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Abstract.  We employ the horizontal visibility algorithm to map the velocity 
and acceleration time series in turbulent flows with different Reynolds numbers, 
onto complex networks. The universal nature of velocity fluctuations in high 
Reynolds turbulent Helium flow is found to be inherited in the corresponding 
network topology. The degree distributions of the acceleration series are shown 
to have stretched exponential forms with the Reynolds number dependent fitting 
parameter. Furthermore, for acceleration time series, we find a transitional 
behavior in terms of the Reynolds number in all network features which is in 
agreement with recent empirical studies.
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1.  Introduction

Turbulence is of key interest from the point of view of both non-linear dynamical 
systems and irreversible statistical mechanics. As the velocity of a fluid exceeds some 
critical value, the stationarity and regularity of the flow break off, and small velocity 
disturbances are no longer damped by the laminar flow, but grow by extracting kinetic 
energy from the mean flow. In this situation, which is known as turbulent flow regime, 
fluid particles follow complex trajectories with stochastic dynamics, and their velocity 
gradients are much larger than in the laminar case [1]. The transition to the turbulence 
is related to the supremacy of the inertial forces over the viscous forces. Reynolds pro-
posed to quantify the competition among these two mechanisms by a control param-
eter, called Reynolds number [2], defined as ν≡ULRe / , where U, L, and ν are the mean 
velocity, the characteristic length scale of the flow, and the kinetic viscosity, respec-
tively. Thus, the turbulent regime corresponds to high Re numbers.

A turbulent flow is characterized by a hierarchy of scales, i.e. a flux of energy is 
injected into the fluid motion at large scales and is continuously transported towards 
smaller scales, r, and consequently is dissipated by the molecular viscosity at the small-
est scale, called Kolmogorov scale [1]. This is well known as the energy cascade phenom-
ena in turbulence. These two scales at the extremes of the cascade process can defer by 
several orders of magnitude at high Reynolds number.

A common way to study the statistics of turbulent velocity fields is by means of the lon-
gitudinal velocity increments at time t and location x, δ = ⋅ + −u r t r t te u x e u x( , ) [ ( , ) ( , )], 
where e denotes an arbitrary direction unit vector. At large scales, ≈r L, fluid motions 
are statistically independent and the probability distribution function (PDF) of the 
velocity increments is found to be nearly Gaussian. At scales r  <  L, turbulent motions 
become intermittent, in which rather quiescent periods in the velocity signal are 
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interrupted irregularly by strong correlated bursts [3]. As a consequence, the PDF 
of δu r( ) develops long tails and becomes strongly non-Gaussian [4, 5]. A generally 

accepted way of describing the intermittency is by means of the flatness, defined by 

δ δ≡F u r u r/4 2 2〈 ( ) 〉 〈 ( ) 〉 , where F   =   3 is for a Gaussian and F  >  3 is for a non-Gaussian 

PDF. Empirical measurements in various geometries [4] indicate a power-law increase, 

∼ λF R 0.35, where λR  denotes the Taylor microscale Reynolds number, defined as 
λ ν= ′λR u / , where ′u  is the velocity fluctuation, λ is the Taylor scale, and ν is the vis-

cosity. This power-law behavior is irrespective of the flow, and also shows the increase 
in the level of intermittency, which is also consistent with phenomenological intermit-
tency models [4, 6, 7].

Acceleration, =a t u t t( ) d ( )/d , in fluid flow where causes irregular fluctuating 
motions of fluid particles, is also another essential quantity in turbulence studies  
[8–13], and has a crucial role in cloud formation and atmospheric transport, processes 
in stirred chemical reactors and combustion systems and in the industrial production 
of nanoparticles [14–18]. For example, recent experimental studies on the fluid particle 
accelerations in fully developed turbulence [9–11] have shown that the fluid accelera-
tion occurs in a very intermittent fashion, and the probability density functions of the 
acceleration at different Reynolds numbers exhibit stretched exponential tails. The 
pressure gradient fluctuations, the coherent motions of fluids, or the rotational motion 
of the vortices are some suggested sources of the anomalous scaling in the acceleration  
statistics [8, 11, 19].

It is also shown that the multifractal formalism can predict the fat-tail nature of 
the acceleration PDFs [12]. As the Reynolds number increases, the role of the intermit-
tency becomes more and more important. Phenomenological models predict a power-

law increase with λR  [8, 13, 19] for the acceleration variance, σ ∼ λRa
0.14. It also has 

been shown [20] that the acceleration variance, σa, is closely related to the flatness, F. 
However, such power-law behaviors in the flatness and variance of acceleration have 
been challenged by some experimental studies [9, 10, 21, 22]. Their detailed measure-
ments show that these quantities first increase with Reynolds number up to �λR 700 
and then cease to increase further. The particle size effect [9] or the characteristics of a 
second order phase transition based on worm vortex breakdown [22] are some proposed 
origins of such a transitional behavior.

In spite of the possibility of finding some particular solutions of Navier–Stokes equa-
tion governing fluid motion, all such solutions are unstable to finite perturbations at 
high Reynolds number. In other words, random velocity fluctuations in a wide range 
of different length and time scales and the intermittent nature of the fully developed 
turbulent flows pose profound problems in the numerical and theoretical analysis of the 
turbulence dynamics for experimentalists and theoreticians, which makes the search for 
new approaches inevitable.

Recently, the complex network theory has been proved itself as a main tool to 
study the complex systems [23], and has helped understand many important processes 
in physics, biology, neuroscience, communications, epidemiology among others [23–29]. 
By using the useful concepts from graph theory as well as statistical physics, many 
advances have been made to find and predict various interesting features of complex 
systems. Consequently, in recent years, many efforts have been done to map a time 
series onto a graph, and then by studying the properties of the graph, one may extract 
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some features of the corresponding time series from the resulting graph [30–35], for a 
review see [36].

In this respect, Lacasa et al. introduced an algorithm [31], called visibility graph 
(VG), which maps a time series into a graph based on the ability of the data points to 
see each other and it is defined as follows: Let xi be a univariate time series of N data 
(i   =   1, 2, ... N ). The algorithm assigns each datum of the series to a node in the VG. 
Accordingly, a series of size N maps to a graph with N nodes. Two nodes i and j in the 
graph are connected if one can draw a (straight) line in the time series joining xi and xj 
that does not intersect any intermediate data height. That is two arbitrary data values 

t x( , )i i  and t x( , )j j  will have visibility, and consequently will become two connected nodes 
of the associated graph, if any other data t x( , )q q  placed between them satisfies:

< + −
−
−

x x x x
t t

t t
( ) .q j i j

j q

j i
� (1)

Note that the visibility graph is always connected by definition and also is invariant 
under affine transformations, due to the mapping method. An alternative (and much 
simpler) algorithm is the horizontal visibility graph (HVG) [32], in which a connection 
can be established between two data points i and j, if one can draw a horizontal line in 
the time series joining them that does not intersect any intermediate data height, xq, 
by the following geometrical criterion:

           > < <x x x q t t t, for all such that .i j q i q j� (2)

Because of the simplicity of the HVG, some features of the graph can be analyti-
cally calculated. It has been shown in [32] that for an uncorrelated time series, the cor-
responding HVG is small-world network with mean degree =k 4 and also its degree 
distribution, pk is as follows:

∼ λ−p ek
kc� (3)

with λ = ln(3/2)c  and these results are universal, i.e. independent of the probability dis-
tribution from which the series was generated. On the other hand, ordered (periodic) 
series convert into regular graphs: thus order and disorder structure in the time series 
seem to be inherited in the topology of the visibility graph. It was also shown that for 
a fractal time series, the distributions, associated to the resulting visibility graphs, fol-
low a power law ∼ γ−p kk  [37], such that the Hurst exponent H of the series is linearly 
related to γ. The visibility algorithm has been also proposed to study the distinction 
between chaotic and stochastic time series [38], which has been recently proven not to 
hold in general [39].

In this article, we apply the HVG algorithm to map the velocity, and the accel-
eration time series in turbulent flows with various Reynolds numbers, onto complex 
networks. Then, we provide a distinct perspective on the temporal correlation infor-
mation in the time series by calculating different topological properties of the HVG. 
At first, we demonstrate that the universality of velocity statistics at high Reynolds 
numbers is also present in the corresponding HVG degree distributions. Then we focus 
our attention on the acceleration time series, and will show that the stretched expo-
nential functions can well be fitted to the degree distributions and the corresponding 
fitting parameter has a Reynolds number dependency. By taking into account other 

http://dx.doi.org/10.1088/1742-5468/2015/08/P08031
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topological measures, such as the standard deviation of the degrees, the degree assor-
tativity, and Spearman’s correlation coefficient between the node’s degree and its cor-
responding value in the original time series, we will demonstrate that these topological 
measures allow us to discriminate between the turbulence time series with different 
Reynolds numbers. Furthermore, at high Reynolds numbers we observe a transitional 
behavior for all of the above mentioned topological properties for the acceleration time 
series, which has been observed in the recent empirical studies [9, 10, 21, 22].

2. Results and discussions

2.1. Data description

We use the experimental results [40] of hot-wire measurements in the central region of 
an air into air round free jet low temperature helium turbulence with Reynolds num-
bers 21 530, 48 190, 115 000, 210 000, and 757 000, were obtained by a nozzle with an 
opening diameter of D   =   8 mm. The closed experimental chamber is 2.5 m high with a 
cross-section of 1 m2, which guarantees that a turbulent jet does not interact with the 
walls up to a distance of more than 150 nozzle diameters. The time-resolved measure-
ments of the local velocity in the direction of the mean flow were performed by means 
of hot-wire anemometry, using a single wire probe with a spatial resolution of 1.25 mm 
and a time resolution of 8 kHz [40]. We apply the HVG algorithm to map the velocity 
and the acceleration time series of size ∼N 106 onto a network.

2.2. Degree sequence

For example, in figure  1, we plotted two acceleration time series with different 
Reynolds numbers of 21 530 and 210 000. As we described before, there is an one-to-one 

Figure 1.  The two acceleration time series corresponding to the different Reynolds 
numbers of (a) 21 530 and (b) 210 000.
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correspondence between the time order of data points of the time series and the node’s 
indices in the corresponding graph. Figure 2 illustrates the HVG mapping formalism, 
and shows the first 20 acceleration data points, a(t), belongs to Reynolds number 21 
530 and its corresponding HVG degree sequence, k(t). As it can be seen, two data 
points satisfying the horizontal visibility condition are connected by a line indicating 
the presence of an edge in the HVG. Note that a high degree node in the HVG does 
not necessarily correspond to a globally high-value data point in the original time series. 
In figure 2, we can see that the local maximum data point a(t   =   11) has high degree 
in spite of its globally low value in the original time series. It is noteworthy to mention 
here that the actual degrees are more likely to have larger values for time series with 
larger sizes, since HVGs associated to short time series suffer from severe edge effects 
which lead to a systematic downward bias of the degrees for nodes close to both ends 
of the series [41].

2.3. Degree distribution

In figure 3, we plotted the HVG degree distributions for the velocity time series, u(t), 
for three (high) Reynolds numbers of 115 000, 210 000, and 757 000. Clearly, a univer-
sal behavior is present in this plot. We propose to model such degree distributions with 
the stretched exponential functions (SEF) [42]:

γ= −γ γ γ−P k k k k k( ) / exp( ( / ) )1
0 0� (4)

where γ and k0 are the fitting parameters. The dashed line in figure 3 represents a fit-
ted function with parameters �k 40 , and �γ 1.75, obtained from the data regression 
analysis.

Let us concentrate on the corresponding HVGs of the acceleration time series. 
Figure 4 demonstrates the degree distributions of the corresponding acceleration time 
series for five Reynolds numbers of 21 530, 48 190, 115 000, 210 000, and 757 000. The 
solid line shows the exponential function of equation (3), for better comparison. We 
observe that the probability of finding high degree nodes (the tails) increases with 

Figure 2.  (a) the first 20 data points of the acceleration time series for Reynolds 
number of 21 530 and its corresponding HVG connectivity links. (b) the 
corresponding HVG degree sequence for such data points. It is obvious that a 
global high-value data point does not necessarily correspond to a high degree node 
(e.g. at t   =   3).
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Reynolds number. The dashed lines in figure 4 represent the fitted stretched exponen-
tial functions of equation (4) and we find that �k 40 , independent of Re and the expo-
nent γ is a Reynolds number-dependent parameter (see table 1). The inset in figure 4 

shows such dependency of the form of γ∼ β−Re , in a logarithmic scale, with �β −0.1. 

Figure 3.  The HVG degree distributions of the velocity time series with three 
different high Reynolds numbers 115 000, 210 000, and 757 000. The dashed 
line shows the stretched exponential function of equation  (4). The universality 
of velocity statistics in high Reynolds numbers is inherited in the HVG degree 
distributions.
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Figure 4.  The HVG degree distributions of acceleration time series for five Reynolds 
numbers 21 530, 48 190, 115 000, 210 000, and 757 000. The dashed lines show 
the stretched exponential functions, equation (4). A simple exponential function 
of equation  (3) has been plotted for better comparison (solid line). The curves 
are shifted in the vertical direction for convenience of presentation. The inset also 
shows the fitting parameter, γ, for different values of the Reynolds numbers.
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Note that, in very high Reynolds numbers, for instance above 250 000 (which is cor-
responds to �λR 650 [40]), the γ cease to decrease further. Observing such transitional 
behavior is in agreement with the reported results in the literatures [9, 10, 21, 22].

A frequently studied property in complex network theory is the degree variance, 

σ = −k kk
2 2 2, which can be calculated straightforwardly from equation (4). For a 

nearly constant value of k0, increasing γ corresponds to decreasing σk. In table 1, we 
represent the calculated values of the standard deviation of the degrees, σk, versus 
the Reynolds numbers. As it can be seen, the fluctuations in degrees increase with 
Reynolds number.

2.4. Linear/nonlinear correlation effects on the degree distribution

As we mentioned above, the HVG algorithm is independent of the probability distribu-
tion of the original time series. Therefore, it is also interesting to see how the network 
topology depends on the linear and nonlinear correlation features of the original process. 
To check the effects of such features on the HVG statistics, we use two different meth-
ods for surrogating data. The first is to exchange the time series rank-wise (RW) by a 
Gaussian distributed one [43], in which the (linear and nonlinear) correlation structure 
is conserved, but the distributional effect is eliminated. The second one is the phase 
randomization (RP), where only linear correlations remain in the process, and the non-
linear memory as well as the distributional effects are eliminated [44]. In figure 5, we 
plotted the HVG degree distributions of velocity (figure 5(a)) and acceleration (figure 
5(b)) time series with Reynolds number 210 000, and of their associated rank-wise and 
phase-randomized surrogate data. We can see that RW surrogation does not affect 
HVG statistics, as expected. However, for RP surrogation a significant change appears 
in both time series. For example, since acceleration time series has only nonlinear cor-
relation (with negligible linear correlation), its corresponding degree distribution due 
to the RP surrogation method becomes the exponential function of equation (3). The 
presence of any differences between the HVG degree distributions associated to the 
random-phase and rank-wise surrogate data, is an indicator of the existence of nonlin-
ear correlation. In summary, the HVG degree distributions can capture the linear and 
nonlinear correlation structure in the turbulence time series.

2.5. Assortativity and Spearman’s coefficient

The assortativity coefficient r is the Pearson’s correlation coefficient between the 
degrees of pairs of linked nodes [45]. The excess degree of a node, which is the number 

Table 1.  The calculated values of five topological parameters for five different 
Reynolds numbers, using HVG algorithm.

Re γ σk r S ρA
21 530 1.5870 1.9318 0.0245 0.3367 −0.2982
48 190 1.5010 2.1396 0.0553 0.4557 −0.3586
115 000 1.3721 2.3760 0.1139 0.6369 −0.3900
210 000 1.3064 2.4571 0.1507 0.7432 −0.3921
757 000 1.3440 2.4120 0.1574 0.7060 −0.3612

http://dx.doi.org/10.1088/1742-5468/2015/08/P08031


Fully developed turbulence in the view of horizontal visibility graphs

9doi:10.1088/1742-5468/2015/08/P08031

J. S
tat. M

ech. (2015) P
08031

of edges leaving the node other than the one we arrived along, is distributed accord-
ing to

= + +q k p k( 1) /k k 1� (5)

where pk is the degree distribution and = Σk kpk k is the mean degree in the network. 
The assortativity coefficient for mixing by vertex degree in an undirected network is

σ
=
Σ −

r
jk e q q( )jk jk j k

q
2� (6)

where ejk is the fraction of edges that connect vertices of degrees j and k, and σq is the 
standard deviation of the distribution qk [45]. Positive values of r indicate a correlation 
between nodes of similar degree, while negative values indicate relationships between 
nodes of different degree. In general, r lies between  −1 and 1. When r   =   1, the network 
is said to have perfect assortative mixing patterns, when r   =   0 the network is non-
assortative, while at r   =   −1 the network is completely disassortative.

We calculate degree assortativity from the adjacency matrix obtained by the HVG 
algorithm for five different Reynolds numbers, which is shown in table 1. As it can be 
seen, the assortativity increases with Reynolds number and the values are positive, 
which means that there is a tendency for high (low) degree nodes to be connected to 
other high (low) degree nodes. In other words, the hubs (nodes with highest degree) 
have better visibility on each other, a phenomenon called hub attraction [46]. The pres-
ence of hub attraction corresponds to the intermittency or volatility clustering of the 
original time series.

Further, we also show in figure 6 the scatter plot between the degree sequence, k(t), 
and the corresponding data value, a(t) for two Reynolds numbers 21 530 and 210 000. 
To quantify this dependency, we calculate the Spearman’s correlation coefficient [47], 
S, which is a statistical measure of the strength of a monotonic relationship between 
paired data and ⩽ ⩽− S1 1. Table  1 demonstrates that the Spearman’s coefficient 
increases with Reynolds number and has always positive values. This means that nodes 
with high degrees correspond to the data points with high values, on average. Due to 
the obtained values of the degree assortativity (see table 1), we can conclude that by 

Figure 5.  (a) The HVG degree distributions of the velocity time series for Reynolds 
number 210 000 (squares), and its corresponding random phase (diamonds) and 
rank-wise (circles) surrogate data. (b) As in (a), but for the acceleration time 
series. The dashed line in (b) shows a simple exponential function of equation (3).

http://dx.doi.org/10.1088/1742-5468/2015/08/P08031
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increasing Reynolds numbers, high degree nodes as well as high-value data points in 
the original series have a better visibility on each other.

2.6. Auto-correlation of the degree sequence

Since the HVG algorithm preserves the time order of data points in the original time 
series, within the nodes’ indices of the graph, we also search the possible correlation 
information in the degree sequence, k(t) (see figure 2). Thus, we calculate the lag-one 
autocorrelation coefficient of the degree sequence, ρA, which is defined as follows:

ρ
σ

= + −k t k t k( 1) ( )

k
A

2

2� (7)

In table 1, we present the calculated values of equation (7) for the five Reynolds 
numbers. We see that the correlation coefficient of the degree sequence increases by 
increasing Reynolds number, and their magnitudes are negative. This means that, 
nodes with high degree are more likely to be followed by nodes with low degree as 
Reynolds number increases, which is also in agreement with our findings.

3. Conclusions

In this article, the statistical properties of velocity and acceleration in turbulent flows 
have been investigated using the horizontal visibility graph algorithm. We employed 
this algorithm to map these time series with various Reynolds numbers onto complex 
networks. At first, we demonstrated that the universal nature of high Reynolds number 
velocity time series is inherited in the topology of the horizontal visibility network. On 
the other hand, we found that the degree distributions of the corresponding HVGs for 
the acceleration series can be modeled by stretched exponential functions. By generat-
ing the surrogate data, we also demonstrated that the HVG degree distributions can 
capture the linear and nonlinear correlation structures in the original time series.

We have also calculated various topological features of the resulting networks, such 
as the variance of the degrees, the degree assortativity, the autocorrelation coefficient 

Figure 6.  The scatter plot of the data point a(t) and its corresponding HVG 
degree sequence k(t) for two Reynolds numbers (a) 21 530 and (b) 210 000. The 
Spearman’s correlation coefficients are 0.34 and 0.74, respectively.
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of the degree sequence, and the Spearman’s correlation coefficient between the degree 
sequence and the original time series values. We found a monotonic behavior of the 
above-mentioned parameters in dependence on Re for a wide range of the Reynolds num-
bers. However, for high Reynolds numbers, above �λR 650, we observed a crossover in 
different HVG topological properties, which is in agreement with the transitional behav-
ior observed in the recent experimental studies. Then, by calculating the degree assor-
tativity, we showed that the hubs have better visibility on each other (hub attraction) 
with increasing the Reynolds number. On the other hand, we obtained very high positive 
values for the Spearman’s correlation coefficient, indicating the strong positive relation-
ships between the node’s degree and its corresponding value in the original time series.

Due to the hub attraction phenomenon, very high positive values for the Spearman’s 
coefficient, and also negative obtained values for the lag-one autocorrelation coefficient 
of the degree sequence, we conclude that by increasing the Reynolds number the sto-
chasticity as well as the intermittency of acceleration time series increases. Such results 
indicate that the horizontal visibility graphs, as a powerful tool for nonlinear time 
series analysis, can capture the linear/nonlinear correlation structures inherited in the 
fully developed turbulent flows with various Reynolds numbers.
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