactive elements 107“site 107 s
Lifetime of muon 107° s
Time between human heartbeats 10% si(= 1s)
One day 10° s
One year 3108 s
Human life span 2 X 10° s
Length of recorded history 10t s

. Humans on Earth 10M s
Life on Earth 10" s
Age of Universe 108




Typical Masses (approx.)

TABLE 1-3 Some Masses

Object Kilograms (approximate)
Electron 1079 kg
Proton, neutron ——>—> 1072 kg
DNA molecule 107" kg
Bacterium 1071 kg
Mosquito 107 kg
Plum 107! kg
Human 10> kg
Ship B 10° kg
Earth 6 X 10** kg
Sun 2 x 10 kg

Galaxy 10Y kg




We will work only in the SI system, where the basic units are kilograms,
meters, & seconds.

TABLE 1-5 Sl Base Quantities Other systems of units:
and Units . _
cgs: units are grams, centimeters, &
Unit
Abbre- seconds.

Quantity Unit viation o ) .
e - . British (engineering) system
Tt i s (everyday US system): force
Mass kilogram kg instead of mass as one of its basic quantities,
Electric which are feet, pounds, & seconds.

current ampere A
Temperature  kelvin K
Amount

of substance mole mol
Luminous

intensity candela cd

Copyright © 2005 Pearson Prentice Hall, Inc.




Time

U n I ts Slcmmh’;.._ 'l\ e 7
® seconds, s in all systems

+4

e
o

e
no

Difference between length of
day and exactly 24 hours (ms)

1981 1982




One Second

Defined in terms of the oscillation of radiation
from a cesium atom

the duration of 9192631770 periods of the
radiation corresponding to the transition between
the two hyperfine levels of the ground state of the
cesium-133 atom

— XUAAY Hyperfine splitting of 1 electron
Xenon 54 core ‘\‘.‘.8 ‘\Q‘. the 6s electron level - ﬁ 2 spin
+ ‘ e P 7 nuclear
> ?"t ?‘; 2 spin
4400 /\/\/
= Wk \
Ee n=3 /ge /¢ [=9192631770Hz f=3 11 i
'

Cesium & %

with a precision of 1 second in 1.4 million years!
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Basic & Derived Quantities

® Basic Quantity = Must be defined in terms of a standard
(meter, kilogram, second,....).

® Derived Quantity = Defined in terms of combinations of
basic quantities

® Unit of speed (v = distance/time) = meter/second = m/s
e Unit of density (p=m/V) = kg/m?




Units and Equations

® |n dealing with equations, remember that the units
must be the same on both sides of an equation (otherwise, it
is not an equation)!

® Example: You go 90 km/hr for 40 minutes. How
far did you go?
® Ch. 2 equation from Ch. 2: x = vt.

® S0, v=90km/hr, t =40 min. To use this equation, first
convert t to hours:

t=(%)hr so, x=(90 km/hr) X [(%5)hr] = 60 km
. The hour unit (hr) has (literally) cancelled out in the
- numerator & denominator!




Converting Units

® As in the example, units in the numerator & the
denominator can cancel out (as in algebra)

® [llustration: Convert 80 km/hr to m/s
Conversions: 1 km = 1000 m; 1hr = 3600 s
= 80 km/hr =
(80 km/hr) (1000 m/km) (1hr/3600 s)

(Cancel units!)

80 km/hr = 22 m/s (22.222...m/s)

® Useful conversions:




¢/  Order of Magnitude; Rapid Estimating

® Sometimes, we are interested in only an
approximate value for a quantity. We are interested
In obtaining rough or order of magnitude estimates.

® Order of magnitude estimates: Made by rounding off all
numbers in a calculation to 1 sig fig, along with
power of 10.

® Can be accurate to within a factor of 10 (often better)




Masses of Various Objects

TABLE 1-3 Some Masses

(Approximate Values)
Mass (kg)
Observable ~ 1032
Universe
Milky Way ~10%2
galaxy
Sun 1.99 X 10%
Earth 5.98 X 102
Moon 7.36 X 1022
Shark ~10°
Human ~ 102
Frog ~107!
Mosquito ~107°
Bacterium ~1X 10713
Hydrogen 1.67 X 10~%7
atom

Electron

9.11 X 10731

Kilograms
Object (approximate)
Electron 10 kg
Proton, neutron 10 kg
DNA molecule 107 kg
Bacterium 10 P kg
Mosquito 107 kg
Plum 107! kg
Human 10 kg
Ship 108 kg
Earth 6 x 10 kg
Sun 2 x 10 kg
Galaxy 10" kg




Densities of Various Substances

Substance Density p (10° kg/m?) .
Painun Density
Gold 19.3

Uranium 18.7

Lead 11.3

Copper 8.92

Iron 7.86

Aluminum 2.70

Magnesium 1.75

Water 1.00

Air at atmospheric pressure 0.0012

_m
P="y

Mean density of Earth
5.52 g/cm?

Arsenic 5.727 g/cm3



TABLE 1-1 Some Typical Lengths or Distances

(order of magnitude)
Length (or Distance) Meters (approximate)
Neutron or proton (diameter) 10 m
Atom (diameter) 107%m
Virus [see Fig. 1-8a] 1077 m
Shekt of paper (thickness) 10* m
Finger width 102 m
Football field length 10° m
Height of Mt. Everest [see Fig. 1-8b] 10* m
Earth diameter 10" m
Earth to Sun 10" m
Earth to nearest star 10'® m
Earth to nearest galaxy 102 m
Earth to farthest galaxy visible 10 m




Approximate Values of Some Time Intervals

Time

Interval (s)
Age of the Universe 5 X 10%7
Age of the Earth 1.3 X 107
Average age of a college student 6.3 X 108
One year 3.2 X 107
One day (time interval for one revolution of the Earth about its axis) 8.6 X 10%
One class period 3.0 X 10°
Time interval between normal heartbeats 8 X 107!
Period of audible sound waves ~1073
Period of typical radio waves ~107°
Period of vibration of an atom in a solid ~10713
Period of visible light waves ~10715
Duration of a nuclear collision ~ 10722

Time interval for light to cross a proton ~ 1024




Sample Problem 1.01 Estimating order
of magnitude, ball of string

The world’s largest ball of string is about 2 m in
radius. To the nearest order of magnitude, what Is
the total length L of the string in the ball?




Calculations: Let us assume the ball is spherical with radius
R =2 m. The string in the ball is not closely packed (there
are uncountable gaps between adjacent sections of string).
To allow for these gaps, let us somewhat overestimate

the cross-sectional area of the string by assuming the
cross section is square, with an edge length d =4 mm.
Then, with a cross-sectional area of d” and a length L, the
string occupies a total volume of

V = (cross-sectional area)(length) = d*L.
This is approximately equal to the volume of the ball, given

by 37R?, which is about 4R® because = is about 3. Thus, we
have the following

Nucleus

Chromosome

d’L = 4R?,
4R 42m)
d> (4 X103 m)

=2X10°m=10°m = 10° km.
(Answer)

or =

(Note that you do not need a calculator for such a simplified
calculation.) To the nearest order of magnitude, the ball
contains about 1000 km of string!

Base pair

Histone 77/ ¢
proteins (T3 (&%, (&)
6 &

Nucleosomes




Example

Example 1.3 Analysis of a Power Law

Suppose we are told that the acceleration a of a particle
moving with uniform speed v in a circle of radius ris pro-
portional to some power of 7 say r”, and some power of v,
say v™. Determine the values of n and m and write the sim-
plest form of an equation for the acceleration.

Solution Let us take ato be

a = kr"y™

where k is a dimensionless constant of proportionality.
Knowing the dimensions of a, 7 and v, we see that the di-
mensional equation must be

L=Ln(£)m= Lrtm
T2 T ™

This dimensional equation is balanced under the conditions

n+m= 1 and m= 2
Therefore n = — 1, and we can write the acceleration ex-
pression as
2
v
a=kr 2= k—

r

When we discuss uniform circular motion later, we shall see
that k = 1 if a consistent set of units is used. The constant k
would not equal 1 if, for example, v were in km/h and you
wanted @ in m/s2.




Example

Example 1.5 Breaths in a Lifetime

Estimate the number of breaths taken during an average life
span.

Solution We start by guessing that the typical life span is
about 70 years. The only other estimate we must make in this
example is the average number of breaths that a person
takes in 1 min. This number varies, depending on ¥
the person is exercising, sleeping, angry, serene,
forth. To the nearest order of magnitude, we shall ¢
breaths per minute as our estimate of the average.
certainly closer to the true value than 1 breath per minuu
100 breaths per minute.) The number of minutes in a year is
approximately

400 days \ ( 25h \( 60 min | 5 .
lyr( 1y >(1day>( 1h )—6X10 min

Notice how much simpler it is in the expression above to
multiply 400 X 25 than it is to work with the more accurate
365 X 24. These approximate values for the number of days

in a year and the number of hours in a day are close

enough for our purposes. Thus, in 70 years there will be
(70 yr)(6 X 10° min/yr) = 4 X 107 min. At a rate of 10

breaths/min, an individual would take 4 X 10® breaths

in a lifetime, or on the order of 109 breaths.

What If? What if the average life span were estimated as
80 years instead of 70? Would this change our final estimate?

Answer We could claim that (80 yr)(6 X 10° min/yr) =

5 X 107 min, so that our final estimate should be 5 X 10®
breaths. This is still on the order of 10? breaths, so an order-
of-magnitude estimate would be unchanged. Furthermore,
80 years is 14% larger than 70 years, but we have overesti-
mated the total time interval by using 400 days in a year in-
stead of 365 and 25 hours in a day instead of 24. These two
numbers together result in an overestimate of 14%, which
cancels the effect of the increased life span!



Example




Example (volume of lake)




EXAMPLE 1-6 | ESTIMATE | Volume of a lake. Estimate how much water
there is in a particular lake, Fig. 1-10a, which is roughly circular, about 1 km
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume,
we can use a simple model of the lake as a cylinder: we multiply the average
depth of the lake times its roughly circular surface area, as if the lake were a

cylinder (Fig. 1-10b).
SOLUTION The volume V of a cylinder is the product of its height & times

the area of its base: V = hwr? where r is the radius of the circular base.” The
radius 7 is 3km = 500 m, so the volume is approximately

V = hmr? ~ (10m) X (3) X (5 X 10°m)’ =~ 8 X 10°m® ~ 10" m?,

where 7 was rounded off to 3. So the volume is on the order of 10" m’,
ten million cubic meters. Because of all the estimates that went into this
calculation, the order-of-magnitude estimate (10’ m?®) is probably better to
quote than the 8 X 10° m? figure.

NOTE To express our result in U.S. gallons, we see in the Table on the inside
front cover that 1liter = 10 m? = }gallon. Hence, the lake contains
(8 x 10° m3)(1 gallon/4 X 107 m®) =~ 2 x 10° gallons of water.




Example

FIGURE 1-11 Example 1-7.
Micrometer used for measuring
small thicknesses.




Example

EXAMPLE 1-7  ESTIMATE | Thickness of a sheet of paper. Estimate the
thickness of a page of this book.

APPROACH At first you might think that a special measuring device, a
micrometer (Fig. 1-11), is needed to measure the thickness of one page since
an ordinary ruler can not be read so finely. But we can use a trick or, to put it in
physics terms, make use of a symmetry: we can make the reasonable assump-
tion that all the pages of this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you
measure the thickness of the first 500 pages of this book (page 1 to page 500),
you might get something like 1.5 cm. Note that 500 numbered pages, counted
front and back, is 250 separate pieces of paper. So one sheet must have a
thickness of about

1.5cm

2% L 6% 1073 — 6% 1072
750 sheots 6 X 107 cm 6 X 107" mm,

FIGURE 1-11 Example 1-7.
Micrometer used for measuring or less than a tenth of a millimeter (0.1 mm).
small thicknesses. E—




Example

EXAMPLE 1-9 ESTIMATE | Estimating the radius of Earth. Believe it or

not, you can estimate the radius of the Earth without having to go into space
(see the photograph on page 1). If you have ever been on the shore of a large
lake, you may have noticed that you cannot see the beaches, piers, or rocks at
water level across the lake on the opposite shore. The lake seems to bulge out
between you and the opposite shore—a good clue that the Earth is round.
Suppose you climb a stepladder and discover that when your eyes are 10 ft (3.0 m)
above the water, you can just see the rocks at water level on the opposite shore.
From a map, you estimate the distance to the opposite shore as d ~ 6.1 km. Use
Fig. 1-14 with h = 3.0 m to estimate the radius R of the Earth.




of Earth

FIGURE 1-14 Example 1-9, but
not to scale. You can just barely see
rocks at water level on the opposite
shore of a lake 6.1 km wide if you
stand on a stepladder.




APPROACH We use simple geometry, including the theorem of Pythagoras,
ct=a" + b

where c is the length of the hypotenuse of any right triangle, and @ and b are
the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 1-14, the two sides are the radius of
the Earth R and the distance d = 6.1 km = 6100 m. The hypotenuse is approx-
imately the length R + h, where h = 3.0 m. By the Pythagorean theorem,

R* + d* =~ (R + h)? e
~ R? + 2hR + K.

We solve algebraically for R, after cancelling R* on both sides:

o d> — K (6100 m)* — (3.0m)?

f Earth
2h 60 m FIGURE 1-14 Ex:mple 1-9, but

not to scale. You can just barely see
rocks at water level on the opposite

= 6.2 X 106 m shore of a lake 6.1 km wide if you

stand on a stepladder.
= 6200 km.

NOTE Precise measurements give 6380 km. But look at your achievement!



Example

29. (IT) Estimate how long it would take one person to mow
a football field using an ordinary home lawn mower
(Fig. 1-15). (State your assumption, such as the mower
moves with a 1-km/h speed, and has a 0.5-m width.)

FIGURE 1-15
Problem 29.




Example

“37. (II) The speed v of an object is given by the equation
v = AP — Bt, where t refers to time. (a) What are the
dimensions of A and B? (b) What are the SI units for the
constants A and B?




Example

48. Hold a pencil in front of your eye at a position where its
blunt end just blocks out the Moon (Fig. 1-19). Make
appropriate measurements
to estimate the diameter
of the Moon, given that the

Earth—Moon distance i1s
3.8 X 10° km.

FIGURE 1-19
Problem 48. How big
is the Moon?



Example

45. Estimate the number of

jelly beans in the jar of
Fig. 1-18.

FIGURE 1-18
Problem 45. Estimate

the number of jelly
beans in the jar.




Example 1-9: Height
by triangulation. -

Estimate the height of the il N

" nE L EHLE o E

building shown by
“triangulation,  with the
help of a bus-stop pole

and a friend. (See how useful the

diagram is!)




Accuracy and Precision;
Measurement Uncertainties and
Errors

Systematic and statistical errors.

measuring equipment

Systematic and statistical errors.
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The quantity
o =+(e2) = J Z:(x+—xg)2 (1.8a)

is named standard deviation or root mean square devi-
ation. It equals the square root of the squared arithmetic
mean (e?)

@)=Y= %;m-mz (1.8b)

The smaller quantity

om = VE2 = ‘/nZZez

(1.8¢)

_1 2
= nJZﬁ:(xw X;)

is the mean error of the arithmetic mean T.




For the standard deviation of the individual results x; we
obtain the mean deviation of the arithmetic mean value

n
ol =

ENIIN b ek )i

n—1 n—1

. (1.13)

which can be obtained from measurements and is there-
fore a known quantity.

For the mean deviation of the arithmetic mean (also called
standard deviation of the arithmetic means) we get

(1.14)




Example

For 10 measurements of the period of a pendulum the fol-
lowing values have been obtained:

T, = 1.04s; 7, = 1.01s; T3 = 1.03s; T,
Ts = 098s; Ty = 1.00s; T7; = 1.01s; Ty
To = 0.99s; T1op = 0.98s.

The arithmetic mean is 7 = 1.00s. The deviations x; =
T; — T of the values T; from the mean T are
x; = 0.04s; x, = 0.01s; x3 = 0.03s; x4
x5 = —0.02s; x¢ = 0.00s; x7 = 0.01s; xg
X9 = —0.01 s; x30 = —0.02 s. This gives

0.99s;
0.97s;

—0.01s;
—0.03s;

S(T;— (T))* = =x) =46-107*s7.

The standard deviation is then

o= +/(46-10-4/9) = 2.26-10 s

and the standard deviation of the arithmetic mean is

om = /(46-10~4/90) = 0.715- 10 %s . B

Z(xi—f)z.

=X+ =X+
Xw X Om X n(n—l)




Significant Figures

A significant figure is one that is reliably known
All non-zero digits are significant

Zeros are significant when
® between other non-zero digits

® after the decimal point and another significant
figure

® can be clarified by using scientific notation

3 significant figures




Operations with Significant
Figures

Accuracy -- number of significant figures

Example:  meter stick:  +0.1cm

When multiplying or dividing, round the result to
the same accuracy as the least accurate
NS rement 2 significant

Example: rectangular plate: 4.5 cm by 7.3 em

area: Z’% 2 33 cm?

- When adding or subtracting, round the result to the P
nn number of deC|maI places of an




Example

560x 7.102 = 39.7712 ==> 39.8
3 s.t. 4.s. 1. so this will have 3 s.f.

15+ 3.155 = 4.754358 ==>4.8

2s.f. 4.s.1. so this will have 2 s.f.




