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Summary. We propose a novel method for analyzing precursory seismic data be-
fore an earthquake that treats them as a Markov process and distinguishes the
background noise from real fluctuations due to an earthquake. A short time (on the
order of several hours) before an earthquake the Markov time scale tM increases
sharply, hence providing an alarm for an impending earthquake. To distinguish a
false alarm from a reliable one, we compute a second quantity, T1, based on the
concept of extended self-similarity of the data. T1 also changes strongly before an
earthquake occurs. An alarm is accepted if both tM and T1 indicate it simultaneously.
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Calibrating the method with the data for one region provides a tool for predicting
an impending earthquake within that region. Our analysis of the data for a large
number of earthquakes indicate an essentially zero rate of failure for the method.
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1 Introduction

Earthquakes are complex phenomena to analyze. The interaction between the
heterogeneous morphology of rock and the mechanism by which earthquakes
occur gives rise to distinct characteristics in different parts of the world. Seis-
mic data as time series exhibit complex patterns, as they encode features of
the events that have occured over extended periods of time, as well as infor-
mation on the disordered morphology of rock and its deformation during the
time that the events were occuring. It is for such reasons that seismic records
appear seemingly chaotic.

Published reports indicate the existence of precursory anomalies preced-
ing earthquakes. The reported anomalies take on many different forms, and
contain aspects of seismic wave propagation in rock, and its chemical, hy-
drological, and electromagnetic properties. The spatio-temporal patterns of
seismicity, such as anomalous bursts of aftershocks, quiescence or accelerated
seismicity, are thought to indicate a state of progressive damage within the
rock that prepares the stage for a large earthquake. Numerous papers have
reported that large events are preceded by anomalous trends of seismic activ-
ity both in time and space. Several reports also indicate that seismic activity
increases as an inverse power of the time to the main event (sometimes re-
ferred to as an inverse Omori law for relatively short time spans), while others
document a quiescence, or even contest the existence of such anomalies at all
[1, 2, 3]. If such anomalies can be analyzed and understood, then one might
be able to forecast future large events.

There are two schools of thought on the length of the time period over
which the anomalies occur and accumulate. One school believes that the
anomalies occur within days to weeks before the main shock, but probably
not much earlier [4], and that the spatial precursory patterns develop at short
distances from impending large earthquakes. Proponents of this school look
for the precursory patterns in the immediate vicinity of the mainshock, i.e.,
within distances from the epicenter that are on the order of, or somewhat
larger than, the length of the main shock rupture.

The second school believes that the anomalies may occur up to decades

before large earthquakes, and at distances much larger than the length of
the main shock rupture, a concept closely linked to the theory of critical
phenomena [1, 2, 3] which was advocated [1, 2, 5, 6] as early as 1964 with a
report [5] on the pre-monitory increase in the total area of the ruptures in the
earthquake sources in a medium magnitude range, documenting the existence
of long-range correlations in the precursors (over 10 seismic source lengths)
with worldwide similarity. More recently, Knopoff et al.[7] reported on the
existence of long-range spatial correlations in the increase of medium-range
magnitude seismicity prior to large earthquakes in California.

Beginning in the late 1970s, models of rock rupture and their relation with
critical phenomena and earthquakes were pursued. Vere-Jones [8] pioneered
this approach. Hence, a method for the analysis of the data was introduced
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that, for certain values of its parameters, led to a power law (typical of crit-
ical phenomena) for the system’s time-to-failure. Allègre et al. [9] proposed
a percolation model of damage/rupture prior to an earthquake, emphasizing
the multiscale nature of rupture prior to a critical point which was similar to
a percolation threshold [10, 11]. Their model was actually just a rephrasing of
the real-space renormalization group approach to the percolation model devel-
oped by Reynolds et al. [12]. Similar ideas were also explored in a hierarchical
model of rupture by Smalley et al. [13]. Sahimi and co-workers [14, 15, 16]
proposed a connection between percolation, the spatial distribution of earth-
quakes’ hypocenters, and rock’s fracture/fault networks.

Sornette and Sornette [17] proposed an observable consequence of the crit-
ical point model of Allègre et al. [9] with the goal of verifying the proposed
scaling laws of rupture. Almost simultaneously, but following apparently an
independent line of thought, Voight [18] introduced the idea of a time-to-
failure analysis in the form of an empirical second-order nonlinear differential
equation, which for certain values of the parameters would lead to a time-to-
failure power law, in the form of an inverse Omori law. This failure was used
and tested later for predicting volcanic eruptions. Then, Sykes and Jaumé [19]
performed the first empirical study to quantify with a specific law an accelera-
tion of seismicity prior to large earthquakes. They used an exponential law to
describe the acceleration, and did not use or discuss the concept of a critical
earthquake. Bufe and Varnes [20] re-introduced a time-to-failure power law
to model the observed accelerated seismicity quantified by the so-called cu-
mulative Benioff strain. Their justification of the power law was a mechanical
model of material damage. They neither referred to nor discussed the concept
of a critical earthquake.

Sornette and Sammis [21] were the first to reinterpret the work of Bufe
and Varnes [20], and all the previous ones reporting accelerated seismicity,
within a model in which the occurence of large earthquakes is viewed as a
critical point phenomenon in the sense of the statistical physics framework of
critical phase transitions. Their model generalized significantly the previous
works in that the proposed critical point theory did not rely on an irreversible
fracture process, but invoked a more general self-organization of the stress
field prior to large earthquakes. Moreover, using insights from the critical
phenomena, Sornette and Sammis [21] generalized the power-law description
of the accelerated seismicity by considering complex scaling exponents which
result in log-periodic corrections to the scaling [21, 22, 23, 24, 25, 26]. Such a
generalized power law with log-periodic corrections was shown [27] to describe
the increase in the energy that rock releases as it undergoes fracturing. These
ideas were further developed by Huang et al. [28]. Empirical evidence for
these concepts was provided by Bowman et al. [29], who showed that large
earthquakes in California with magnitudes larger than 6.5 are systematically
preceded by a power-law acceleration of seismic activity in time over several
decades, in a spatial domain about 10-20 times larger than the impending
rupture length (i.e., of the order of a few hundred kilometers). The large event
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can, therefore, be viewed as a temporal singularity in the seismic history time
series. Such a theoretical framework implies that a large event results from the
collective behavior and accumulation of many previous smaller-sized events.
Similar analysis was reported by Brehm and Braile [30] for other earthquakes.

The work of Ouillon and Sornette [31] on mining-induced seismicity, and
Johansen and Sornette [32] in laboratory experiments, made similar conclu-
sions on systems of very different scales, in good agreement with the scale-
invariant phenomenology, reminiscent of systems undergoing a second-order
critical phase transition. In this picture, the system is subjected to an increas-
ing external mechanical solicitation. As the external stress increases, micro-
ruptures occur within the medium which locally redistribute stress, creating
stress fluctuations within the rock. As damage accumulates, fluctuations inter-
fere and become more and more spatially and temporally correlated, i.e., there
are more and more, larger and larger domains that are significantly stressed
and, therefore, larger and larger events can occur at smaller and smaller time
intervals. The accelerating spatial smoothing of the stress field fluctuations
eventually culminates in a rupture with a size on the order of the system’s
size. This is the final rupture of laboratory samples, or earthquakes breaking
through the entire seismo-tectonic domain to which they belong. This con-
cept was verified in numerical experiments led by Mora et al. [33, 34], who
showed that the correlation length of the stress field fluctuations increases
significantly before a large shock occurrs in a discrete numerical model.

More recently, Bowman and King [35] argued, based on empirical data,
that, in a large domain including the impending major event, and similar
to the critical domain proposed in Bowman et al. [29], the maximum size of
natural earthquakes increases with time up to the main shock. If one assumes
that the maximum rupture length at a given time is given by (or related to)
the stress field correlation length, then the work of Bowman and King [35]
shows that the correlation length increases before a large rupture. Note that
Keilis-Borok and co-workers [2] have also repeatedly used the concept of a
critical point, albeit in a broader and looser sense than its restricted meaning
used in the statistical physics of phase transitions.

So far we have discussed the case in which the stress rate is imposed on
a system. The problem is, however, more complex when the strain rate is
imposed. In this case, the system may not evolve towards a critical point. A
possible unifying view point between the two cases is to study whether the
dissipation of energy by the deteriorating system slows down or accelerates.
The answer to this question depends on the nature of the external loading
(an imposed stress, rather than strain, rate), the evolution of the system and
how the resulting evolving mechanical characteristics of the system interacts
with the external loading conditions. For a constant applied stress rate, the
dissipated energy rate diverges in general in a finite time leading to a critical
behavior. For a constant strain rate, on the other hand, the answer depends
on the damage law. For the Earth crust, the situation is in between the ideal
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constant strain and constant stress loading states. The critical point may then
emerge as a mode of localization of a global input of energy to the system.

The critical point approach leads also to an alternative physical picture
of the so-called seismic cycle. From the beginning of the cycle, small earth-
quakes accumulate and modify the stress field within the Earth crust, making
it correlated over larger and larger scales. When the correlation length reaches
the size of the local seismo-tectonic domain, a very large rupture may occur
which, together with its early aftershocks, destroys correlations at all spatial
scales. This is the end of the seismic cycle, and the beginning of a new one,
leading to the next large event. As earthquakes are distributed in size accord-
ing to the Gutenberg-Richter law, small to medium-size events are negligible
in the energetic balance of the tectonic system, which is dominated by the
largest final event. However, they are seismo-active in the sense that their
occurrence prepares that of the largest one. The opposite view of the seis-
mic cycle is to consider that it is the displacements of the large-scale tectonic
plate which dominates the preparation of the largest events, which can be
modelled to first order as a simple stick-slip phenomenon. In that case, all
the smaller-size events would be seismo-passive, in the sense that they would
reflect only the boundary loading conditions acting on isolated faults without
much correlations from one event to the other.

Summarizing, in the critical point approach to earthquakes, as the stress
on rock increases, micro-ruptures develop that redistribute the stress and gen-
erate fluctuations in it. As damage accumulates, the fluctuations become spa-
tially and temporally correlated, resulting in a larger number of significantly-
stressed large domains. The correlations accelerate the spatial smoothing of
the fluctuations, culminating in a rupture with a size on the order of the
system’s size, and representing the final state in which earthquakes occur.
Numerical and empirical evidence for this picture indicates that, similar to
critical phenomena, the correlation length of the stress-field fluctuations in-
creases significantly before a large earthquake.

Notwithstanding the advances that have been made, the concept of a crit-
ical earthquake concept remains only a working hypothesis: from an empirical
point of view, the reported analyses possess significant deficiencies and a full
statistical analysis establishing the confidence level of the hypothesis remains
to be performed. In this vain, Zoller et al. [36] and Zoller and Hainzl [37, 38]
recently performed novel and systematic spatio-temporal tests of the criti-
cal point hypothesis for large earthquakes based on the quantification of the
predictive power of both the predicted accelerating moment release and the
growth of the spatial correlation length, hence providing fresh support to the
concept.

In order to prove, or refute, the notion that a boundary between tectonic
plates is a truly critical system, one must check the existence or absence
of a build-up of cooperativity prior to a large event in terms of cumulative
(Benioff) strain. This means that one should make direct measurements of the
stress field and its evolution in space and time in the region in which a large
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earthquake is expected, compute its spatial correlation function, deduce the
spatial correlation length, and show that it increases with time as a power-law
which defines a singularity when the earthquake occurs. Unfortunately, such
a procedure is, at present, far beyond our technical observational abilities.
It is generally believed that large earthquakes nucleate at a depth of about
10-15 km, implying that the stress field and the correlations would have to be
measured at such depths in order to yield an unambiguous signature of what
is happening. Moreover, the tensorial stress field would have to be measured
with a high enough resolution in order to provide evidence of a clear increase of
the correlation length. Such measurements are clearly out of reach at present.

A predictive theory of earthquakes should be able to forecast, (1) when

and (2) where they occur in a wide enough region. It should also be able to
(3) distinguish a false alarm from a reliable one. In this paper we propose a
completely new method for predicting earthquakes which possesses the three
features. The method estimates the Markov time scale (MTS) tM of a seismic
time series - the time over which the data can be represented by a Markov
process [39, 40, 41, 42, 43, 44, 45]. As the seismic data evolve with the time,
so also does tM . We show that the time evolutioon of tM provides an effective
alarm a short time before earthquakes. The method distinguishes abnormal
variations of tM before the arrival of the P-waves, hence providing enough of a
warning for triggering a damage/death-avoiding response prior to the arrival
of the more damaging S-waves. To distinguish a false alarm from a real one,
we describe a second new method of analyzing seismic data which provides
a complementary method for predicting when an earthquake may happen.
An alarm for an earthquake is then accepted when both methods indicate
simultaneously that an earthquake is about to happen.

The paper is organized as follows. In the next section we introduce two
different methods for estimating the Markov time scale of seismic data. In
section III we show how the concept of the extended self-similarity (ESS)
may be used for analyzing seismic time series. A key quantity deduced from
the ESS analysis is a time scale T1 which is able to detect the change in the
correlations in the data, even with a small number of data points. Section IV
presents the results of the analysis of seismic data for several earthquakes.

2 Analysis of Seismic Time Series as Markov Process

We have developed two methods for analyzing seismic time series as Markov
processes and estimating their Markov time scale (MTS) tM . In what follows
we describe the two methods.

Method 1: In this method one first checks whether the seismic data follow
a Markov chain and, if so, measures the MTS tM (t). As is well-known, a given
dynamic process with a degree of stochasticity may have a finite or an infinite
MTS tM - the minimum time interval over which the data can be considered as
a Markov process. To estimate tM , we note that a complete characterization of
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the statistical properties of stochastic fluctuations of a quantity x(t) requires
the numerical evaluation of the joint probability distribution function (PDF)
Pn(x1, t1; · · · ;xn, tn) for an arbitrary n, the number of the data points in
the time series x(t). If x(t) is a Markov process, an important simplification
is made as Pn, the n-point joint PDF, is generated by the product of the
conditional probabilities P (xi+1, ti+1|xi, ti), for i = 1, · · · , n− 1. A necessary
condition for x(t) to be a Markov process is that the Chapman-Kolmogorov
(CK) equation,

P (x3, t3|x1, t1) =

∫
d(x2) P (x3, t3|x2, t2) P (x2, t2|x1, t1) , (1)

should hold for any value of t2 in the interval t3 < t2 < t1. Hence, one should
check the validity of the CK equation for various x1 by comparing the directly-
computed conditional probability distributions P (x3, t3|x1, t1) with the ones
computed according to right side of Eq. (1). The simplest way of determining
tM for stationary or homogeneous data is the numerical computation of the
quantity, S = |P (x3, t3|x1, t1)−

∫
dx2P (x3, t3|x2, t2)P (x2, t2|x1, t1)|, for given

x1 and x3, in terms of, for example, t2 − t1 (taking into account the possible
numerical errors in estimating S). Then, tM = t2− t1 for that value of t2− t1
for which S vanishes or is nearly zero (achieves a minimum).

Method 2: In second method the MTS is estimated using the least square
test. The exact mathematical definition of the Markov process is given by [46],
by

P (xk, xk|xk−1, tk−1; · · · ;x1, t1;x0, t0)

= P (xk, tk|xk−1, tk−1). (2)

Intuitively, the physical interpretation of a Markov process is that, it is a
process with no memory; it ”forgets its past.” In other words, only the most
nearby conditioning, say (xk, tk), is relevant to the probability of finding the
system at a particular state xk at time tk. Thus, the ability to predict the
value of x(t) at time t is not enhanced by knowing its values in steps prior to
the the most recent one. Therefore, an important simplification that can be
made for a Markov process is that, a conditional multivariate joint PDF can
be written in terms of the products of the simple two-parameter conditional
PDFs [46] as Eq.(3)

P (xk, tk;xk−1, tk−1; · · · ;x1, t1|x0, t0)

=

k∏
i=1

P (xi, ti|xi−1, ti−1). (3)

Here, we use the least square method to estimate the MTS of the fluctu-
ations in the seismic data. Testing Eq.(3) for large values of k is beyond the
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present computational capability. However, for k = 3, where we have three
points, the relation,

P (x3, t3|x2, t2;x1, t1) = P (x3, t3|x2, t2), (4)

should hold for any value of t2 in the interval t1 < t2 < t3.
A process is Markov if equation (4) is satisfied for a certain time sepa-

ration, with the MTS tM being, tM = t3 − t2. To measure the MTS we use
a fundamental theory of probability that allows us to write any three point
PDF in terms of conditional probability functions as,

P (x3, t3;x2, t2;x1, t1)

= P (x3, t3|x2, t2;x1, t1)P (x2, t2;x1, t1). (5)

Using the Markov Processes’ properties, and substituting (5), we obtain,

PMarkov(x3, t3;x2, t2;x1, t1)

= P (x3, t3|x2, t2)P (x2, t2;x1, t1). (6)

We then compute the deviations of PMarkov from that given by (5), using
the least square method:

χ2 =

∫
dx3dx2dx1×

[P (x3, t3;x2, t2;x1, t1)− PMarkov(x3, t3;x2, t2;x1, t1)]
2

σ2 + σ2
Markov

(7)

where σ2+σ2
Markov are the variance of the terms in the nominator. One should

then plot the reduced χ2, χ2
ν = χ2

N
, (N is the number of degrees of freedom),

as a function of time scale t3 − t2. The MTS is that value of t3 − t2 at which
χ2
ν is minimum.
Our analysis of seismic data (see below) indicates that the average tM for

the uncorrected background seismic time series is much smaller than that for
data close to an impending earthquake. Thus, at a certain time before an
earthquake, tM rises significantly and provides an alarm for the earthquake.
As we show below, the alert time ta is on the order of hours, and depends
on the earthquake’s magnitude M and the epicenter’s distance d from the
data-collecting station(s).

The sharp rise in tM at the moment of alarm is, in some sense, similar
to the increase in the correlation length ξ of the stress-field fluctuations in
the critical phenomena theories of earthquake, since tM is also the time over
which the events leading to an earthquake are correlated. Therefore, just as
the correlation length ξ increases as the catastrophic rupture develops, so also
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does tM . However, whereas it is exceedingly difficult to directly measure ξ,
tM is computed rather readily. Moreover, whereas ξ is defined for the entire

rupturing system over long times, tM is computed online (in real time), hence
reflecting the correlations of the most recent events that are presumably most
relevant to an impending earthquake.

Fig. 1. The structure function S0.1 against τ for a typical seismic time series,
indicating that the scaling region is small and less than one order of magnitude
variations in τ .

3 The Extended Self-Similarity of Seismic Data

To distinguish a false alarm that might be indicated by tM from a true one,
we have developed a second time-dependent function, which is compute based
on the extended self-similarity (ESS) of the seismic time series [47, 48]. This
concept is particularly useful if the time series for seismic data fluctuations
(or other types of time series) do not, as is often the case, exhibit scaling
over a broad interval. In such cases, the time interval in which the structure
function of the time series, i.e.,

Sq(τ) = 〈|x(t+ τ)− x(t)|q〉 , (8)

behaves as



Short-Term Prediction 11

Fig. 2. Generalized scaling analysis of a seismic time series. The structure functions
Sq are displayed versus S3 in the log-log scale.

Fig. 3. The structure function S0.1 against S3(τ) for two type of time series with
different scaling exponents.
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Sq(τ) ∼ τ ξq , (9)

is small, in which case the existence of scale invariance in the data can be
questioned. In Figure 1 the logarithmic plot of the structure function S0.1(τ)
versus τ for a typical set of data with small scaling region is shown. In such
cases, instead of rejecting outright the existence of scale invariance, one must
first explore the possibility of the data being scale invariant via the concept of
ESS. The ESS is a powerful tool for checking multifractal properties of data,
and has been used extensively in research on turbulent flows. Thus, when
analyzing the seismic time series, one can, in addition to the τ -dependence
of the structure function, compute a generalized form of scaling using the
ESS concept. In many cases, when the structure functions Sq(τ) are plotted
against a structure function of a specific order, say S3(τ), an extended scaling
regime is found according to [47, 48],

Sq(τ) ∼ S3(τ)
ζq . (10)

Clearly, meaningful results are restricted to the regime where S3 is monotonic.

For any Gaussian process the exponents ζq follow a simple equation,

ζq =
1

3
q . (11)

Therefore, systematic deviation from the simple scaling relation, (11),
should be interpreted as deviation from monofractality. An additional remark-
able property of the ESS is that it holds rather well even in situations when
the ordinary scaling does not exit, or cannot be detected due to small scaling
range, which is the case for the data analyzed here. In Figure 2 we plot the
behavior structure function Sq for q = 2 − 6 verses the the third moment. It
is evident the scaling region is at least two order of magnitude.

It is well-known that the moments with q < 1 and q > 1 are related,
respectively, to the frequent and rare events in the time series [47, 48]. Thus,
for the seismic time series one may also be interested in the frequent events
in signal. In Figure 3 we show the results for the moment q = 0.1 against a
third-order structure function for two types of synthetics data with scaling
exponent α = 0.9 and α = 1. The exponent α is related to the exponent of
spectral density β, i.e., S(f) ∼ 1/fβ , via, β = 2α − 1. As shown in Figure
3, the interesting feature is that the starting point of S0.1(τ) versus S3(τ) is
different for the data for different types of correlation exponents. To determine
the distance form the origin, we define [47, 48],

T (τ = 1) = [S2
q (τ = 1) + S2

3(τ = 1)]1/2 . (12)

Our analysis indicates that since prior to an earthquake the number of
frequent events (development of cracks that join up) suddenly rises, one also
obtains a corresponding sudden change in Sp with p < 1 (we use p=0.1). Close
to an earthquake the function T1(t), also estimated online, suddenly changes
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and provides a second alert. Its utility is not only due to the fact that it pro-
vides a means of distinguishing a false alarm from a true one indicated by tM ,
but also that it is estimated very accurately even with very few data points,
say 50, hence enabling online analysis of the data collected over intervals of
about 1 second. Thus, even with few data points, the method can detect the
change of correlations in the incoming data. For example, for the correlated
synthetic data with a spectral density 1/f 2α−1, one obtains, T1 = −7(α− 1).

4 Test of the Method

To test the method described above, we first generated two synthetic data sets
with equal averages and variances (zero and unity, respectively), and mixed
them together, as shown in Figure 4, by replacing the last 50 data points of
the first set with the first 50 points of the second. As Figure 4 indicates, the
Markov time scale tM and T1 are able to determine the time at which the two
data sets asre mixed.

Now we utilize the method for analyzing seismic time series. We have
analyzed the data for vertical ground velocity Vz(t) for 173 earthquakes
with magnitudes 3.2 ≤ M ≤ 6.3 that occurred in Iran between 28◦N
and 40◦N latitude, and 47◦E and 62.5◦E longitude, between January 3
and July 26, 2004. Recorded by 14 stations, the data can be accessed at
http://www.iiees.ac.ir/bank/bank 2004.html. The frequency was 40 Hz for 2
of the stations and 50 Hz for the rest. The vertical ground velocity data were
analyzed because, with the method described above, they provide relatively
long (on the order of several hours) and, hence, useful alarms for the im-
pending earthquakes. Fourty (discrete) data points/second are recorded in
the broad-band seismogram for the vertical ground velocity x(t) ≡ Vz. To
analyze such data and provide alarms for the area for which the data are
analyzed, we proceed as follows.

(1) The data are analyzed in order to check whether they follow a Markov
chain [the directly-computed P (x3, t3|x1, t1) must be equal to the right side
of Eq.(2)].

(2) The MTS tM (t) of the data are estimated by the above two methods.
When using method 1 described above, for long-enough data series (103 data
points or more) the function tM (t) is computed as the point when S → 0, but
for shorter series the minimum in S provides estimates of tM (t). We also utilize
method 2 described above to estimate tM . To carry out such computations,
we use 1000 data points in each window for calculating tM and move 200 data
points at each step inside and outside of the window. This means that for the
stations with frequency 50, we estimate a tM every 4 seconds.

(3) T1(t) is computed for the same data. To compute Sq(τ) (we used
q = 1/10) the data x(t) are normalized by their standard deviation, hence
making T1 dimensionless. We calculate the time series T1 with 200 data points.
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Fig. 4. Mixing of two synthetic time series with different correlation exponent (top);
plots of the corresponding tM (middle), and time variations of T1 (bottom). As seen,
tM and T1 distinguish the two types of data.
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Fig. 5. T1(t) and tM (t) for a M = 5.7 earthquake that occurred on March 13, 2005,
at 03:31:21 am in Saravan at (27.37N, 62.11E, depth 33) in southern Iran. The data
were collected at Zahedan station (near Zahedan, Iran) at a distance of ∼ 150 km
from the epicenter. The earthquake catalogue on the internet address given in the
text indicates that, for several days before the main event, there was no foreshock
in that region. T1 and tM provided a five hour alarm for the earthquake. Since the
data used for computing tM and T1 were, respectively, in strings of 1000 and 200
points, there is no effect of the events before they were collected and, hence, the
patterns in the figure reflect the events taking place in the time period in which the
data were collected. tM is in number of data points (the frequency at the station is
40 Hz), T1 is dimensionless, while Vz(t) is in “counts” which, when multiplied by a
factor 1.1382×10−3, is converted to µm/sec. The sensors were (broad-band) Guralp
CMG-3T that collect data in the east-west, north-south, and vertical directions. The
thresholds are, tMc = 10 and T1c = 4.
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Fig. 6. Same as in Figure 5, but for aM = 6.5 earthquake that occurred on February
22, 2005, at 02:25:20 am in Zarand at (30.76N, 56.74E, depth 14) in central Iran.
The data were collected at Kerman station (near Kerman, Iran) at a distance of 86
km from the epicenter. The thresholds are, tMc = 2 and T1c = 4.

In order to obtain an unambiguous alert from T1(t), we sometimes calculate
the quantity T1 for the series, y(ti) = x(ti)− x(ti−1).

(4) Steps (1)-(3) are repeated for a large number of previously-occurred
earthquakes of size M at a distance d from the station, referred to as (M,d)
earthquakes. Earthquakes with M < Mc and d > dc are of no practical
importance and are ignored.

(5) Define the thresholds tMc and T1c such that for tM > tMc and T1 > T1c

one has an alert for an earthquake (M > Mc, d < dc). If tMc and T1c are too
large no alert is obtained, whereas one may receive useless alerts if they are too
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Fig. 7. Same as in Figure 5, but based on the data collected at Ashtian station
(near Ashtian, Iran) at a distance of ∼ 150 km from the epicenter. Thus, T1 and tM
provided a about five hour alarm for the earthquake. The thresholds are, tMc = 12
and T1c = 8.

small. By comparing the data for all the earthquakes with M > Mc registered
in a given station, tMc and T1c for the earthquakes are estimated.

(6) Real-time data analysis is performed to compute the function tM (t)
and T1(t). An alarm is turned on if tM > tMc and T1 > T1c simultaneously.
When the alarm is turned on, it indicates that an earthquake of magnitude
M ≥Mc at a distance d ≤ dc is about to occur. The procedure can be carried
out for any station. The larger the amount of data, the more precise the alarm
will be.

Figures 5 presents T1(t) and tM (t) for aM = 5.7 earthquake that occurred
on March 13, 2005 at 03:31:21 am in Saravan at (27.37N, 62.11E, depth 33)
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Fig. 8. The dependence of alert time ta (in hours) on the magnitude M of the
earthquakes, obtained based on the data from broad-band stations by analyzing 173
earthquakes with magnitudes, 3.2 ≤ M ≤ 6.3, that occurred in Iran between 28◦N
and 40◦N latitude, and 47◦E and 62.5◦E longitude, between January 3 and July 26,
2004.

in southern Iran. The data were collected at Zahedan station (near Zahedan,
Iran) at a distance of ∼ 150 km from the epicenter. The earthquake catalogue
in the internet address given above indicates that, for several days before the
main event, there was no foreshock in that region. As Figure 5 indicates, T1

and tM provided a five hour alarm for the Saravan earthquake. Since the data
used for computing tM and T1 were, respectively, in strings of 1000 and 200
points, there is no effect of the events before they were collected and, hence,
the patterns in Figure 5 reflect the events taking place in the time period in
which the data were collected. The thresholds used are, tMc = 10 and T1c = 4.

Figures 6 presents T1(t) and tM (t) for aM = 6.5 earthquake that occurred
on February 22, 2005 at 02:25:20 am in Zarand at (30.76N, 56.74E, depth 14)
in central Iran. The data were collected at Kerman station (near Kerman,
Iran) at a distance of 86 km from the epicenter. All the statements made
above regarding the Saravan earthquake are equally true about the Zarand
earthquake. Similar to Saravan earthquake, T1 and tM provided a five hour
alarm for the earthquake. The thresholds used are, tMc = 2 and T1c = 4.

Figures 7 presents T1(t) and tM (t) for the same Zarand earthquake, but
based on the data from another station, collected at Ashtian station (near
Ashtian, Iran) at a distance of ∼ 150 km from the epicenter. Once again,
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there was no foreshock for several days before the main event. Once again, T1

and tM provided a five hour alarm for the earthquake. The thresholds used
are, tMc = 12 and T1c = 8.

To estimate the alert times ta, which are on the order of hours, we carried
out an analysis of online data for 14 stations in Iran’s broad-band network
(the sensors are Guralp CMG-3T broad-band), analyzing the vertical ground
velocity data. Our analysis indicates that ta depends on M , being small for
low M , but quite large for large M . Using extensive data for the Iranian
earthquakes withM ≥ 4.5 and d ≤ 150 km, we have obtained an approximate
relation for the broad-band stations, shown in Figure 8 and represented by

log ta = −1.35 + 2.4 logM , (13)

where ta is in hours. The numerical coefficients of Eq. (13) for each area
should be estimated from the data collected for that area. The above analysis
can clearly be extended to all the stations around the world. This is currently
underway for Iran’s network of stations. For an earthquake of magnitudeM =
4.5, Eq.(13) predicts an alert time of about 2 hours. Thus, if, for example,
three hours after the alarm is turned on, the earthquake has still not happened,
we know that the magnitude of the impending earthquake is M ≥ 5.7.

5 Summary

In summary, we have proposed a new method for analyzing seismic data and
making predictions for when an earthquake may occur with a magnitudeM ≥
Mc at a distance d ≤ dc from a station that collects seismic data. The method
is based on computing the Markov time scale tM , and a quantity T1 calculated
based on the concept of extended self-similarity of the data, and monitoring
them online as they evolve with the time. If the two quantities exceed their
respective critical thresholds tcM and Tc1, estimated based on analyzing the
data for the previously-occurred earthquakes, an alarm is turned on.

We are currently utilizing this method for Iran’s stations. To do so, we
calibrate the method with the data for the stations in one region (i.e., estimate
tcM and Tc1 for distances d < dc). If in a given region there is a single station,
then once the online-computed tM and T1 exceed their critical values, the
alarm is turned on. If there are several stations, then once they declare that
their tM and T1 have exceeded their thresholds, the alarm is turned on. If
after about 2 hours, no earthquake has occurred yet, then we know that the
magnitude of the incoming earthquake will be greater Mc = 4.5 at a distance
d < dc.

In fact, over the past two years, the method has been utilized in the Ira-
nian stations. Our analysis indicates that the method’s failure rate decreases
to essentially zero when tM and T1 provide simultaneous alarms. That is,
practically every earthquake that we have considered, including those that
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have been occurring while we have been performing online analysis of their
incoming data and providing alarms for them (with M > Mc), was preceded
by an alarm. Of all the earthquakes that we have analyzed so far, the method
has failed in only two cases. In our experience, if after 10 hours [see Eq. (13)]
no earthquake occurs, we count that as a failed case. However, as mentioned,
we have so far had only two of such cases.

So far, in order to locate the forthcoming earthquake, we have been using
the clustering method which means that, for the area in which three sta-
tions are in the alert situation, we can determine the approximate location.
However, this can be done using the localization property of seismic waves
[49, 50]. We will report the method for the location and precise estimation
of the magnitude of forthcoming earthquakes hours before their occurence
elsewhere.

Finally, it must be pointed out that the most accurate alarms are obtained
from stations that receive data from depths of > 50 m, and are perpendicular
to the active faults that cause the earthquake, since they receive much more
correlated data for thedevelopment of the cracks than any other station.
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