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Abstract

We study the correlation functions of logarithmic conformal field theories. First, assuming confor-

mal invariance, we explicitly calculate two– and three– point functions. This calculation is done for

the general case of more than one logarithmic field in a block, and more than one set of logarithmic

fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordi-

nary field with respect to its conformal weight. This enables one to calculate any n– point function

containing the logarithmic field in terms of ordinary n–point functions. At last, we calculate the

operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that

these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple

derivation.

PACS number 11.25.Hf

Keyword, Conformal Field Theory



1 Introduction

It has been shown by Gurarie [1], that conformal field theories (CFTs) whose correlation functions

exhibit logarithmic behaviour, can be consistently defined and in the OPE of two given local fields which

has at least two fields with the same conformal dimension, one may find some operators with a special

property, known as logarithmic operators. As discussed in [1], these operators with the ordinary operators

form the basis of the Jordan cell for the operators Li. In some interesting physical theories, for example

the WZNW model on the GL(1, 1) super-group [2], and edge excitation in fractional quantum Hall effect

[3], one can naturally find logarithmic terms in correlators. Recently the role of logarithmic operators

have been considered in study of some physical problems such as 2D-magnetohydrodynamic turbulence

[4, 5, 6], 2D-turbulence [7, 8], cp,1 models [9, 16], gravitationally dressed CFT’s [10], and some critical

disordered models [12, 13]. They play a role in the so called unifing W algebra [14] and in the description

of normalizable zero modes for string backgrounds [11, 15].

The basic properties of logarithmic operators are that, they form a part of the basis of the Jordan cell

for Li’s and in the correlator of such fields there is a logarithmic singularity [1, 12]. It has been shown

that in rational minimal models such a situation, i.e. two fields with the same dimensions, doesn’t occur

[5]. The modular invariant partition functions for ceff = 1 and the fusion rules of logarithmic conformal

field theories (LCFT) are considered in [16, 17].

In this paper, we study the correlation functions of logarithmic conformal field theories (LCFT’s).

Assuming conformal invariance, we obtain all two- and three-point functions. This calculations have been

already done for the case where the Jordanian cell is two dimensional [1, 12]. The key observation in this

point is that, one can regard logarithmic fields formally as the derivative of ordinary fields with respect

to their conformal weight and use this effectively to obtain logarithmic three- and more-point functions
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from ordinary ones. We think that many other results, if not all of them, for LCFT’s can also be obtained

by this technique from ordinary conformal field theories. We show that any n-point function for these

theories can be obtained from their analouges in the ordinary conformal field theories. These results are

then extended to the case of more than two fields in a Jordan cell, and more than one Jordan cell. At

last we give the OPE coefficients of a LCFT with a two-dimensional Jordan cell, in terms of the OPE

coefficients of the corresponding CFT, and then generalize it to the case of a more dimensional Jordan

cell.

2 The Correlation Functions of a LCFT

In an ordinary conformal field theory, primary fields are the highest weights of the representations of the

Virasoro algebra. The operator product expansion that defines a primary field Φ(w, w̄) is [18]

T (z)Φi(w, w̄) =
∆i

(z − w)2
Φi(w, w̄) +

1

(z − w)
∂wΦi(w, w̄) (1)

T (z̄)Φi(w, w̄) =
∆̄i

(z̄ − w̄)
Φi(w, w̄) +

1

(z̄ − w̄)
∂w̄Φi(w, w̄) (2)

where T (z) := Tzz(z) and T̄ (z̄) := Tz̄z̄(z̄). The primary fields are those which transform under z → f(z)

and z̄ → f̄(z̄) as:

Φi(z, z̄) → Φ′

i(z, z̄) = (
∂f−1

∂z
)∆i(

∂f̄−1

∂z̄
)∆̄iΦi(f

−1(z), f̄−1(z̄)) (3)

One can write equation ( 1) in terms of the components of Laurent expansion of T (z) , Ln’s,

[Ln,Φi(z)] = zn+1∂zΦi + (n+ 1)zn∆iΦi (4)

One can regard ∆i’s as the diagonal elements of a diagonal matrix D,

[Ln,Φi(z)] = zn+1∂zΦi + (n+ 1)znD
j
i Φj (5)
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One can however, extend the above relation for any matrix D, which is not necessarily diagonal. This new

representation of Ln also satisfies the Virasoro algebra for any arbitrary matrix D . Because we have not

altered the first term in the right hand side of the equation (3), this is still a conformal transformation. By

a suitable change of basis, one can make D diagonal or Jordanian. If it becomes diagonal, the field theory

is nothing but the ordinary conformal field theory. The general case is that there are some Jordanian

blocks in the matrix D. The latter is the case of a LCFT. Here, there arise some other fields which do

not transform like ordinary primary fields, and are called quasi-primary fields [1]. For the simplest case,

consider a two-dimensional Jordan cell. The fields Φ and Ψ satisfy

[Ln,Φ(z)] = zn+1∂zΦ + (n+ 1)zn∆Φ (6)

and

[Ln,Ψ(z)] = zn+1∂zΨ + (n+ 1)zn∆Ψ + (n+ 1)znΦ, (7)

and they transform as below

Φ(z) → (
∂f−1

∂z
)∆Φ(f−1(z)) (8)

Ψ(z) → (
∂f−1

∂z
)∆[Ψ(f−1(z)) + log(

∂f−1(z)

∂z
)Φ(f−1(z)] (9)

Note that we have considered only the chiral fields. The logarithmic fields, however cannot be factorized

to the left- and right-handed fields. For simplicity we derive the results for chiral fields. The corresponding

results for full fields are simply obtained by changing

z∆ → z∆z̄∆̄ (10)

and

log z → log |z|2 (11)
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Now compare the relations (6, 8) and (7, 9); one can assume the field Ψ as the derivation of the field Φ

with respect to its conformal weight, ∆. This fact will be effectively used throughout this paper.

Now let us consider the action of Möbius generators (L0, L±) on the correlation functions. Whenever

the field Ψ is absent, the form of the correlators is the same as ordinary conformal field theory. By the

term form we mean that some of the constants which cannot be determined in the ordinary conformal

field theory may be fixed in the latter case. Now we want to compute correlators containing the field Ψ.

At first we should compute the two-point functions. The two-point functions of the field Φ is as below

< Φ(z)Φ(w) >=
c

(z − w)2∆
(12)

In the ordinary conformal field theory the constant c cannot be determined only with assuming conformal

invariance; to obtain it, one should know for example the stress-energy tensor, although for c 6= 0 one

can set it equal to one by renormalizing the field. Assuming the conformal invariance of the two-point

function < Ψ(z)Φ(w) >, means that acting the set {L0, L±1} on the correlator yeilds zero. Action of

L−1 ensures that the correlator depends only on the z − w. the relations for L+1 and L0 are as below

[z2∂z + w2∂w + 2∆(z + w)] < Ψ(z)Φ(w) > +2z < Φ(z)Φ(w) >= 0 (13)

[z∂z + w∂w + 2∆] < Ψ(z)Φ(w) > + < Φ(z)Φ(w) >= 0 (14)

Consistency of these two equations for any z and w, fixes c to be zero. Then, solving the above equation

for < Ψ(z)Φ(w) > leads to

< Φ(z)Φ(w) >= 0, < Φ(z)Ψ(w) >=
a

(z − w)2∆
(15)

Now assuming the conformal invariance of the two-point function < Ψ(z)Ψ(w) >, gives us a set of partial

4



differential equation. Solving them, we obtain

< Ψ(z)Ψ(w) >=
1

(z − w)2∆
[b− 2a log(z − w)] (16)

These correlations have been obtained in [1, 12], by assuming the consistency of some four point functions.

In fact, in [1] the two point functions ΨΦ and ΨΨ were obtained using the four point function and the

assumption that there exists a term with a logarithmic factor in the OPE of certain fields. In [12], using

the same assumption, it is shown that the correlator ΦΦ is zero, and some three point functions are

calculated.

Now we extend the above results to the case where Jordanian block is n+ 1-dimensional. So there is

n+ 1 fields with the same weight ∆.

[Ln,Φi(z)] = zn+1∂zΦi + (n+ 1)zn∆Φi + (n+ 1)znΦi−1, (17)

where Φ−1 = 0. All we use is the conformal invariance of the theory. From the above fields, only Φ0 is

primary. Acting L−1 on any two-point function of these fields, shows that

< Φi(z)Φj(w) >= fij(z − w). (18)

Acting L0 and L+1, leads to

< [L0,Φi(z)Φj(0)] >= (z∂z + 2∆) < Φi(z)Φj(0) > + < Φi−1(z)Φj(0) > + < Φi(z)Φj−1(0) >= 0 (19)

< [L+1,Φi(z)Φj(0)] >= (z2∂z + 2z∆) < Φi(z)Φj(0) > +2z < Φi−1(z)Φj(0) >= 0. (20)

Then it is easy to see that

< Φi−1(z)Φj(0) >=< Φi(z)Φj−1(0) > . (21)

Using Φ−1 = 0 and the above equation, gives us the following two-point functions.

< Φi(z)Φj(w) >= 0 for i+ j < n (22)
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Now solving the Ward identities for < Φ0(z)Φn(w) > among with the relation (21), leads to

< Φi(z)Φn−i(w) >=< Φ0(z)Φn(w) >= a0(z − w)−2∆. (23)

The form of the correlation function < Φ1(z)Φn(w) > is as below

< Φ1(z)Φn(w) >= (z − w)−2∆[a1 + b1 log(z − w)], (24)

but the conformal invariance fixes b1 to be equal to −2a0. So

< Φi(z)Φn+1−i(w) >=< Φ1(z)Φn(w) >= (z − w)−2∆[a1 − 2a0 log(z − w)] for i > 0 (25)

Repeating this procedure for the two-point functions of the other fields Φi with Φn, and knowing that

they are in the following form

< Φi(z)Φn(w) >= (z − w)−2∆
i

∑

j=0

aij(log(z − w))j , (26)

gives

i
∑

j=1

jaij(log(z − w))j−1 + 2

i−1
∑

j=0

ai−1,j(log(z − w))j = 0 (27)

or

(j + 1)ai,j+1 + 2ai−1,j = 0

So

ai,j+1 =
−2

j + 1
ai−1,j = · · · =

(−2)j+1

(j + 1)!
ai−j−1,0 =:

(−2)j+1

(j + 1)!
ai−j−1 (28)

or

< Φi(z)Φn(w) >= (z − w)−2∆
i

∑

j=0

(−2)j

j!
ai−j(log(z − w))j , (29)

and also we have

< Φi(z)Φk(w) >=< Φi+k−n(z)Φn(w) > for i+ k ≥ n. (30)
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So for the case of n logarithmic field, we found all the two point functions. The interesting points are

i)some of the two-point functions become zero.

ii)some of the two-point functions are logarithmic, and the highest power of the logarithm, which occures

in the < ΦnΦn >, is n.

The most general case is the case where there is more than one Jordanian block in the matrix D ,or

in other words, there is more than one set of logarithmic operators. The dimension of these blocks may

be equal or not equal. Using the same procedure, one can find that

< ΦI
i (z)Φ

J
j (w) >=











(z − w)−2∆
∑i+j−n

k=0
(−2)k

k! aIJ
n−k[log(z − w)]k, i+ j ≥ n

0, i+ j < n

(31)

where I and J label the Jordan cells, n = max{nI , nJ} and nI and nJ are the dimensions of the

corresponding Jordan cells. Also note that the conformal dimensions of the cells I and J must be equal,

otherwise the two-point functions are trivially zero.

Now we want to consider the three-point functions of logarithmic fields. The simplest case is the case

where, besides Φ, only one extra logarithmic field Ψ exists in the theory. The three-point functions of

the fields Φ are the same as ordinary conformal field theory.

A(z1, z2, z3) :=< Φ(z1)Φ(z2)Φ(z3) >=
a

(ξ1ξ2ξ3)∆
=: af(ξ1, ξ2, ξ3), (32)

where

ξi =
1

2

∑

j,k

ǫijk(zj − zk).

If one acts the set {L0, L±1} on the three-point function < Ψ(z1)Φ(z2)Φ(z3) >:= B(z1, z2, z3), the

result is an inhomogeneous partial differential equation for B(z1, z2, z3) where the inhomogeneous part is

A(z1, z2, z3). So the form of B(z1, z2, z3) should be as below,

B(z1, z2, z3) = [b+
∑

bi log ξi]f(ξ1, ξ2, ξ3). (33)
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Solving the above mentioned differential equations, we find the parameters bi to be

b1 = −b2 = −b3 = a. (34)

The final result is

< Ψ(z1)Φ(z2)Φ(z3) >= [b+ a log
ξ1

ξ2ξ3
]f(ξ1, ξ2, ξ3) (35)

If there are two fields Ψ in the three-point function, one can write it in the following form

< Ψ(z1)Ψ(z2)Φ(z3) >= [c+
∑

ci log ξi +
∑

ij

cij log ξi log ξj ]f(ξ1, ξ2, ξ3). (36)

Again the Ward identities can be used to determine the parameters ci and cij ,

< Ψ(z1)Ψ(z2)Φ(z3) >= [c− 2b log ξ3 + a[(−
log ξ1
log ξ2

)2 + (log ξ3)
2]f(ξ1, ξ2, ξ3). (37)

Finally, for the correlator of three Ψ’s we use

< Ψ(z1)Ψ(z2)Ψ(z3) >= [d+ d1D1 + d2D2 + d′2D
2
1 + d3D3 + d′3D1D2 + d′3D

3
1 ]f(ξ1, ξ2, ξ3) (38)

where

D1 := log(ξ1ξ2ξ3) (39)

D2 := log ξ1 log ξ2 + log ξ2 log ξ3 + log ξ1 log ξ3 (40)

D3 = log ξ1 log ξ2 log ξ3. (41)

This is the most general symmetric up to third power logarithmic function of the relative positions. Using

the Ward identities, this three-point function is calculated to be

< Ψ(z1)Ψ(z2)Ψ(z3) >= [d− cD1 + 4bD2 − bD2
1 + 8aD3 − 4aD1D2 + aD3

1]f(ξ1, ξ2, ξ3) (42)

Now there is a simple way to obtain these correlators. Remember of the relation between Φ(z) and

Ψ(z)

Ψ(z) =
∂

∂∆
Φ(z). (43)
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The meaning of this relation will be clearer in section 3. Consider any three-point function which contains

the field Ψ. This correlator is related to another correlator which has a Φ instead of Ψ according to

< Ψ(z1)A(z2)B(z3) >=
∂

∂∆
< Φ(z1)A(z2)B(z3) >, (44)

To be more exact, the left hand side satisfies the Ward identities if the correlator of the right hand side

does so. But the three-point function for ordinary fields are known. So it is enough to differentiate it with

respect to the weight ∆. Obviously, a logarithmic term appears in the result. In this way one can easily

obtain the above three-point functions. In fact instead of solving certain partial differential equations, one

can easily differentiate with respect to the conformal weight. This method can also be used when there

are n logarithmic fields. To obtain the three- point function containing the field Φi, one should write the

three-point function, which contains the field Φ0, and then differentiate it i times with respect to ∆. Note

that in the first three-point function, there may be more than one field with the same conformal weight

∆. Then one must treat the conformal weights to be independent variables, differentiate with respect to

one of them, and finally put them equal to their appropriate value. Second, there are some constants, or

unknown functions in the case of more than three-point functions, in any correlator. In differentiation

with respect to a conformal weight, one must treat these formally as functions of the conformal weight

as well. As an example consider

< Φ(z1)Φ(z2)Φ(z3) >=
a

(ξ1)∆2+∆3−∆1(ξ2)∆3+∆1−∆2(ξ3)∆2+∆1−∆3

. (45)

Differentiate with respect to ∆1, and then put ∆1 = ∆2 = ∆3, and ∂a
∂∆1

= b. This is (35).

This method can be used for any n-point function:

< Φi(z1) · · ·A(zn−1)B(zn) >=
∂i

∂∆i
< Φ0(z1) · · ·A(zn−1)B(zn) >, (46)

provided one treats the constants and functions of the correlator as functions of the conformal weight.
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Another thing to be noted is that this technique does not work for the two point functions. The reason

for this is that the two point function of two primary fields with different conformal weights is zero. So,

the two point function is not a well-behaved differentiable function of the conformal weights.

3 OPE Coefficients of General LCFT

The most general expression for the operator product expansion of ordinary conformal fields is [18]:

Φn(z)Φm(0) =
∑

p

z∆p−∆n−∆m Cp
nmφp(z)Φp(0) (47)

where

φp(z) =
∑

k

z
∑

ki βp,k
nmL−k1

· · ·L−kn
(48)

Here the coeficients βpk
nm are completely determined in terms of conformal weights and the central charge

of the theory. Cp
nm’s, however, are not determined just by conformal invariance. Now, concentrate on a

specific value of p, and suppose that there are two conformal weights ∆p, and ∆′
p := ∆p + ǫ, where ǫ is

a small number. One can write

Φn(z)Φm(0) = · · · + z∆p−∆n−∆mĈp
nmφp(z)Φp(0) + z∆p−∆n−∆m+ǫĈp′

nmφp′(z)Φp′(0)

= · · · + (Ĉp
nm + Ĉ′

p

nm)z∆p−∆n−∆mφp(z)Φp(0) + ǫĈ′
p

nm
∂

∂∆p
(z∆p−∆n−∆mφp(z)Φp(0))

(49)

where

Ĉ′p
nm := Ĉp′

nm, (50)

and we have treated φp and Φp, formally, as functions of ∆p.

Now let ǫ tend to zero. If the C’s are kept finite, the second term vanishes and nothing new happens:

this is just an ordinary conformal field theory. If, on the other hand, one keeps ǫĈ′ and Ĉ + Ĉ′ finite. It
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turns out that

Φn(z)Φm(0) = · · · + C̄p
nmz

∆p−∆n−∆mφp(z)Φp(0) + Cp
nm

∂

∂∆p

(z∆p−∆n−∆mφp(z)Φp(0)) (51)

As C and C̄ are arbitrary, we can define C̄ as the formal derivative of C with respect to ∆p. Then

Φn(z)Φm(0) = · · · +
∂

∂∆p

[Cp
nmz

∆p−∆n−∆mφp(z)Φp(0)], (52)

or

Φn(z)Φm(0) = · · · + z∆p−∆n−∆m{Cp
nm[ψp(z)Φp(0) + φp(z)Ψp(0) + φp(z)Φp(0) log z] + C′p

nmφp(z)Φp(0)}

(53)

where we have defined

ψp(z) =
∂φp(z)

∂∆p

Ψp(z) =
∂Φp(z)

∂∆p

(54)

Note that these derivations are formal. There are, of course, conformal field theories where the set

of conformal weights is discrete, and it may seem that there, derivation with respect to the weight is

meaningless. What is done, resembles very much to the case when one knows a function only in certain

points. One cannot obtain the derivative of this function. One can, however, introduce other (unknown)

quantities as the formal derivative of this function and use identities (such as Leibnitz’s rule) concerning

the derivation. There remains, of course, the unknown quantities introduced by derivation. That is the

reason why new quantities (c-numbers such as C̄ and operators such as ψp and Ψp) are introduced. The

same is true also for derivating the correlators: one cannot obtain the derivative of constants appearing

in the correlator. They simply introduce more constants in the theory. Also note that all we have used

is conformal invariance, and no specific model has been taken into account.
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Now, using the definitions

| ∆m >:= Φm(0) | 0 >

| z,∆p >:= φp(z) | ∆p >

=:
∑

N zN | N,∆p >

| ∆′
p >:= ∂

∂∆p
| ∆p >

| z,∆′
p >:= ∂

∆p
| z,∆p >

(55)

it is seen that

| z,∆′
p >= φp(z) | ∆′

p > +ψp(z) | ∆p >, (56)

and

Φn(z) | ∆m >=
∑

N

z∆p−∆m−∆n+N [Cp
nm(| N,∆′

p > + log z | N,∆p >) + C′p

nm | N,∆p >] (57)

Acting on both side of this relation by Lj , one gets

∑

N

z∆p−∆m−∆n+N [Cp
nmLj(| N,∆

′
p > + log zLj | N,∆p >)+C′p

nmLj | N,∆p >] =
∑

N

z∆p−∆m−∆n+N+j×

×{Cp
nm[(∆p−∆m+j∆n+N)(| N,∆′

p > + log z | N,∆p >)+ | N,∆p >]+C′p
nm(∆p−∆m+j∆n+N) | N,∆p >}

(58)

using the independency of zk and zk log z, it is seen that







Lj | N + j,∆p >= (∆p − ∆m + j∆n +N) | N,∆p >

Lj | N + j,∆′
p >= (∆p − ∆m + j∆n +N) | N,∆′

p > + | N,∆p >

, j > 0 (59)

The last relation is obviously the derivative of the first, with respect to ∆p.
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Similarly, the action of L0 yields

L0(| N,∆p >= (∆p +N) | N,∆p >

L0 | N,∆′
p >= (∆p +N) | N,∆′

p > + | N,∆ − p > .

(60)

In [4], a method was proposed to obtain | N,∆p > in terms of | ∆p >:

| N,∆p >=
∑

k
|

∑

ki=N

βpk
nmL−k1

· · ·L−kn
| ∆p > (61)

where β’s satisfy a linear equation of the form

Mβ = γ (62)

Using the definition of | N,∆′
p >, it is obvious that

| N,∆′

p >=
∑

k
|

∑

ki=N

β′p,k
nmL−k1

· · ·L−kn
| ∆p > +

∑

k
|

∑

ki=N

βpk
nmL−k1

· · ·L−kn
| ∆p > (63)

where β′’s are the derivative of β’s with respect to ∆p. But taking the derivative of (62) yields

M ′β +Mβ′ = γ′ (64)

Combining this with (62), we get





M 0

M ′ M









β

β′



 =





γ

γ′



 (65)

which, among with (63), it is precisely what was obtained in [19].

Now, the general form of (52) can be written as

Φn(z)Φm(0) =
∑

p

(

∂

∂∆p

)qp
[

Cp
nmz

∆p−∆n−∆mφp(z)Φp(0)
]

, (66)

where qp is the dimension of the pth. Jordanian block.
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In a manner similar to that of the previous discussion, one can define































Φ
(n)
p :=

(

∂
∂∆p

)n

Φp

φ
(n)
p :=

(

∂
∂∆p

)n

φp

| N,D
(n)
p >:=

(

∂
∂∆p

)n

| N,∆p >

, 0 ≤ n < qp (67)

and the equation corresponding to (65) becomes

qp−1
∑

j=0

Mijβj = γi, (68)

where

γi :=

(

∂

∂∆p

)i

γ, (69)

and

Mij :=
i!

j!(i− j)!

(

∂

∂∆p

)i−j

M. (70)

M’s up to the third level are given in [4].
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