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3 CNRS UMR 6529, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
4 Department of Physics, IUST, PO Box 16844, Tehran, Iran
5 Research Institute for Fundamental Sciences, Tabriz 51664, Iran
6 Physics Departmant, Center for Applied and Astronomical Research, Tabriz University-51664,
Tabriz, Iran

Received 31 October 2002, in final form 3 January 2003
Published 26 February 2003
Online at stacks.iop.org/JPhysA/36/2517

Abstract
We investigate the average frequency of positive slope ν+

α , crossing the height
α = h − h̄ in the surface growing processes. The exact level crossing analysis
of the random deposition model and the Kardar–Parisi–Zhang equation in the
strong coupling limit before creation of singularities is given.

PACS numbers: 52.75.Rx, 68.35.Ct

1. Introduction

Due to the technical importance and fundamental interest, a great deal of effort has been
devoted to understanding the mechanism of thin-film growth and the kinetic roughening of
growing surfaces in various growth techniques. Analytical and numerical treatments of simple
growth models suggest, quite generally, that the height fluctuations have a self-affine character
and their average correlations exhibit a dynamic scaling form [1–6]. It is known that to derive
the quantitative information of the surface morphology one may consider a sample of size L
and define the mean height of growing film h̄ and its roughness w by [1]

h̄(L, t) = 1

L

∫ L/2

−L/2
dx h(x, t) (1)

and

w(L, t) = (〈(h − h̄)2〉)1/2 (2)

where 〈· · ·〉 denotes an averaging over different realization (samples). Starting from a flat
interface (one of the possible initial conditions), it was conjectured by Family and Vicsek [7]
that a scaling of space by a factor b and of time by a factor bz (z is the dynamical scaling
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exponent), re-scales the roughness w by a factor bχ as follows: w(bL, bzt) = bχw(L, t),
which implies that

w(L, t) = Lχf (t/Lz). (3)

If for large t and fixed L (t/Lz → ∞),w saturates then f (x) → const, as x → ∞. However,
for fixed large L and 1 � t � Lz, one expects that correlations of the height fluctuations are
set up only within a distance t1/z and thus must be independent of L. This implies that for
x � 1, f (x) ∼ xβ with β = χ/z. Thus dynamic scaling postulates that w(L, t) ∼ tβ for
1 � t � Lz and ∼Lχ for t � Lz. The roughness exponent χ and the dynamic exponent z

characterize the self-affine geometry of the surface and its dynamics, respectively.
Here we introduce the level crossing analysis in the context of surface growth processes.

In the level crossing analysis, we are interested in determining the average frequency (in
spatial dimension) of observing a definite value for height function h − h̄ = α in growing
thin films, ν+

α , from which one can find the averaged number of crossing the given height
in a sample with size L. The average number visiting the height h − h̄ = α with positive
slope will be N+

α = ν+
αL. It can be shown that ν+

α can be written in terms of joint probability
distribution function (PDF) of h − h̄ and its gradient. Therefore the quantity ν+

α carries the
whole information of surface lying in joint PDF of height and its gradient fluctuations. This
work aims to study the frequency of positive slope crossing (i.e. ν+

α ) in time t for the growing
surface on a substrate with size L. We also introduce a quantity N+

tot which is defined as
N+

tot = ∫ +∞
−∞ ν+

α dα to measure the total number of crossings of the surface with positive slope.
This quantity is proportional to the length of the path constructed by growing surface. For
example, for a given growth process, with finite correlation length parallel to the substrate, the
number of crossings within a system size L is proportional to the roughness of the surface, so
it is expected that N+

α grows as tβ , such that N+
tot scales as t2β . In the stationary regime we

expect N+
tot to saturate as L2χ . But for the random deposition (RD) model, in which there is

no correlation length, the N+
α is time independent and the total number of the crossings should

grow as tβ and never saturate.
In this paper, we determine the time and height dependence of ν+

α for two exactly
solvable models, random deposition model and (1 + 1)-dimensional Kardar–Parisi–Zhang
(KPZ) equation in the zero tension limit with short-range forcing and before creation of
singularities (sharp valleys) [10]. It is shown that the RD model and KPZ equation, in the
mentioned regime have different ν+

α ; however, N+
tot scales as t1/2 in both models which shows

that for time scales less than the characteristic time for the creation of the singularities, KPZ
process is like RD growth. We expect that for time scales much larger than the time scale of
singularity formation and much less than saturation time, the scaling behaviour of N+

tot crosses
over to t2/3. In section 2, we discuss the connection between ν+

α and underlying probability
distribution functions of growing surfaces. Exact expression of ν+

α for the RD model with
short-range forcing is given in section 3. In section 4, we derive the integral representation of
ν+

α for the KPZ equation in 1 + 1 dimensions and in the strong coupling limit (zero tension
limit) before the creation of singularities. We summarize the results in section 5.

2. The level crossing analysis of growing surface

Consider a sample function of an ensemble of functions which make up the homogeneous
random process h(x, t). Let n+

α denote the number of positive slope crossings of h(x) −
h̄ = α in time t for a typical sample size L (see figure 1) and let the mean value for all the
samples be N+

α (L) where

N+
α (L) = E

[
n+

α(L)
]
. (4)
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Figure 1. Positive slope crossing of the level h − h̄ = α.

Since the process is homogeneous, if we take a second interval of L immediately following
the first, we shall obtain the same result, and for the two intervals together we shall therefore
obtain

N+
α (2L) = 2N+

α (L) (5)

from which it follows that, for a homogeneous process, the average number of crossings is
proportional to the space interval L. Hence

N+
α (L) ∝ L (6)

or

N+
α (L) = ν+

αL (7)

where ν+
α is the average frequency of positive slope crossing of the level h − h̄ = α. We

now consider how the frequency parameter ν+
α can be deduced from the underlying probability

distributions for h − h̄. Consider a small length dl of a typical sample function. Since we are
assuming that the process h− h̄ is a smooth function of x, with no sudden ups and downs, if dl

is small enough, the sample can only cross h − h̄ = α with positive slope if h − h̄ < α at the
beginning of the interval location x. Furthermore, there is a minimum slope at position x if the
level h − h̄ = α is to be crossed in interval dl, depending on the value of h − h̄ at location x.
So there will be a positive crossing of h − h̄ = α in the next space interval dl if, at position x,

h − h̄ < α and
d(h − h̄)

dl
>

α − (h − h̄)

dl
. (8)

Actually what we really mean is that there will be high probability of a crossing in interval
dl if these conditions are satisfied [8, 9].

In order to determine whether the above conditions are satisfied at any arbitrary location
x, we must find how the values of y = h − h̄ and y ′ = dy

dl
are distributed by considering their

joint probability density p(y, y ′). Suppose that the level y = α and interval dl are specified.
Then we need only the region between the lines y = α and y ′ = α−y

dl
in the plane (y, y ′), to

find the probability of the positive slope crossing of y = α in dl. Hence the probability of
positive slope crossing of y = α in dl is∫ ∞

0
dy ′

∫ α

α−y′ dl

dy p(y, y ′). (9)

When dl → 0, it is legitimate to put

p(y, y ′) = p(y = α, y ′). (10)
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Since at large values of y and y ′, the probability density function approaches zero fast enough,
therefore equation (6) may be written as∫ ∞

0
dy ′

∫ α

α−y′ dl

dy p(y = α, y ′) (11)

in which the integrand is no longer a function of y so that the first integral is just:∫ α

α−y′dl
dy p(y = α, y ′) = p(y = α, y ′)y ′ dl, so that the probability of slope crossing of

y = α in dl is equal to

dl

∫ ∞

0
p(α, y ′)y ′ dy ′ (12)

in which the term p(α, y ′) is the joint probability density p(y, y ′) evaluated at y = α.
We have said that the average number of positive slope crossing in scale L is ν+

αL,
according to (7). The average number of crossings in interval dl is therefore ν+

α dl. So, an
average number of positive crossings of y = α in interval dl is equal to the probability of
positive crossing of y = a in dl, which is only true because dl is small and the process y(x)

is smooth so that there cannot be more than one crossing of y = α in space interval dl,
Therefore we have ν+

α dl = dl
∫ ∞

0 p(α, y ′)y ′ dy ′, from which we get the following result for
the frequency parameter ν+

α in terms of the joint probability density function p(y, y ′),

ν+
α =

∫ ∞

0
p(α, y ′)y ′ dy ′. (13)

In the following sections, we derive the ν+
α via the joint PDF of h− h̄ and height gradient.

To derive the joint PDF we use the master equation method [10]. This method enables us to find
the ν+

α in terms of generating function Z(λ,µ, x, t) = 〈exp(−iλ(h(x, t) − h̄) − iµu(x, t))〉,
where u(x, t) = −∇h.

3. The frequency of a definite height with positive slope for the random deposition
model

In random deposition model, particles are dropped randomly over deposition sites, and stick
to the top of the pre-existing columns on the site [1]. The height of each column thus performs
an independent random walk. This model leads to an unrealistically rough surface whose
overall width increases with the exponent β = 1

2 without saturation. In the continuum limit,
the random deposition model is described by the following equations.

∂

∂t
h(x, t) = f (x, t)

∂

∂t
u(x, t) = fx (14)

where h(x, t) is the height field, u(x, t) = ∂
∂x

h(x, t) and f (x, t) is a zero mean random force
Gaussian correlated in space and white in time,

〈f (x, t)f (x ′, t ′)〉 = 2D0D(x − x ′)δ(t − t ′) (15)

where D(x) is the space correlation function and is an even function of its argument. It has
the following form:

D(x − x ′) = 1√
πσ

exp

(
− (x − x ′)2

σ 2

)
(16)

where σ is the standard deviation of D(x − x ′). The average force on the interface is not
essential and can be removed by a simple shift of h (i.e., h → (h− F̄ t) where F̄ = 〈f (x, t)〉).
Typically the correlation of forcing is considered as delta function for mimicking the short-
range correlation. We regularize the delta function correlation by a Gaussian function. When
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the standard deviation σ is much less than the system size, we would expect that the model
would represent a short-range character for the forcing. So we would stress that our calculations
are done for finite σ � L, where L is the system size. The parameter D0 describes the noise
strength.

Now assuming the homogeneity we define the generating function as

Z(λ,µ, t) = 〈exp(−iλh(x, t) − iµu(x, t)〉. (17)

Using equation (14) we can find the following equation for the evolution of Z(λ,µ, t):

∂

∂t
Z(λ,µ, t) = −iλ〈ht (x, t) exp(−iλh(x, t) − iµu(x, t)〉

− iµ〈ut (x, t) exp(−iλh(x, t) − iµu(x, t)〉
= −iλ〈f (x, t) exp(−iλh(x, t) − iµfx(x, t)〉

− iµ〈ut exp(−iλh(x, t) − iµu(x, t)〉
= −λ2D0D(0)Z + µ2D0Dxx(0)Z. (18)

The joint probability density function of h and u can be obtained by Fourier transform of
the generating function

P(h, u, t) = 1

2π

∫
dλ dµ eiλh+iµuZ(λ,µ, t) (19)

so by Fourier transformation of equation (18), we get the Fokker–Planck equation as

∂

∂t
P = D0D(0)

∂2

∂h2
P − D0Dxx(0)

∂2

∂u2
P. (20)

The solution of the above equation can be separated as P(h, u, t) = p1(h, t)p2(u, t). Using
the initial conditions P1(h, 0) = δ(h) and P2(u, 0) = δ(u) (starting from flat surface) it can
be shown that

P(h, u, t) = 1

4πt

√
−D2

0D(0)Dxx(0)

exp

(
− h2

4D0D(0)t
+

u2

4D0Dxx(0)t

)
(21)

from which the frequency of repeating a definite height (h(x, t) = α) can be calculated as

ν+
α =

∫ ∞

0
uP(α, u) du = 1

2π

√
−Dxx(0)

D(0)
exp

(
− α2

4D(0)t

)
= 1

2πσ
exp

(
− α2

4D0D(0)t

)
.

(22)

The quantity ν+
α in RD model has a Gaussian form with respect to α. The zero

level crossing scales with σ as ν+
α=0 ∼ σ−1. Also, using equation (22) it is found that

N+
tot = D

1/2
0 π−3/4σ−3/2t1/2. This shows that there is no stationary state for the RD model and

the quantity N+
tot diverges without saturation.

4. Frequency of a definite height with positive slope for KPZ equation before the
formation of the singularities

In the Kardar–Parisi–Zhang (KPZ) model (e.g., in one dimension), the surface height h(x, t)

on the top of location x of one-dimensional substrate satisfies a stochastic random equation:

∂h

∂t
− α

2
(∂xh)2 = ν∂2

xh + f (x, t) (23)

where α � 0 and f is a zero-mean, statistically homogeneous, white in time and Gaussian
process with covariance as equation (16). The parameters ν, α and D0 (and σ ) describe surface
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relaxation, lateral growth and the noise strength, respectively. Let us define the generating
function Z(λ,µ, x, t) as

Z(λ,µ, x, t) = 〈exp(−iλ(h(x, t) − h̄) − iµu(x, t))〉.
Where u(x, t) = −∂xh(x, t). Assuming statistical homogeneity, i.e. Zx = 0, it follows from
equation (23) that Z satisfies the following equation:

−iµZt = γ (t)λµZ − α

2
λµZµµ + iλ2µk(0)Z − iµ3kxx(0)Z − i(νλ2 + iαλ)Zµ

− µ2ν〈uxx(x, t) exp(−iλh̃(x, t) − iµu(x, t))〉 (24)

where k(x − x ′) = 2D0D(x − x ′), γ (t) = h̄t , k(0) = D0√
πσ

and kxx(0) = − 2D0√
πσ 3 and

h̃(x, t) = h(x, t)− h̄. Once we try to develop the statistical theory of the roughened surface, it
becomes clear that the inter-dependency of the height difference and height gradient statistics
would be taken into account. We are interested in the zero tension limit of the KPZ equation.
The very existence of the nonlinear term in the KPZ equation with finite σ leads to development
of the sharp valley singularities in a finite time and in the strong coupling limit (or zero tension
limit), i.e. ν → 0. So one would distinguish between different time regimes, before and
after singularity creation. Recently it has been shown that starting from the flat interface, the
KPZ equation will develop sharp valleys singularity after time scale t∗, where t∗ depends on

the forcing properties as t∗ = (
1
4

)4/3
(π)1/6D0

−1/3 α−2/3 σ 5/3 [10]. This means that for time
scales less than t∗, the relaxation contribution tends to zero when ν → 0. In this regime, one
can see that the generating function equation is closed. Solutions of the resulting equation
are easily derived (starting from a flat surface, i.e. h(x, 0) = 0 and u(x, 0) = 0), and has the
following form [10]:

Z(µ, λ, t) = (1 − tanh2(
√

2ikxx(0)αλt)) exp

[
−5

8
ln(1 − tanh4(

√
2ikxx(0)αλt))

+
5

4
tanh−1(tanh2(

√
2ikxx(0)αλt)) − λ2k(0)t

− 1

16
ln2

(
1 − tanh(

√
2ikxx(0)αλt)

1 + tanh(
√

2ikxx(0)αλt)

)

− 1

2
iµ2

√
2ikxx(0)

αλ
tanh(

√
2ikxx(0)αλt)

]
. (25)

One can construct P(h̃, u, t) in terms of generating function Z as equation (19), from
which the frequency of repeating a definite height (h(x, t)− h̄ = α) with positive slope can be
calculated as ν+

α = ∫ ∞
0 uP(α, u) du. In figure 2, we plot the ν+

α for time scales before creation
of singularity, t/t∗ = 0.05, 0.15 and 0.25. In the KPZ equation, due to the nonlinear term
there is no h → −h symmetry and one can deduce that the ν+

α is also not symmetric under
h → −h. To derive the N+

tot let us express ν+
α and N+

tot in terms of the generating function Z.
It can be easily shown that the ν+

α and N+
tot can be written in terms of the generating function

Z as

ν+
α = 1

2π

∫ +∞

−∞

∫ +∞

−∞
− 1

µ2
Z(λ,µ) exp(iλα) dλ dµ (26)

and

N+
tot =

∫ +∞

−∞
− 1

µ2
Z(λ → 0, µ) dλ. (27)
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Figure 2. Plot of ν+
α versus α for the KPZ equation in the strong coupling and before the creation

of sharp valleys for time scale t/t∗ = 0.05, 0.15 and 0.25.
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Figure 3. Log–log plot of Ntot (A) versus t for the KPZ equation in the strong coupling before the
creation of sharp valleys.

Using equation (25), one finds N+
tot ∼ σ−3/2t1/2. We note that the expression of the ν+

α

for the RD model and KPZ equation before t∗ are different functions of α but N+
tot scales as

∼σ−3/2t1/2 in both models. In figure 3 using the direct numerical integration of joint PDF of
height and its gradient we plot the Ntot versus t. In this graph, Ntot scales as t1/2 which is in
agreement with the analytical prediction.
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5. Conclusion

We obtained some exact results in the problems of RD model and KPZ equation in 1 + 1
dimensions with a Gaussian forcing which is white in time and short-range correlated in
space. We determined the explicit expression of average frequency of crossing, i.e. ν+

α of
observing the definite value for height function h − h̄ = α in a growing thin film for the RD
model, from which one can find the averaged number of crossing the given height in a sample
with size L. It is shown that the ν+

α is symmetric under h → −h. An integral representation
of ν+

α is given for the KPZ equation in the strong coupling limit before the creation of sharp
valleys. We introduced the quantity N+

tot = ∫ +∞
−∞ ν+

α dα, which measures the total number of
positive crossings of growing surface and show that for the RD model and the KPZ equation
in the strong coupling limit and before the creation of sharp valleys, N+

tot scales as σ−3/2t1/2.
It is noted that for these models ν+

α has different expression in terms of α. The ideas presented
in this paper can be used to find the ν+

α of the general Langevin equation with arbitrary drift
and diffusion coefficients.
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