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Abstract

We consider a gas of Newtonian self-gravitating particles in two-dimensional space, finding a phase transition, with a
high temperature homogeneous phase and a low temperature clumped one. We argue that the system is described in terms of
a gas with fractal behaviour. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The statistical behaviour of systems interacting
Ž .via classical Newtonian gravitational forces is rather

peculiar as compared with other statistical systems,
such as neutral gases and plasmas. The central distin-
guishing feature of the former is the fact that there is
no shielding of the long range gravitational force,
while Debye-screening rules the long distance be-
haviour of the electric Coulomb force. In lower
dimensions such a characteristic of the gravitational
force is dramatic, due to the rising of the two body
potential in Newtonian gravity. This leads to concep-
tual problems, related to the extensive nature of
energy, as required in statistical mechanics.

In general these statistical problems are not per-
ceptable to exact treatment, and only numerical re-
sults are known. While classical gravitating systems
in one space dimension are quite pathological, in two
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space dimensions they become manageable, although
the most realistic three dimensional case is still
beyond reach. In particular, in the latter case the
phase space volume diverges and one has to use a
short distance cutoff.

In two-dimensional space, the thermodynamic
functions are analytically computable. The thermo-
dynamical properties of a gravitational gas has been

w xstudied in detail both from a theoretical 1 as well as
w xfrom a numerical 2–5 point of view. In general, it

w xhas been shown 6,7 that a classical gas of gravitat-
ing particles, in the grand canonical formalism is
related to a field theory described by a Liouville
Lagrangian. In a two-dimensional space Liouville

w xtheory is well known 8 and several correlation
w xfunctions can be exactly computed 9–11 . Indeed, in

this particular case the theory is conformally invari-
ant, and correlators can be computed in terms of
known functions of mathematical physics, once

w xproperly regularized 12 .
At low temperatures the gravitational force is

strong, that is, the potential energy is big as com-
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pared to the kinetic energy, giving rise to a collaps-
ing phase, identified by the presence of a single
cluster of particles floating in a diluted homogeneous
background. At high energy a homogeneous phase is
recovered and the cluster disappears. Using the mi-
crocanonical ensemble one can show that in the
transition region the system is characterized by a

Žnegative specific heat the corresponding instability
w x.is of extreme relevance for astrophysics, 13 .

w xHertel and Thirring 1 have shown that the
canonical and microcanonical ensembles are not
equivalent in the proximity of the transition. This
thermodynamic inconsistency has been solved in Ref.
w x1 , and these results have been successfully con-
firmed by numerical investigations on self gravitat-
ing non-singular systems with short range interac-

w xtions 2,3 .
Recently, using numerical calculations, a long

range attractive potential has been considered, as
constructed taking the first few terms of the Fourier
expansion of the logarithmic potential. As a result of
the simulations, the system turns out to exhibit a
transition from a collapsed phase at low temperature,

w xto a homogeneous phase 5 .
Here we consider a two-dimensional gas of classi-

cally interacting particles via the Newtonian logarith-
mic potential, computing its thermodynamical prop-
erties. Using results known in the framework of
two-dimensional conformally invariant euclidian field
theory, the complex integrals may be computed in
closed form, and we find a sofisticated structure of
poles and zeros in terms of the temperature. Further-
more, we introduce an order parameter, correspond-
ing to the expectation value of the square of the
two-body distance. We find that at least at one of the
singularities of the partition function the average
distance vanishes, signalizing a clumped phase. We
are thus able to investigate the collapse of the gravi-
tating system. The phase transition point is given in

Ž .terms of the mass of the particles m and the
1 2gravitational constant G by T s NGm . We findc 4k

the exponents of the phase transition.
We furthermore discuss the formulation of gravity

in terms of the grand-canonical partition function
and the related Liouville theory as proposed by de

w xVega et al 6 , outlining the consequent relations. We
find, using the same type of complex integrals, a
critical temperature in this formulation.

2. Canonical partition function

We consider a gas of nonrelativistic particles with
mass m interacting through Newtonian gravity at
temperature T. Here, the number of particles is fixed
and we shall work with the canonical ensemble. The
canonical partition function of the system can be
written as

2 2 yb HNZs d r d p e 1Ž .H i i

w 2 x N 2where d r sP d r , and the N-particle Hamil-i is1 i

tonian H is obtained adding the Newtonian poten-N

tial to the usual kinetic term, that is,

N 2p 1i 2 < <H s q Gm log r yr 2Ž .Ý ÝN i j2m 2is1 i/j

The potential term must be reqularized, since in
general there are divergences in either the infrared or
in the ultraviolet domain. This is done implicitly
defining the two-dimensional integrals in the com-

w x Ž w x.plex plane, as done in Ref. 12 see also Ref. 8 .
We thus consider the two-dimensional variables as
one single complex variable in the complex plane,
denoting the procedure by the use of latin letters
from the end of the alphabet, i.e., d2 r ™d2 w . As iti i

turns out, there is an underlining conformal invari-
ance in the present problem, easily seen using the
complex variables, where is is characterized by a

Ž .SL 2,C invariance of the Hamiltonian. Such an in-
variance is valid in the infinite volume limit. For
finite volume one should take into account boundary
effects, and in that case it would not be possible to
treat the problem exactly. Fortunately, due to the fact
that gravity on a plane constitutes a long range
attractive force, the system is naturally bound to a
region defined in terms of the typical bound state
lenght. We thus expect the procedure to be exact for
not too large values of the temperature. Therefore,
well above the critical point departure might be
expected from our results. Nevertheless, the critical
temperature is expected to be correct on the above
grounds.

Using that invariance, we set w s0,w s1Nq1 Nq2
Žand w s` whose integration would lead to anNq3

infinite overall factor in the partition function which
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can be discarded in the computation of physical
.quantities and find

Nq3Zs 2p mŽ .

= 2 < < 2 a < < 2 b < < 4rd w w 1yw P w yw 3Ž .H i i i i- j i j

Gm2

where asbsy and 2 rsa . We keep the use2kT

of the a , b and g parameters in order to facilitate
comparison with the corresponding integrals in the

w xliterature 8,12 . Using such well known formulae,
the partition function Z can be written in terms of r

as
N

N
Z,G Nq1 D 1yr D irŽ . Ž . Ž .Ł

1

=
Ny1

2
D 1q iq2 rŽ .Ž .Ł

0

=D y1y Nq3q i r 4Ž . Ž .Ž .
Ž .G xŽ .where D x s . This function has poles at the

Ž .G 1y x

points xsyns0,y1,y2, PPP and zeros for xs
ns1,2, PPP . This is an exact result, as shown in e.g.
w x12,8 . However, in order to obtain the singularity

Ž .structure poles and zeros in further related inte-
grals, it is worthwhile to classify them. They arise
from the following kind of rather naive argumenta-
tion.

Ž . Ž .If one of w say w ™0 or w™1 , it can bei

shown that the behaviour of Z is

Z,pD 1qa D 1qb D y1yayb 5Ž . Ž . Ž . Ž .
Ž .namely, for a or b non negative integer a zero

appears, while for a , b negative integers, we have
poles. The polesrzeros in a and b are connected
with behaviour at w™`. We thus obtain some of

Ž .the functions D given in 4 . If we consider the
neighbourhood of some of the wX s around 0 or 1,i

w ;0,1, we find that Z behaves asi

G 1qaq ir G 1qbq irŽ . Ž .
Z; , 6Ž .Ł Ł

G yay ir G yby irŽ . Ž .i i

where is1,2, PPP , Ny1.
Using the invariance of Z under w™1rw, one

can also show that Z has the symmetry

Z a ,b ,r sZ yayby2yr Ny1 ,b ,rŽ . Ž .Ž .
7Ž .

As is evident in the canonical partition function
Ž .4 the zeros and poles given in terms of r depend
on the temperature. Those zeros and poles are, in
general, related to phase transitions. It should be
noted that at such points the free–energy becomes
singular. The simplest possible phase transition in
this system is the collapsing of particles into clumps.
In order to investigate the collapsed phase, it is
natural to introduce an order parameter describing
the average distance of the particles with respect to
one another. We therefore consider the parameter

N ² 2:Ý r , which allows investigation of the collapsei, j i j
² 2:of the system. As it turns out, r has several

zeros, one of them coinciding with a singularity of
the partition function. We also show that a class of
singularites of Z may be related to the zeroes of

² 2: ² 2 q:higher moments of r i.e r . Using the invari-
ance of the Hamitonian under translation, we set the
coordinate of one of the particles to zero and we can
write the mean square distance as

² 2: y1² 2:r sZ r 8Ž .0

where

Ny1
2 a 2 b2 2 2² : < < < <r s d z d w w 1ywŁ0 H i i i

is1

=
Ny1

4r 2q2 a 2 b 4r< < < < < < < <w yw z 1yz zywŁ i j i
i/j

9Ž .

Similarly to the case of the partition function, the
Ž .integral displayed in 9 has a complex structure of

poles and zeros. Let us classify such a singularity
structure, using now the hints we have gotten based

Ž .on the computation of the partition function, 4 .
Ž .Supposing w™0 or w™1,` we find

Ny1
2² :r ; D 1qaq ir D 1qbq irŽ . Ž .Ł0

is1

= D y1yayby Ny2q i r 10Ž . Ž .Ž .

² 2:At w sz™0, r behaves as0N

G aq2Ž .
.

G y1yaŽ .
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For z,w™0, it behaves as

G 1qaq1r2qrŽ .
.

G 1y aq1r2qrŽ .Ž .
It is easy to show that analysing the case where

² 2:several points tend to zero we see that r must0

behave as

1
G 1qaq q irž /iq1

1
G 1y aq q irž /ž /iq1

² 2:where is0,1, PPP , Ny1. The behaviour of r 0

at 1 similarly obtained.
² 2:Therefore, for the singularity structure of r we

arrive at the result
Ny2

2² :r , D 1qaq ir D 1qbq irŽ . Ž .Ł0
is0

=D y1yayby Nq iy1 rŽ .Ž .

=
Ny1 1

D 1qaq irqŁ ž /iq1is0

= D y1yayby Ny1q i rŽ .ž
1

y 11Ž ./Ny1y i

² 2:while the normalized r has the form
Ny1 1

2² :r ; D 1q iq2 rqŽ .Ł ž /iq1is0

=

1
D y1y Nq3q i ryŽ .ž /Ny iy1

2
D 1q Nq1 r D y1y2 Nq1 rŽ . Ž .Ž . Ž .

12Ž .

for is0 it has a zero at 1qaq1s positive
integer s1,2 PPP therefore the possible value of r

is given by 2 rsasy1,0,1, . . . .
The expression for r 2 has several zeros. They can

certainly not be all physically relevant, since most
are just consequences of the regularization of the

Ž .integrals 9 . After encountering a zero, we loose the
physical relevance of the integral. Below the critical
point, the theory is in a clumped phase, while above

the particles are far apart. Therefore, there should be
no further critical point. This fixes our critical point
to be, at large N

1 2kT s NGm . 13Ž .c 4

For large N this coincides with an old result of
w xSalzberg 14 , from which a possible phase transition

point can be obtained.
² 2: < <Note that r behaves as TyT in terms of thec

temperature.
² 2:The higher moments of r have the singularity

structure
q

D 1q iq2 rqŽ .ž /iq12 q Ny1² :r ;Pis0
D 1q Nq1 rŽ .Ž .

=

q
D y1q Nq3q i ryŽ .ž /Ny iy1

D y1y2 Nq1 rŽ .Ž .
14Ž .

1 1There are zeros at the values rsy q,y qq2 2

Ž .1, PPP . If q is a multiple of iq1 , for is1, PPP N
y1 there are further singularities. Depending on the
exact value of q the behaviour in terms of the
departure from the critical temperature changes,
which shows that the system has multi-fractal nature.

² 2 q:The zeros of r are coincident with a class of
Ž .singularities of Z. For qs2 Ny1 the behaviour of

² 2 q: < <r is not linear in TyT .c

3. The grand partition function

The grand partition function of the system can be
written as

` Nz
2 2 yb HNZ s d r d p e 15Ž .Ý HG i iN !Ns0

Ž . mwhere H is given by 2 and zse is the fugacity.N
w xAccording to 6,7 this many body problem can be

transformed into a field theoretic one. Using the
Ž . N Ž .definition of density r r sÝ d ryq , it hasis1 i

been shown that Z can be written in terms ofG

Liouville field theory,

1 X2X X X 21 fZ s Df exp y =f ym eŽ .H HG 2ž /Teff

16Ž .
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Gm2 X 2 X3where T s2p and m szGm . we rescale feff kT
X Teffas f s f. Therefore, the action can be written(

4p

as

1
22 bf< <S s d x =f qme 17Ž .Ž .HL 8p

X 2T y8pmeff w xwhere bs and ms . In Ref. 6 , it has(
4p Teff

also been shown that the correlations of the density
can be written in terms of vertex operators of the
Liouville theory.

Q 'It is conventional to add term R g w to the4p

Liouville Lagrangian density, where R is the scalar
curvature of background metric g , and the param-mn

eter Q adjusted to ensure that all physical quantities
be independent of a particular choice of the back-
ground. However it is possible to choose a specific
background which is flat everywhere except for few

w xselected points 15 .
Ž .The Liouville field f z, z is a logarithmic opera-

w xtor 16 and varies under holomorphic coordinate
Ž . Ž . Ž .transformation z ™ w z as f w,w s f z, z

Q dw 2 1< <y log where Qsbq . Q parametrizes the2 dz b

central charge of the theory by the well knwn rela-
tion cs1q6Q2.

The introduction of Q in the Liouville action is
done for taking into account the fact that the theory
corresponds to a Coulomb gas where there is no zero
charge sector, except for the vacuum. It corresponds
to different boundary conditions, and takes account

w xof the zero modes of the theory 8 . In the description
w xof Ref. 6 there is no zero mode in the inverse

propagator, fixed as being the classical gravity poten-
tial, which naturally matches the fact that the back-
ground curvature has to vanish in Minkovski space.

We suppose that the theory can be described as a
compactified Euclidian space, in which case the
Q-term can be seen as a requirement of renormaliza-
tion. The question to be answered is whether the
large compactification radius limit is smooth or not.
Since our argumentation are based on local Green

Ž .functions, as in 23 below, we do not expect any
major difference to occur. On the other hand, the
argumentation based on the conformal dimensions
Ž Ž .. .as in 24 below and following equations may
depend on the above limit. However, it is rewarding
to see that the results are in accordance with general

expectations, leading to the conjecture that the large
compactification radius limit is smooth.

It is nevertheless necessary to stress that the
introduction of the Q term is non trivial, and might
lead to a change of the problem. The aim here is to
describe the results obtained comparing them with

w xknown results. We know in fact from 6 that Liou-
ville theory describes gravity, and any effort in the
direction of understanding the model is worth under-
taking.

It is well known that the exponential Liouville
Ž . 2 aw Ž x .operators V x se are the spinless primarya

Ž .conformal fields of dimension D sa Qya . Thea

two, three and four-point correlation functions of
Liouville field theory for given a have been calcu-

w xlated in Refs. 9,15 .
In addition, we find that the dependence on the

scale m of any correlation function in Liouville
w xtheory 17,11 is

NaŽ .QyS rbN 2 a w Ž x . iis1i i² :P e ; pm . 18Ž . Ž .Qis1

We note that the Liouville theory is self-dual
under b™1rb. Indeed, we consider the partition

w xfunction of the Liouville theory. According to 9 the
partition function has the form

1rb2
2m pmG bŽ .

Zsy 22 ž /' G 1ybŽ .2 p bq1rbŽ .

=
G y1rb2Ž .

19Ž .2G 1rb y1Ž .

Under transformation of b and m as given by

1 1 21rb2b™ , m™ms pmg bŽ .Ž .2b pD 1rbŽ .
20Ž .

it is easy to show that the partition function trans-
forms as

1 1
Z b ,m ´Z ,m sy Z b ,m 21Ž . Ž . Ž .2ž /b b

This duality transformation was first observed by
w xZamolodchikov 15 . We further observe that there
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exists a sequence of critical values for b, so that the
partition function becomes singular, that is

b2
c2b s 22Ž .N N

where b s1. As in the case of the canonical parti-c

tion function, the grand-canonical Z has zeros.G

In order to understand the nature of phase transi-
tion in the grand-canonical ensemble we define the
variance of the number of particles as a parameter,

Ž .2 Ž² 2:where in the clumping point D N s N y
² :2 .N . This variance has a peculiar behaviour. It is

Ž .2easy to show that the D N can be witten in terms
of two–point density correlation functions as:

2 2 2 ² :D N ; d x d x r x r x 23Ž . Ž . Ž . Ž .HH 1 2 1 2

w xNow using the results of 9 for two point correlation
functions of Liouville vertex operators, one can show

² Ž . Ž .:that at the transition point r x r x ™0, which1 2

shows that particles collapse to local clusters.
Now it is possible to investigate the multi–fractal

nature of 2D-Gravitating gas considering moments
of the density in a given scale R. Using the confor-
mal dimensions of Liouville operators we can show
that

2 ² q: yt Žq .d x r ;R 24Ž .H
R

Ž . Ž 2 .Ž .where t q s2 1yb q qy1 which is valid only
by2 q1for qF .2

Ž .Eq. 24 allows us to determine the distribution
Ž .functions of density p r , such that

`
n n² :r s r p r dr 25Ž . Ž .H

0

and

1
2 dp r s f r exp y log rR 26Ž . Ž . Ž .Ž .alog R

Ž . Ž .where f r is a smooth function of log r . More-
6 Ž 2 . Ž w x.over as16b , ds2b 1q4b see also 18 . This

is the famous log-normal distribution, considered as
a characteristic feature of a disordered system. It

1turns out that for a dilute gas r, , and we
22 bŽ1q4 b .R

find the Gaussian distribution functions, whose vari-
ance is controlled by R.
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