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Exact enumeration approach to first-passage time distribution of non-Markov random walks
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We propose an analytical approach to study non-Markov random walks by employing an exact enumeration
method. Using the method, we derive an exact expansion for the first-passage time (FPT) distribution of any
continuous differentiable non-Markov random walk with Gaussian or non-Gaussian multivariate distribution. As
an example, we study the FPT distribution of the fractional Brownian motion with a Hurst exponent H ∈ (1/2, 1)
that describes numerous non-Markov stochastic phenomena in physics, biology, and geology and for which the
limit H = 1/2 represents a Markov process.
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I. INTRODUCTION

The concept of first passage refers to the crossing of
a prespecified location or some sort of a threshold in a
stochastic trajectory [1]. The distribution of the first-passage
times (FPTs), which represents the probability of crossing the
trajectory at a specific time or location [2,3] and depends on
the nature of the stochastic process, plays a fundamental role
in the theory of stochastic processes as well as in their appli-
cations. The FPT distribution makes it possible to investigate
quantitatively the uncertainty in the properties of a stochastic
system within a finite time. Two important applications are
the extinction time of a disease in the models of epidemic
phenomena and the time for a species to reach a critical
threshold in population dynamics. In addition, the statistics
of the FPT distribution have many applications to diffusion-
limited processes in physics [1], chemistry [4], biology [5],
spreading of electrical blackouts [6], epidemiology [7], and
even foraging animals [8,9], as well as to understanding
transport processes in disordered materials [10], porous media
[11,12], neuroscience [13–16], spreading of computer viruses
[17], target search processes [18], economics [19], mathe-
matical finance [20,21], psychology [22], cosmology [23,24],
and the reliability theory [25]. Through a suitable boundary,
the FPT presents the first time that the error in the so-called
clock model [26] becomes too large and uncontrollable. Rapid
detection of anomalies is closely related to recognizing the
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optimal stopping time of a diffusion process [27] and, hence,
the FPT distribution.

Due to their very large number of applications, the FPT
properties have been studied extensively and are well under-
stood when the stochastic phenomena represent a Markov
process. As a general rule, however, the dynamics of a given
stochastic process in complex media is the result of its inter-
actions with the environment around it, which may contain
trapping sites, obstacles, moving parts, active pumps, etc.
[28], and cannot be described as a Markov process. Indeed,
although the evolution of the set of all microscopic degrees
of freedom of a system is Markovian, the dynamics restricted
only to the random walker is not [3,29,30]. Experimental real-
izations of non-Markov dynamics include diffusion of tracers
in crowded narrow channels [31] and in complex fluids, such
as nematics [32] and viscoelastic solutions [33,34], as well as
the dark matter halo mass function [35]. Even in simple fluids,
hydrodynamic memory influences various phenomena and,
thus, non-Markov dynamics has been reported recently [36].

Using the inclusion-exclusion principle and an exact enu-
meration method, we derive in this paper the FPT distribution
of a non-Markov random walk by assuming that the trajectory
of the walk is differentiable at every point. As an example, we
derive the FPT distributions of fractional Brownian motion
(FBM) with a given Hurst exponent H ∈ (0.5, 1). The analyt-
ical results are confirmed by extensive numerical simulation
and the analysis of 106 trajectories.

The rest of this paper is organized as follows. In the next
section, we describe the exact enumeration approach to derive
the FPT probability density of a non-Markovian random walk.
We then drive, in Sec. III, an analytical expression for the FPT
distribution of FBM. The results of numerical simulations
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are presented in Sec. IV, whereas the paper is summarized
in Sec. V. In the Appendix, we provide the details of the
derivation of our results.

II. EXACT ENUMERATION METHOD FOR THE FPT
PROBABILITY DENSITY

We define a general dynamical equation for a random walk
x(t ), driven by a correlated nonstationary noise (velocity) v(t ),

∂x(t )

∂t
= v(t ), C(t, t ′) = 〈v(t )v(t ′)〉. (1)

x(t ) is assumed to be continuous and its derivative (velocity)
v(t ) to be well defined at any time [37]. The noise v(t )
has a zero mean and an arbitrary n-point joint distribution
p(vn, tn; . . . v1, t1; v0, t0). The correlation function C(t, t ′) de-
pends on both t and t ′. Because x(t ) is a stochastic process,
each of its realizations reaches a given barrier x = xc for
the first time at a different time t , giving rise to a FPT
probability density f (t ). Consider the trajectories with the
initial conditions x(t0) = x0 and ẋ(t0) = v(t0) = v0; crossing
the barrier xc in the time interval t and t + dt with v(t ) > 0.
The crossing is equivalent to the conditions that x(t ) < xc and
xc < x(t + dt ) [16,38]. If xc is constant, x(t ) will lie in the
interval xc − v d < x(t ) < xc. Then, the probability that x(t )
satisfies the passage condition xc − v dt < x(t ) < xc is∫ xc

xc−v dt
P(x, v, t |x0, v0, t0)dx = vP(xc, v, t |x0, v0, t0)dt,

where we kept the terms up to the order of dt . Since v(t ) > 0
at xc, we should integrate over all positive velocities. There-
fore, the probability of crossing the barrier xc per unit time is
given by [16]

n1(xc, t1|x0, v0, t0) =
∫ ∞

0
vP(xc, v, t1|x0, v0, t0)dv. (2)

Equation (2) represents the rate of up-crossing rather than a
density function and, thus, it is not normalized. We generalize
Eq. (2) to the joint probability of multiple up-crossings, i.e.,
x(t ) crossing the barrier in each of the intervals (t1, t1 +
dt ), . . . , (tp, tp + dt ) by integrating over all the crossing
points t1, t2, . . . , tp,

np(xc, tp; . . . ; xc, t1|x0, v0, t0)

=
∫ ∞

0
dvp · · ·

∫ ∞

0
dv1vp · · · v1

× P(xc, vp, tp; . . . ; xc, v1, t1|x0, v0, t0). (3)

Using Bayes’ theorem, one may substitute the conditional
probability density in Eq. (3) with the joint probability density.
In Fig. 1, typical trajectories as well as the FPT distribution of
the FBM for xc = 1 with x0 = 0 are presented. The trajecto-
ries are constructed using the Cholesky decomposition (see
below).

A trajectory can cross xc several times (see the lower panel
of Fig. 1). We relate the FPT distribution to the statistical
properties of the up-crossings, which are considered as point
processes with rates np, where p refers to the number of
up-crossing. To this end, we look for the fraction of all the
trajectories that up-cross xc for the first time at time t with

FIG. 1. Sample trajectories of a non-Markov random walk with
its corresponding FPT distribution. Shown are the trajectories as
well as the FPT distribution of the fractional Brownian motion with
the barrier xc = 1 with x0 = 0. Trajectories were computed via the
Cholesky decomposition. The first crossings are marked with arrows
for one trajectory.

the initial conditions (x0, v0) at time t0 and enumerate them
in terms of np. To simplify the notation, we drop xc and the
initial conditions.

The rate n1(t ) is overcounted through the trajectories that
had an up-crossing at shorter times t1 < t . Therefore, we
subtract their fraction from the first term. This stems from the
fact that n1(t ) is a local function in t , but there is no guarantee
that a trajectory has not up-crossed before t . The overcounting
implies that the main problem is a combinatorial counting.
Thus, as an enumeration technique we use the inclusion-
exclusion principle, one of the most useful principles of
counting in combinatorics and probability. According to De
Morgan’s laws, in the general and complementary form, the
principle of inclusion-exclusion for finite sets A1, A2, . . . , An

is expressed by∣∣∣∣∣
n⋂

i=1

Āi

∣∣∣∣∣ =
∣∣∣∣∣U −

n⋃
i=1

Ai

∣∣∣∣∣
= |U | −

n∑
i=1

|Ai| +
∑

1�i� j�n

|Ai ∩ Aj | − · · ·

+
∑

1�i� j�···�n

(−1)n−1|Ai ∩ Aj ∩ · · · ∩ An|, (4)

where U is a finite universal set containing all the Ai and
Āi’s are the complement of Ai in U . That the trajectories
cross xc for the first time at time t implies that they should
not have been crossed at xc at shorter times. We consider
n1(t ) as the universal set and define the next subset by Ai =
n2(t, ti ), denoting the fraction of trajectories for which the
up-crossing at time t is not for the first time, and that they had
a previous up-crossing at a shorter time ti < t . Then, the FPT
distribution is given by |⋂n

i=1 Āi| because only the trajectories
that have a first up-crossing at time t and do not belong to the
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TABLE I. The exact enumeration method. The nth column corresponds to the nth term of the sum in Eq. (5).

f(t) = |U | −
n∑

i=1

|Ai| +
∑

1 i j n

|Ai ∩ Aj| − ∑

1 i j k n

|Ai ∩ Aj ∩ Ak|

= n1(t) − ∫ t
0 n2(ti, t)dti + 1

2!

∫ t
0

∫ t
0 n3(ti, tj, t)dtidtj − 1

3!

∫ t
0

∫ t
0

∫ t
0 n4(ti, tj, tk, t)dtidtjdtk

subsets Ai are of interest. Using Eq. (4), we obtain the FPT distribution [16],

f (t ) =
∣∣∣∣∣

n⋂
i=1

Āi

∣∣∣∣∣
= n1(t ) −

∫ t

0
n2(t, t1)dt1 + 1

2!

∫ t

0

∫ t

0
n3(t, t2, t1)dt1dt2 − · · ·

=
∞∑

p=0

(−1)p

p!

∫ t

0
· · ·
∫ t

0
np+1(t, tp, . . . , t1)dtp · · · dt1, (5)

where np+1(t, tp, . . . , t1) are given by the conditional prob-
abilities (3). The factor 1/p! accounts for the number of
permutations of the variables tp, . . . , t1 with the signs ex-
plained in Table I. To calculate np(tp, . . . , t1), we consider
the trajectories in the absence of xc and let them return
after an up-crossing and, then, up-cross the barrier p times.
The correct counting of such multiple crossings yields the
distribution f (t ) of the FPT. Equation (5) provides us with
the exact expansion of the FPT distribution for any contin-
uous differentiable non-Markov random walk with Gaussian
or non-Gaussian multivariate distribution [16]. We note that
a naive truncation of the series would give rise to a non-
normalized (diverging in the long-time limit) distribution [39].

Let us define as a point process the timescales at which the
trajectories cross xc. The distributions of such a point process
are the aforementioned rate functions. Since the trajectories
have nonzero velocities, successive up-crossings cannot be
too close so that np(tp, . . . , t1) is zero if two of its argu-
ments are equal. Such point processes represent systems of
nonapproaching random points [40]. There are two types of
decoupling approximations to deal with the infinite series in
Eq. (5), which are based on approximating the higher-order
terms by the lower-order ones and are known as the Hertz and
Stratonovich approximations. The general expression for f (t )
is given by

f (t ) = ψ ′(t )e−ψ (t ). (6)

The Hertz approximation is based on assuming that all the up-
crossings are independent of each other and that the correla-
tions between them are negligible. This leads to the following

FPT distribution with ψHertz(t ) = ∫ t
0 n1(t ′)dt ′ [24,39,41]:

f (t ) ≈ n1(t ) exp

[
−
∫ t

0
n1(t ′)dt ′

]
. (7)

In the Hertz approximation, np(tp, . . . , t1) factorizes to
n1(tp), . . . , n1(t1). In the Stratonovich approximation, we cal-
culate exactly the first and the second terms of the expansion
and approximate all the higher-order terms by the first two
[35] with the corresponding FPT distribution being in the form
of Eq. (6) with [39]

ψStr (t ) = −
∫ t

0
n1(t ′)

ln
[
1 − ∫ t

0 R(t, t ′)n1(t ′)dt ′]∫ t
0 R(t, t ′)n1(t ′)dt ′ dt, (8)

where R(ti, t j ) = 1 − n2(ti, t j )/[n1(ti )n1(t j )]. For simplicity
and in order to derive an expression for f (t ), we assume in
the following that the velocity distribution is Gaussian.

III. ANALYTICAL DERIVATION OF THE FPT
DISTRIBUTION OF THE FBM

We now derive the FPT distribution of the FBM with a
Hurst exponent H ∈ (0.5, 1), which is defined in terms of its
nonstationary correlation function [42],

〈xH (t1)xH (t2)〉 = 1
2 (|t1|2H + |t2|2H − |t2 − t1|2H ), (9)

which is positive semidefinite (see the Appendix) with its
first derivative (velocity) being the fractional Gaussian noise
(FGN) vH (t ) so that ẋH (t ) = vH (t ). Using physical arguments
[43,44] as well as rigorous analysis [45], it was shown that
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FIG. 2. Comparison of the FPT distribution computed by using the trajectories and the Cholesky decomposition with the one obtained by
the Hertz approximation, for the barrier xc = 1 with x0 = 0. For comparison, the theoretically predicted tail of the distribution, i.e., f (t ) ∼ tH−2,
is also shown [45].

the scaling behavior of the FPT distribution of a FBM has the
following long-time behavior:

f (t ) ∼ tH−2. (10)

Given that the FBM and FGN have Gaussian distributions for
x and v, respectively, we determine n1(t ) and n2(t1, t2) and,
therefore, R(t1, t2) and the FPT distribution in the Hertz and
Stratonovich approximations. It is straightforward to show
that n1(t ) is given by the following expression:

n1(t ) = p(xc)
∫ ∞

0
vp(v|xc)dv, (11)

where p(v|xc) is a Gaussian distribution with mean 〈v|xc〉 =
xc〈vx〉/〈x2〉 = xcH/t and variance sv|xc = H2t2H−2/�2, where
�2 = γ 2/(1 − γ 2) and γ 2 = 〈xv〉2/〈x2〉〈v2〉. For the FBM,
〈xv〉2 = H2t4H−2 and 〈x2〉 = t2H . In the Appendix, we present
an expression for 〈v2〉 in terms of the Hurst exponent H . We
find that the explicit expression for n1(t ) is given by

n1(t ) = �2

2πHt2H−1
exp

(
−y2

2

){
H2t2H−2

�2
exp

(
−y2�2

2

)

+ H2xc

2�
tH−2

√
2π

[
1 + erf

(
y�√

2

)]}
,

where y = xc/tH . Using Eq. (7), we obtain the FPT distribu-
tion in the Hertz approximation, which, in general, is accurate
for estimating the first peak of the FPT distribution, but it over-
or underestimates its tail. Similarly, we find that

n2(t1, t2) =
∫ ∞

0
v dv

∫ ∞

0
dv′v′ p(xc, x′

c, v, v′)

= p(xc)
∫ ∞

0
dv vp(v, xc)p(x′

c|xc, v)

×
∫ ∞

0
dv′v′ p(v′|x′

c, xc, v), (12)

where all the distributions in Eq. (12) are Gaussian. For
example, p(x′

c|xc, v) has the mean (see the Appendix for the
variance),

〈x′
c|xc, v〉 = xc

〈x′x〉
t2H

+ (v − 〈v|xc〉)
〈x′v〉 − 〈x′x〉/2t2H

sv|xc

.

The correlation functions 〈x′x〉 and 〈x′v〉 are given by Eq. (A9)
in the Appendix and sv|xc = H2t2H−2/�2. Having n1(t ) and
n2(t1, t2) enables one to determine R(t1, t2) and f (t ) in the
Hertz and Stratonovich approximations.

IV. NUMERICAL RESULTS

Figure 1 presents the trajectories of a FBM process using
the Cholesky decomposition [46,47] (see the Appendix) and
their FPT distribution for H = 0.8, xc = 1, and x0 = 0. In
Fig. 2, the FPT distributions of the FBM trajectories are
plotted. The FPT is obtained from the Cholesky method.
We also show in these plots the FPT distributions in the
Hertz approximation, which deviate from the FPT directly
computed using trajectories. For comparison, the theoretically
predicted tails of the distributions, i.e., f (t ) ∼ tH−2, are also
plotted. Figure 2 indicates that the theoretical tails of the FPT
in the long-time limit coincide with the FPT distributions
computed using the trajectories. As already mentioned above,
the Hertz approximation predicts correctly the location of the
peak of the FPT distribution but underestimates the tails.

To derive the FTP distribution in the Stratonovich approx-
imation with H = 0.8, one must calculate ψStr (t ) via Eq. (9)
and then use Eq. (6). To avoid any error from the numerical
differentiation of ψStr (t ), we determine the integrated FPT
distribution via the term exp[−ψStr (t )]. In Fig. 3, the cumu-
lative FPT distribution is presented for H = 0.6 and H = 0.8,
indicating that the Hertz approximation deviates clearly from
the results computed via the Cholesky decomposition. As
shown in Fig. 2, the tail of f (t ) in the Hertz approximation
does not coincide completely with those obtained by the
Cholesky decomposition. Higher-order approximations, such
as the Stratonovich approximation are, therefore, needed,
implying that n2(ti, t j ) should not be factorized as n1(t1)n1(t2).
As shown in Fig. 3, the Stratonovich approximation provides
better estimates for the FPT distributions.

One may define various measures to study the interde-
pendence of the up-crossing events. The simplest measure is
the Fano factor. Consider a time window T and count the
mean number (and its variance) of up-crossing events for
trajectories in the window. The Fano factor F (T ) is defined as
the variance of the number of up-crossing events in T , divided
by its mean number, and is written in terms of n2(t1, t2) and
n1(t ) [48]. More specifically, the Fano factor is given by
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FIG. 3. The cumulative FPT distributions in the Hertz (red dot-dashed lines) and Stratonovich (red dashed line with error regions)
approximations for the FBM with H = 0.6 and H = 0.8. The black curve was computed by the Cholesky method. The errors are shown
because the integrals were computed by a Monte Carlo method. The Kolmogorov-Smirnov statistics for FPT distributions, derived from
the Cholesky method, when compared with the Hertz approximation and the Stratonovich approximation, yields the values of 0.433
(p value = 1.03 × 10−6), 0.221 (p value = 0.655), 0.294 (p value = 1.24 × 10−6), and 0.256 (p value = 0.447) for H = 0.6 and H = 0.8,
respectively.

F = 〈�N2〉/〈N〉 (with 〈�N2〉 = 〈N2〉 − 〈N〉2), where 〈N〉 =∫ T
0 n1(t )dt and 〈N2〉 = 〈N〉 + ∫ T

0

∫ T
0 n2(t2, t1)dt2dt1 [48]. For

independent point processes, i.e., n2(t2, t1) = n1(t2)n1(t1), one
has F = 1. Therefore, for a Poisson process F (T ) = 1. By
definition, F (T ) > 1 and F (T ) < 1 refer, respectively, to
over- and underdispersion [49]. We plot in Fig. 4 the Fano
factor versus the size of the time window T , which indicates
that, in the long-time limit, the up-crossing point processes are
strongly overdispersed. This means that over such timescales
n2(ti, t j ) should not be factorized as n1(t1)n1(t2) and that
the Hertz approximation is not appropriate for estimating
the tails of the FPT distribution. A very crucial point to
point out is that, in the time span in which F ∼ 1, the
Hertz approximation is accurate and that it is very close to
the Cholesky-derived FPT distribution. On the other, if the

FIG. 4. The Fano factor for up-crossings of the trajectories of
the FBM with a Hurst exponent H as a function of the window size
T . In the long-time limit, the up-crossing point processes are slightly
overdispersed, whereas over short timescales, the Fano factor is equal
to unity (red solid line), a hallmark of the Poisson process, and the
variance of the up-crossing over such short timescales is equal to the
mean.

Fano factor deviates from unity, it is certain that the Hertz
approximation is not suitable for describing the FPT, although
F cannot by itself quantify the accuracy of the Stratonovich
approximation.

V. SUMMARY

The FPT distribution of the Markov random walks has been
derived in the past. Here, we present an exact analytical ex-
pression for the FPT distribution of general non-Markov ran-
dom walks. In principle, the FPT distribution of non-Markov
processes may be obtained from the solution of the associated
Fokker-Planck equation with absorbing boundaries in higher
dimensions, resulting from the Markovian embedding of a
non-Markov process [50]. Even the calculation of the mean
FPT for a non-Markov process is, however, a rather difficult
task since the corresponding boundary problem cannot be
treated in a straightforward manner [51–55]. We presented a
general method for deriving such analytical expressions. We
then employed it to derive one (as a series) for the FPT dis-
tribution. This was performed by using an exact enumeration
method based on combinatorics and the inclusion-exclusion
principle, which can be generalized to include the FTP dis-
tribution of non-Markov random walks in higher dimensions.
As an example, analytical results were presented for the FBM
with the Hurst exponent H ∈ (0.5, 1), which is a non-Markov
process with infinite-range memory and has wide applications
in many disciplines [28]. The numerical results were also
compared with two well-known approximations, namely, the
Hertz and Stratonovich approximations, which revealed their
shortcomings.
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APPENDIX

We provide the details of the main results presented in the
main text of the paper.

1. Variance of the velocity of fractional Brownian motion

The time derivative (increments) of the FBM is the FGN
and has the following correlation function:

CH (τ, δ) = σ 2δ2H−2

2

[( |τ |
δ

+ 1

)2H

+
∣∣∣∣ |τ |

δ
− 1

∣∣∣∣
2H

− 2
∣∣∣τ
δ

∣∣∣2H
]
, (A1)

where 0 < H < 1 and τ = t2 − t1. Here, δ > 0 is used
for smoothing the FBM to make it numerically differen-
tiable [42]. We note that, in the limit τ → 0, the δ de-
pendence of γ 2 = 〈xv〉2/〈x2〉〈v2〉 drops out. In the litera-
ture [42], there is no unique expression for 〈v2〉. Here, by
generating the FBM trajectories and numerically differen-
tiating them for H ∈ (0.5, 1), the best fit is found to be
〈v2〉 = c0 + c1Hm, where c0 = −2.47 ± 0.01, c1 = 2.88 ±
0.05, and m = −4.72 ± 0.02.

2. Fractional Gaussian noise

The stochastic representation of the FBM is given by

BH (t ) = BH (0) + 1

�(H + 1/2)

×
{∫ 0

−∞
[(t − s)H−1/2 − (−s)H−1/2]dW (s)

+
∫ t

0
(t − s)H−1/2dW (s)

}
, (A2)

where dW (s) is a Wiener process that is written in terms
of the Gaussian white noise ξ (s) as dW (s) = ξ (s)ds. The
FGN is then defined by GH (t ) = dBH (t )/dt . Taking the time
derivative of Eq. (A2) yields

GH (t ) = 1

�(H + 1/2)

{∫ 0

−∞

(
H − 1

2

)
(t − s)H−3/2dW (s)

+
[

(t − s)H−1/2ξ (s)
d

dt
t

]∣∣∣∣
s=t

}
+ 1

�(H + 1/2)

×
[∫ t

0

(
H − 1

2

)
(t − s)H−3/2dW (s)

]
. (A3)

The second term on the right side of Eq. (A3) is not finite
for H ∈ (0, 0.5). Therefore, the FBM has no well-defined
velocity for the Hurst exponent in the range (0,0.5).

3. Proof for the variance of the FBM being positive semidefinite

A symmetric n × n real matrix C is the covariance of
some random (Gaussian) vector if and only if it is positive
semidefinite, which means that

z′Cz =
n∑

i=1

n∑
i= j

ziz jCi, j � 0 ∀ z1, . . . , zn ∈ IR, (A4)

where z is the aforementioned random vector. The FBM has a
vanishing mean [x(0) = 0], whereas its covariance is given by
Eq. (10) of the main text for (t1, t2) � 0 and H ∈ (0, 1). We
show that

C(t1, t2) = 1
2 (|t1|2H + |t2|2H − |t2 − t1|2H ) (A5)

is a covariance function. Consider the function,

�(t2, r) = (t2 − r)α+−1/2 − (−r)α+−1/2 (A6)

defined for all t2 � 0 and r ∈ IR, where α+ = max(0, H ) for
all H ∈ IR. Since H < 1, we determine

∫∞
−∞ |�(t2, r)|2dr <

∞ and∫ ∞

−∞
�(t2, r)�(t1, r)dr = κC(t1, t2) ∀ (t1, t2) � 0, (A7)

where κ is a positive and finite constant that depends only on
H . Therefore, we find

n∑
i=1

n∑
j=1

ziz jCti,t j = 1

κ

n∑
i=1

n∑
j=1

ziz j

∫ ∞

−∞
�(ti, r)�(t j, r)dr

= 1

κ

∫ ∞

−∞

⎡
⎣ n∑

j=1

zi�(ti, r)

⎤
⎦

2

dr � 0.

4. Analytical expressions for n1(t ) and n2(t, t ′ )
with a Gaussian velocity

Due to the linearity of the system, all the joint probability
densities are Gaussian and have the form

Pn(Q) = 1

(2π )n/2
√

det Ĉn

exp

(
−QĈ−1

n Q
2

)
. (A8)

Here, Q = [q1(t1), . . . , qn(tn)] is a n-dimensional vector
whose ith component is the coordinate x(ti ) or the velocity
v(ti ) at time ti, and Ĉn is the symmetric n × n correlation
matrix whose entries are the correlation functions between
the corresponding components of the vector Q:Ci j = Cji =
〈qi(ti)q j (t j )〉. Then, n1(t ) is obtained in closed analytical form

n1(t ) = �2

2πHt2H−1
exp

(
−y2

2

){
H2t2H−2

�2
exp

(
−y2�2

2

)

+ H2xc

2�
tH−2

√
2π

[
1 + erf

(
y�√

2

)]}
, (A9)

where y = xc/tH and �2 = γ 2/(1 − γ 2). For the joint den-
sities of multiple up-crossings np(tp, . . . , t1) no closed ex-
pression can be obtained. We evaluate the integral over v1

in Eq. (3) analytically and then perform numerical integra-
tion of the resulting expression over v2, . . . , vp to determine
np(tp, . . . , t1). The integrals over time in the expressions for
f (t ) are also evaluated numerically. For n2(t, t ′), we compute
the mean and variance of the conditional distributions,

n2(t, t ′) =
∫ ∞

0
v dv

∫ ∞

0
dv′v′ p(xc, x′

c, v, v′)

= p(xc)
∫ ∞

0
dv vp(v|xc)p(x′

c|xc, v)

×
∫ ∞

0
dv′v′ p(v′|x′

c, xc, v). (A10)
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Assuming that t ′ > t , the correlations are given by

〈x′x〉 = 1
2 [t ′2H + t2H − (t ′ − t )2H ], (A11)

〈v′x〉 = Ht ′2H−1 − H (t ′ − t )2H−1, (A12)

〈x′v〉 = Ht2H−1 + H (t ′ − t )2H−1, (A13)

〈v′v〉 = H (2H − 1)(t ′ − t )2H−2, (A14)

where, for example, 〈x′x〉 = 〈x(t ′)x(t )〉. We also know
that

σ 2
x = 〈x2〉 = t2H , 〈xv〉 = Ht2H−1. (A15)

Note that all the conditional distributions are Gaussians and,
therefore, they are specified by their mean and variance. For
example, for p(x′

c|xc, v), we have

μx′|x,v = 〈x′|x, v〉 = 〈x′|x〉 + 〈(x′ − 〈x′|x〉)(v − 〈v|x〉)〉
σ 2

v|x
(v − 〈v|x〉)

= t ′2H + t2H − (t ′ − t )2H

2t2H
xc + �2

H2t2H−2

{
Ht2H−1 + H (t ′ − t )2H−1 − H

2t
[t ′2H + t2H − (t ′ − t )2H ]

}(
v − H

t
xc

)
,

(A16)

σ 2
x′|x,v = σ 2

x′ − 〈xx′〉2

σ 2
x

− 1

σ 2
v|x

[
〈x′v〉 − 〈x′x〉〈xv〉

σ 2
x

]2

= t ′2H − [t ′2H + t2H − (t ′ − t )2H ]2

4t2H
− �2

H2t2H−2

{
Ht2H−1 + H (t ′ − t )2H−1 − H

2t
[t ′2H + t2H − (t ′ − t )2H ]

}2

. (A17)

For p(v′|x′, x, v), we should calculate the mean and variance of p(v′|x, v), which are given by

〈v′|x, v〉 = Ht ′2H−1 − H (t ′ − t )2H−1

t2H
xc + �2

H2t2H−2

{
H (2H − 1)(t ′ − t )2H−2 − H

t
[Ht ′2H−1 − H (t ′ − t )2H−1]

}(
v − H

t
xc

)
,

(A18)

σ 2
v′|x,v = σ 2

v′

(
1 − 〈xv′〉2

σ 2
x σ 2

v′

)
− 1

σ 2
v|x

(
〈vv′〉 − 〈v′x〉〈xv〉

σ 2
x

)2

= σ 2
v′

(
1 − 〈xv′〉2

σ 2
x σ 2

v′

)
− �2

H2t2H−2

{
H (2H − 1)(t ′ − t )2H−2 − H

t
[Ht ′2H−1 − H (t ′ − t )2H−1]

}2

. (A19)

Now, for p(v′|x′, x, v), we obtain

μv′ |x′,x,v = 〈v′|x′, x, v〉

= 〈v′|x, v〉 + 1

σ 2
x′|x,v

[
〈x′v′〉 − 1

1 − γ 2

( 〈v′x〉〈xx′〉
σ 2

x

+ 〈v′v〉〈vx′〉
σ 2

v

)
−
( 〈v′x〉〈xv〉〈vx′〉

σ 2
x σ 2

v

− 〈v′v〉〈vx〉〈xx′〉
σ 2

x σ 2
v

)]

× (xc − 〈x′|x, v〉), (A20)

σ 2
v′|x′,x,v =

{
1 − 1

σ 2
x′|x,vσ

2
v′|x,v

[
〈x′v′〉 − 1

1 − γ 2

( 〈v′x〉〈xx′〉
σ 2

x

+ 〈v′v〉〈vx′〉
σ 2

v

〈v′x〉〈xv〉〈vx′〉
σ 2

x σ 2
v

)
− 〈v′v〉〈vx〉〈xx′〉

σ 2
x σ 2

v

]2
}

σ 2
v′|x,v. (A21)

5. The Cholesky decomposition

To compute the non-Markovian first up-crossing distri-
bution for the FBM, we must generate trajectories with the
correct ensemble properties. Here, we describe an algorithm
to generate such trajectories. Equation (9) of the main text
defined Ci j ≡ C(ti, t j ) = 〈x(ti )x(t j )〉, the correlation between
the x(t ) between times ti and t j . The matrix C is real, sym-
metric, and positive definite and, therefore, it has a unique
decomposition C = LLT in which L is a lower triangular
matrix, which is known as Cholesky’s decomposition. We use
L to generate the ensemble of the trajectories as follows.

Consider, first, a vector ξ , which is Gaussian white noise
with zero mean and unit variance (i.e., 〈ξmξn〉 = δmn). If we
generate the desired trajectories as

x(ti ) = xi =
∑

j

Li jξ j, (A22)

then xi will have the correlations of a random walk
given by

〈xix j〉 =
∑
m,n

LimL jn〈ξmξn〉 = LLT = C. (A23)
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Since L is triangular, only a sum over j � i is needed in the
matrix calculations and, thus, the method is fast. Next, we
provide a proof of the Cholesky decomposition and present it
in terms of the correlation matrix. In a more general context,
there is a sufficient condition for a square matrix to have a LU
decomposition C = LU, where L and U are, respectively, the
lower and upper triangular matrices of C. If all the n’s leading
principal minors of the n × n matrix C are nonsingular, then
C has an LU decomposition. Let us recall that the kth leading
principal minor of C is given by

Ck =

⎛
⎜⎜⎜⎜⎝

c11 c12 · · · c1k

c12 c22 · · · c2k

...
...

...
...

c1k c2k · · · ckk

⎞
⎟⎟⎟⎟⎠, (A24)

where we have assumed that C1, C2, . . . , Cn are nonsingular.
Using induction, it is not difficult to show that there is a LU

decomposition for the correlation matrix. Using the symmetry
of C, we write

LU = C = CT = UTLT, (A25)

which implies that

U(LT)−1 = L−1UT. (A26)

The left side of the equation is upper triangular, whereas the
right side is a lower triangular matrix. Consequently, there is a
diagonal matrix D such that D = U(LT)−1. Then, U = DLT,
which for the correlation matrix implies that C = LDLT,
where D is a positive-definite matrix with its elements also
being positive. Accordingly, we write C as C = L̃L̃T, where
L̃ = LD1/2, which is the Cholesky decomposition.

It is clear that the matrix L̃ is a lower triangular matrix
as well and can be used to transform independent normal
variables into dependent multinormal variables, which is the
main idea of the method we propose to construct the exact
trajectories. The matrix L̃ is calculated by [40,41]

L̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

c12

√
1 − c2

12 0 · · · 0

c13
c23−c12c13√

1−c2
12

√
1 − c3R−1

2 cT
3 · · · 0

...
...

...
...

...

c1n
c2n−c12c1n√

1−c2
12

c3n−c∗n
3 R−1

2 cT
3√

1−c3R−1
2 cT

3

· · ·
√

1 − cnR−1
n−1cT

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A27)

where Rn = ci j |ni, j=1 is a positive-definite correlation matrix, R−1 is its inverse, and c∗ j
i = (c1 j, c2 j, . . . , ci−1 j ) for j � i so that

ci ≡ c∗i
i . We note that for a semipositive definite matrix, we should remove the first row and first column of the matrix in order

to have a positive-definite matrix and then apply the Cholesky decomposition.
Algorithmically, our Cholesky decomposition algorithm constructs L as follows:

input n,Ci j

for k = 1, 2, l..., n do

Lkk ←
(

Ckk −
k−1∑
s=1

L2
ks

)1/2

for i = k + 1, k + 2, l..., n do

Lik ←
(

Cik −
k−1∑
s=1

LisLks

)/
Lkk

end

end

output Li j

All the trajectories for FBM in this paper were constructed using this algorithm.
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