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By manipulating the phase map of a wavefront of light using a spatial light modulator, the
scattered light can be sharply focused on a speci¯c target. Several iterative optimization algo-
rithms for obtaining the optimum phase map have been explored. However, there has not been a
comparative study on the performance of these algorithms. In this paper, six optimization
algorithms for wavefront shaping including continuous sequential, partitioning algorithm,
transmission matrix estimation method, particle swarm optimization, genetic algorithm (GA),
and simulated annealing (SA) are discussed and compared based on their e±ciency when
introduced with various measurement noise levels.
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1. Introduction

Manipulation of the phase map of a wavefront of
light allows optical focusing and imaging through

complex media. Wavefront shaping has been used in

di®erent high-resolution imaging modalities such as

optical coherence tomography (OCT), °uorescence
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microscopy, two-photon microscopy (TPM), and
photoacoustic microscopy (PAM) to improve their
resolution or penetration depth.1,2 Wavefront
shaping using computer-controlled spatial light
modulators (SLMs) has been widely used in these
modalities1,3–11 and hence, choosing an appropriate
optimization algorithm for a particular modality or
application is of prime importance.

When a turbid medium is illuminated with
coherent light, it forms a pattern, so-called speckle.
According to Maxwell's equations, light scattering
is linear and fully deterministic. Light propagation
through the turbid medium can be described using
the concept of the transmission matrix. In this
paper, we denote the incident and outgoing scat-
tering channels as input and output channels,
respectively. Transmission matrix of a sample
relates the electric ¯eld of light at an output channel
to the electric ¯eld of light at an input channel4:

Em ¼
XN

n

tmnEn ¼
XN

n

tmnAne
i�n ; ð1Þ

where tmn are the elements of the transmission
matrix which relate the complex ¯eld at nth input
channel to that of at the mth output channel. The
transmission matrix elements have a circular
Gaussian distribution.12,13Em is the transmitted
light ¯eld at the target output channelm, and En ¼
Ane

i�n describes the incident light ¯eld at each
input channel n. �n is the phase mask of the inci-
dent light. An, the amplitude contribution from the
input channel n, is assumed to be uniform across the
input plane and can be written as: An ¼ 1=

ffiffiffiffiffi
N

p
. The

intensity of the target Im, with a given input
channel phase map is

Im ¼ jEmj2 ¼ ð1=NÞ
XN

n

tmne
i�n

�����

�����

2

: ð2Þ

Typical experimental setup for focusing light
through a scattering medium includes four main
components: SLM, laser, CCD camera, and pro-
cessing unit.

Several phase control algorithms have been in-
troduced for wavefront optimization.4,12,14–20 We
have also implemented several optimization algo-
rithms for wavefront shaping purposes.21–27 In this
study, we compare the performance of six of these
optimization algorithms: Continuous Sequential
(CS) algorithm, Partitioning Algorithm (PA),
Transmission Matrix (TM) estimation method,

Particle Swarm Optimization (PSO) method, Ge-
netic Algorithm (GA) and Simulated Annealing
(SA) algorithm in terms of their enhancement,
stability and initial convergence speed. We have
developed these algorithms and evaluated them.28

The enhancement, �, de¯ned as the ratio between
the output channel intensity, to the initial average
intensity of the speckle pattern, hI0i. The maximum
theoretical enhancement depends on the system size
N , i.e., the number of input channels being opti-
mized. In a noise-free condition with a stable turbid
media, the maximum achievable enhancement is4

� ¼ Im=hI0i ¼ �=4ðN � 1Þ: ð3Þ
The algorithms are also compared under various

measurement noise levels which are introduced by
adding Gaussian noise with a standard deviation of
0:3hI0i, 0:6hI0i and hI0i to the measured value at
the camera. The measurement noise of 0:3hI0i is
comparable to experimental observations.4

2. Materials and Methods

The CS algorithm optimizes each input channel
independently that requires excessive computational
time especially in systems with large size.4,29,30 CS is
implemented as follows:

(1) Cycle the phase of each of the N channels of the
SLM with respect to others from 0 to 2�.

(2) Store the phase for which the target intensity is
maximal for each segment.

At initial stages of the experiment, enhancement is
negligible as compared to measurement noise levels
which may lead to unstable optimization.

CS is usually performed with 10 phase samples
per input channel, i.e., 10N measurements to opti-
mize the full phase mask of the SLM.4 To make a
fair comparison, the termination condition for all the
other algorithms were considered to be 10 measure-
ments per input channel (i.e., 10N measurements in
total).

The PA algorithm modulates a randomly se-
lected half of the input channels during each iteration.4

Even though this characteristic helps PA reaching a
faster initial enhancement than the CS algorithm, as
the PA progresses, the rate of enhancement slows
down. The PA can be implemented as follows:

(1) Divide the segments randomly over two equally
sized partitions.

Z. Fayyaz et al.

1942002-2

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
9.

12
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 3

1.
40

.2
11

.3
6 

on
 0

8/
21

/1
9.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



(2) Maximize the focus by cycling the phase of one
partition with respect to the other from 0 to 2�
(10 phases).

(3) Repeat this process and randomly repartition
the input channels until the termination con-
dition (2560 measurements) is met.

Unlike other algorithms, theoretical enhancement of
PA does not depend on the number of channels, but
on the sample persistence time.4 This algorithm
performs well when the condition, NT p = Ti is met;
where Tp is the sample persistence time4 and Ti is
the time required for one iteration.

In the TM method, for each input channel n,
the algorithm iteratively sets the phase retardation
to 0, �=2, �, and 3�=2. Next, it measures the
corresponding intensities in the mth output channel
as I 0

m, I
�=2
m , I �

m, and I
3�=2
m . The transmission matrix

elements can be estimated as (4) up to a multipli-
cative factor that can be eliminated as the factors
are equal for all elements of the matrix.15

tmn ¼ ½ðI 0
m � I �

mÞ=4� þ i½ðI 3�=2
m � I �=2

m Þ=4�: ð4Þ
By measuring the transmission matrix of a solid

scattering medium for all values of m, we have
engineered an opaque lens based on the matching
phase mask according to (5). This technique allows
focussing light e±ciently at any given point after
the medium.

Ein ¼ t†E target=jt†E targetj: ð5Þ
Here, t† is the conjugate transpose matrix of the

transmission matrix t and E target is the output
target vector with a value of 1 inmth channel, and 0
on the remaining channels. TM method is operated
as follows:

(1) For a given output channel m do steps 2–4 for
all input channels:

(2) Set the phase retardation of the input channel n
with respect to others to 0, �=2, �, and 3�=2.

(3) Measure the I 0
m, I

�=2
m , I �

m, and I
3�=2
m intensities,

respectively.
(4) Set tmn ¼ ½ðI 0

m � I �
mÞ=4� þ i½ðI 3�=2

m � I
�=2
m Þ=4�.

(5) Set the SLM phase map according to (5).

The TM method only requires four measurements
per input channel to ¯nd the optimum phase map.
I 0
m can be measured for all input channels with a

single measurement (set all phases to zero), TM
matrix will yield the optimum phase map after only
ð3N þ 1Þ measurements.

The PSO algorithm is a numerical stochastic
optimization technique inspired by the social be-
havior of bird °ocks searching for food.14,31–33 First,
an initial population of phase masks (particles) is
generated. Each particle is then assigned with an
initial random velocity which determines how the
N-dimensional search space is explored. Then, the
focus intensity (¯tness value) for each particle is
measured. The position (phase map) of each parti-
cle is stored in pb

i , and the position with the highest
intensity is stored in gb. The next step is to update
the velocity and position of each particle according
to (6) and (7)

vkþ1
i ¼ wvk

i þ c1r
k
1½ðpb

iÞk � pk
i � þ c2r

k
2½ðgbÞk � pk

i �;
ð6Þ

pkþ1
i ¼ pk

i þ vk
i ; ð7Þ

where vk
i and pk

i are the velocity and position vec-
tors of the ith particle in kth iteration, w is the
inertia weight, c1, c2 are positive constants known
as the learning factors, r1 and r2 represents a uni-
formly distributed random number between 0 and
1. This new population is then evaluated by mea-
suring the ¯tness of each particle and comparing
them with the pb ¯tness values. If the current ¯tness
is better than pb ¯tness, then we update the previ-
ous pb with current positions and later, gb accord-
ingly. This process continues until the maximum
number of iterations is reached. A pseudo code of
the PSO is as follows:

(1) Choose N initial random phase masks (parti-
cles) and random velocities.

(2) Evaluate the ¯tness (focus intensity) of each
particle and set pb, store the best solution in gb.

(3) Update the velocity and position of the particles
according to (6) and (7).

(4) Repeat steps 2 and 3 until the termination
condition is met.

The GA method is an optimization algorithm
which uses the Darwinian evolutionary principle of
survival of the ¯ttest to \evolve" toward the best
solution.34 The working principle of this method
starts with generating an initial population of phase
masks. Phase masks are realized by assigning each
input channel value to a uniform pseudorandom
distribution of phase values ranging from 0 to 2�.
Next, the ¯tness value for each mask is measured,
and the population is ranked in descending order,
followed by the optimization of the phase masks

A comparative study of optimization algorithms for wavefront shaping
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through breeding and mutation operations. Two
parent masks (ma; pa) are randomly selected from
the population where the higher probability of se-
lection is given to higher ranked phase masks. A
random binary breeding template array B is then
created to start the breeding process. The input
channels of the two parent masks are combined
using B to create a new o®spring (OS) according to:
OS ¼ ma �Bþ pa � ð1�BÞ. This new mask is then
mutated by randomly changing the phase of a small
percentage of input channels.35 The operating pro-
cess steps of GA are as follows:

(1) Random generation of an initial population
P ð0Þ of M phase masks.

(2) Evaluation of the ¯tness of each individual P ðiÞ
where, i ¼ 0; 1; 2; . . . ;M

(3) Selection of ma and pa from P ðiÞ (higher the
¯tness value, greater the chance of selection).

(4) Random generation of the binary breeding
template, B to combine ma and pa.

(5) The next generation P ðiþ 1Þ breeding using
the formula: OS ¼ ma �Bþ pa � ð1�BÞ and
mutation of a small percentage of it.

(6) Repeat steps 2–6 until the termination condi-
tion is met.

The SA algorithm, a well-established stochastic
search algorithm, is originated from the physical
process of heating a substance beyond the melting
point followed by cooling down the substance
gradually until it turns into a crystalline structure
exhibiting lowest energy.34,36 This algorithm has
previously been used for the optimization of optical
systems.37–41 We have also implemented this
algorithm for the optimization of optical sys-
tems.34,40,42–44 Initially, a control parameter, T
(analogous to the substance temperature) is
assigned to a known value and a random phase map
x is generated. After that the intensity of the focus
point, EðxÞ corresponding to the initial phase map
is stored, a portion of the input channels are per-
turbed by adding a certain phase to their current
phase values. The new phase map of the perturbed
system can be denoted as y and EðyÞ is stored. If
EðyÞ > EðxÞ, the new perturbation is accepted.
Otherwise, the perturbation is might be still ac-
cepted according to (8).

Pacc ¼ expð½EðyÞ �EðxÞ�=T Þ; ½EðyÞ � EðxÞ� < 0:

ð8Þ

After applying L numbers of perturbations, the
temperature is lowered by a factor of �. As the al-
gorithm proceeds, the decrement in the temperature
makes it greedier, unlike the circumstances at the
initial stages when the temperature is still high and
occasionally accepts some unfavorable states. Thus,
this technique ensures that the algorithm converges
to the global optimum irrespective of the initial
conditions. The steps of SA are given below.

(1) Set T to a known initial value and generate an
initial random phase mask x.

(2) for T > Tmin do:
(3) Randomly perturb x to generate a neighboring

phase mask y.
(4) Compute the enhancement EðyÞ,
(5) if EðyÞ > EðxÞ, set x ¼ y
(6) else: set x ¼ y with probability expð½EðyÞ�

EðxÞ�=T Þ
Decrease T by a factor of � after each set of L
measurements.

3. Results

All the simulations were performed in MATLAB
2015, and a Core i7 CPU with 8GB of memory has
been used for the computational purpose.

A new random transmission matrix with circular
Gaussian distribution, zero mean and one standard
deviation was generated for each run. The simula-
tion parameters for the algorithms are as follows:
The CS algorithm and PA were applied with 10
phase samples per input channel according to
Ref. 4. The TM estimation method did not involve
any free parameters and was implemented as de-
scribed earlier.15 The PSO was implemented with a
population size of 50 and run for 50 iterations. The
constriction coe±cient method36 was used to set the
values of w ¼ 0:73 and c1 ¼ c2 ¼ 1:5. The phases
were chosen to be between 0 and 2�. The velocities
were limited to the range of ½�2�=10; 2�=10� to
avoid very large steps. The population size for the
GA algorithm was also set to 50, and the crossover
rate was set to 0.5. The parent masks were chosen
with the tournament method.35 The mutation was
applied to 10 percent of the population in each
generation. Phase of 0.1 of input channels (muta-
tion rate) of the selected population was mutated by
a value of 4�=10. In order to prevent the algorithm
from mutating too many optimized phase modes,

Z. Fayyaz et al.
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the mutation rate was decreased from the initial
value of 0.1 to the value of 0.002 as the algorithm
reaches the end of optimization. The SA algorithm
was implemented with the following parameters.
The initial temperature was set to one. At each
step, 50% of the input channels were perturbed by
�=16. According to our experiments, L ¼ N=16 and
� ¼ 0:9 resulted in the best performance for low
noise environments (<0:5hI0iÞ and L ¼ N=8 and �
¼ 0:99 was suitable for noisy environments
(>0:5hI0iÞ. Note that GA and SA perturbation
rates are value of 0.1 to the value of 0.002 as the
algorithm reaches the end of optimization. The SA
algorithm was implemented with the following
parameters. The initial temperature was set to one.
At each step, 50% of the input channels were per-
turbed by �=16. According to our experiments, L ¼
N=16 and � ¼ 0:9 resulted in the best performance
for low noise environments (<0:5hI0i) and L ¼ N=8
and � ¼ 0:99 was suitable for noisy environments
(>0:5hI0i).

Note that GA and SA performance are sensitive
to the parameters of the algorithm. One might need
to ¯ne-tune the parameters according to the num-
ber of input channels and the persistence time of the
sample.

Figure 1 presents the simulation results of the
algorithms explained earlier when introduced to
di®erent noise levels with N ¼ 256. CS optimizes
each input channel independently. Thus, CS
enhancement initially grows slowly as shown in
Fig. 1(a). CS is sensitive to noise and cannot recover
in very noisy environments. CS is a very straight-
forward algorithm and can be easily implemented.
The performance of CS, unlike some other algo-
rithms presented in this paper, does not depend on
the wise choice of the algorithm parameters.

As shown in Fig. 1(b), PA has a very fast initial
increase in the enhancement but slows down as the
optimization progresses. Due to this phenomenon,
PA can easily recover from disturbances due to
instabilities in the sample and the surrounding
environment. The performance of this algorithm in
noisy environments does not decrease substantially.
However, PA fails to reach beyond a certain en-
hancement limit. This disadvantage is more pro-
nounced in systems with higher N . PA is simple and
can easily be implemented as it requires limited
numbers of parameters to be de¯ned.

PSO algorithm possesses an e±cient global in-
formation sharing mechanism. This helps to exhibit

a robust performance in noisy environments as it is
evident in Fig. 1(c). However, the enhancement is
limited in this case which might be due to the
complex and non-convex search space of this

Fig. 1. Performance of the (a) Continuous sequential, (b)
Partitioning algorithm, (c) Particle swarm optimization, (d)
Transmission matrix method, (e) Genetic algorithm, and (f)
Simulated annealing for N ¼ 256 under di®erent noise condi-
tions comparing the enhancement of the focus to the number of
measurements with varying noise levels. A Gaussian noise at
30%, 60% and 100% of the initial average intensity hI0i was
added for each algorithm. (g) Performance of the algorithms in
terms of e±ciency has been compared without any noise added.
The curves are averaged over 20 runs. The area under the curve
for di®erent noise level is shown in the insets of each ¯gure (a)–(f).
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problem. Some studies had suggested that the per-
formance of this algorithm can be improved by
applying a mutation similar to GA.45

Estimation of the transmission matrix of a me-
dium is an e®ective approach to focus through a
medium. As it is shown in Fig. 1(d), this method
o®ered the maximum enhancement (200) in the
shortest time as compared to other algorithms
under a noise-free condition. However, the perfor-
mance deteriorates considerably in noisy conditions.
TM method can also be used to focus the light on
multiple targets simultaneously by setting E target

appropriately in (5).
As illustrated in Fig. 1(e), GA performs robustly

in the presence of noise. It has also proven to per-
form well when exposed to a noise level of 2hI0i. As
GA optimizes an entire mask concurrently, the ¯t-
ness function measurement is capable of quickly
rising above the noise level and showing a fast-
initial enhancement growth.

According to Fig. 1(f), the SA algorithm shows
an initial fast increase in the enhancement. This
makes this algorithm suitable in cases where a fast
optimization and high enhancement is necessary,
especially when the samples have low persistence
time. SA performs well in various system sizes, and
its advantage is more apparent in larger systems.34

Table 1 provides a summary of the key features
of these six algorithms. Here, simplicity Si repre-
sents the implementation di±culty level as well as
complexity in tuning the algorithm parameters. The
ideal � is the enhancement percentage in a noise-free
environment. Initial � is the enhancement percent-
age after 0.3 of the total time which will be 3 �N
measurements (750 for N ¼ 256). This parameter
determines the recovery speed from disturbances
and noises and the potential to yield adequate
results in a short time. The enhancement percent-
age is calculated by dividing the enhancement

obtained from the simulation by the theoretical
value � ¼ 200 for N ¼ 256 based on (3). Stability St
is the average enhancement percentage with 0:3hI0i
and 0:6hI0i measurement noise levels. An overall
goodness factor, OGF is considered as the average
of ideal �, stability and initial � to determine the
optimum algorithm for wavefront shaping.

4. Discussion and Conclusion

In this paper, we have compared six optimization
algorithms including CS, PA, TM, PSO, GA, and
SA for focusing light through a turbid medium
based on the following aspects: ideal enhancements,
stability, initial enhancement growth rate. The
performance of the algorithms was also explored
under di®erent noise conditions. CS and TM oper-
ate on the channel individually and rely on detect-
ing small improvements in the target focus. Hence,
the resiliency to the measurement noise is poor. CS
is more suitable for low noise (<0:3hI0iÞ environ-
ments, and the TM method yields the most opti-
mum phase map in the shortest time when the
environment is noise-free. PA, PSO, GA, and SA
optimize channels in parallel. As a result, they have
a rapid initial enhancement growth. PA is more
suitable for smaller system sizes where a fast-initial
enhancement increase is desired. PSO is robust and
noise tolerant; however, con¯ned to less enhance-
ments. GA shows its advantage in very noisy
(>0:3hI0i) environments. SA presents an adequate
performance in mid-range noisy environments
(0:3hI0i to 0:6hI0i).

Although in the simulation studies performed, we
tried to mimic practical environments, the experi-
ments are still ideal. Having said that it has been
shown that the simulations that have been per-
formed in a similar manner as phantom experiments
have a good qualitative agreement with each other.
Furthermore, the initial enhancement increase, and
the longtime convergence behavior are in good
correspondence with the experimental results.3

The only signi¯cant di®erence is that in most
studies 20–50% higher enhancement reached in the
simulations.3,8 Therefore, phantom studies can be
performed to compare and experimentally verify the
e®ectiveness of the presented algorithms.

Moreover, these algorithms can be applied to
binary amplitude wavefront shaping which is a
similar method for controlling the transmission
of light. Another novel method is Binary phase

Table 1. Comparison of six optimization algorithms
for wavefront shaping.

Type Si
Ideal �
(%)

Initial �
(%)

St
(%)

OGF
(%)

CS Easy 100 6 42 49
PA Easy 50 23 46 40
TM Medium 100 37 23 53
PSO Medium 40 16 38 31
GA Di±cult 45 20 40 35
SA Di±cult 85 30 69 61

Z. Fayyaz et al.
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wavefront shaping which achieves a higher en-
hancement than binary amplitude wavefront shap-
ing, and it also achieves a higher speed than full
phase wavefront shaping, which is crucial for in vivo
applications where the sample persistence time is
very short.11,46

With the advancement of the development of the
SLM, the wavefront shaping will be more spread out
and can be used in optical imaging techniques such
as optical coherence topography for deep structural
imaging.44,47,48
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