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We show that an infinite number of non-unitary minimal models may describe two dimen-
sional turbulent magnetohydrodynamics (MHD), both in the presence and absence of the
Alf 'ven effect. We argue that the existence of a critical dynamical index results in the Alf 'ven
effect or equivalently the equipartition of energy. We show that there are an infinite number
of conserved quantities in 2D&MHD turbulent systems both in the limit of vanishing the
viscocities and in force free case. In the force free case, using the non-unitary minimal model
M2, 7 we derive the correlation functions for the velocity stream function and magnetic flux
function. Generalising this simple model we find the exponents of the energy spectrum in the
inertial range for a class of conformal field theories. � 1996 Academic Press, Inc.

1. Introduction

There has been some recent activity towards the application of Conformal Field
Theory (CFT) to the theory of turbulence in two dimensions [1�7]. The main
point is that the energy spectrum and higher correlation functions can be derived
by means of some nonunitary minimal model of CFT. Polyakov [1, 2] derives a
few criteria for a CFT which can be a possible candidate for describing turbulence,
and finds a candidate CFT which gives the value of &25�7 for the exponent of the
energy spectrum (experimental results give an exponent between 3 and 4 [11�14]).
Expanding on Polyakov's method others [3, 6] argue that there are a large number
of CFT's which satisfy Polyakov's constraints but have more than one primary
field. The role of extra primary fields is not clear, but it has been suggested that
they may have to do with passive scalar and magnetic fields [4]. Briefly Polyakov's
method is as follows. To describe turbulent behaviour at high Reynold's numbers,
we interpret the Navier-Stokes equation from a statistical mechanical point view.
That is we consider the correlation functions of the stream function with respect to
some stationary probability density:

(8i1(x1) 8i2
(x2) } } } 8iN(xN)).
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as correlators of primary fields of some CFT. The requirement that these correlations
be stationary is the main prerequisite. This condition is referred to as the Hopf
equation [9]. The fact that the correlation functions have a power law behaviour,
indicates that conformal invariance may be at work. Indeed in the limit of vanishing
viscosity (+ � 0) the Navier�Stokes equations are scale invariant (see [8] for more
details). Also in a plasma one can use hydrodynamic equations to describe the
collective degrees of freedom, however the more conventional method uses the
kinetic equations to describe turbulent processes [10]. As in the case of pure
hydrodynamics, the two dimensional magnetohydrodynamic system (2D-MHD)
differs from its three dimensional version in that it has an infinite number of conserved
quantities in the limit of zero viscocity + � 0 and zero molecular resistivity ' � 0
and in this limit the equations are scale invariant. Therefore 2D-MHD is also a
good candidate where CFT may be applicable. Such a system was first considered
by Ferretti and Yang [4]. Here we shall extend their arguments and find non-
unitary models which can give the correlation functions and the energy spectrum
index. It is worth noting that the requirement that the critical dynamical index be
consistent, is equivalent to the Alf 'ven effect, this means that there is equipartion
of energy between kinetic and magnetic components and this requirement greatly
reduces the number of possible minimal models of CFT solutions.

This paper is organised as follows: in Section 2 we first describe the equations
governing two dimensional magnetohydrodynamic systems (2D-MHD) in the
inertial range. We then discuss its scaling properties. In Section 3 we go on to
describe a conformal field theory with two primary fields pretaining to (2D-MHD).
We then generalise to CFT's with more primary fields and give a table of
possible solutions in the general case and in the Alf 'ven region. In the appendix we
describe a method of deriving OPE coefficients, for any Minimal Models in CFT
and give the coefficients up to the third level. The results are summarized in
Section 4.

2. Properties of Two-Dimensional MHD

The incompressible two dimensional magnetohydrodynamic (2D-MHD) system
has two independent dynamical variables, the velocity stream function ., related to
the velocity field V:

V:=e:; �;. (2.1)

and the magnetic flux function � related to the magnetic field B: via:

B:=e:; �;� (2.2)

here e:; is antisymmetric and e12=+1, e21=&1.
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The dynamics is given by the pair of equations [10]:

�w
�t

=&e:; �:. �;w+e:; �:� �;J++ {2w (2.3)

��
�t

=&e:; �:. �;�+'J (2.4)

where

w={2. J={2�

here + is the molecular kinematic viscosity and ' is the molecular resistivity. Note that
normalisation is chosen such that the magnetic field assumes the same dimensions as
velocity. In the inertial range ' and + can be ignored then it follows from Eqs. (2.3)
and (2.4) that there exist three global, quadratic, conserved quantities.

E= 1
2 | (V2+B2) d 2x (2.5)

H=| V } B d 2x (2.6)

A=| �2 d 2x (2.7)

which are the total energy, the cross helicity and the mean square magnetic potential.
In fact this system has an infinite number of conserved quantities such as:

Rn=| �n d 2x (2.8)

where n is any real number. The time evolution of the E, H and A are given
as:

dE
dt

=&' | ({2�)2 d 2x&+ | ({2,)2 d 2x (2.9)

dH
dt

=&(++') | ({2�)({2.) d 2x (2.10)

dA
dt

=&' | ({�)2 d 2x (2.11)
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a similar expression for the Rn can be written as follows

dRn

dt
=&'n(n&1) | �n&2({�)2 d 2x (2.12)

But when ' and + are negligible, the system of Eqs. (2.3) and (2.4) display the scale
invariance

x � *x . � *1&h. t � *1+ht � � *1&h� (2.13)

Now if we impose Kolmogorov's idea of constant flux of energy we get h= 1
3 [15],

so that the behaviour of fields under scaling are:

x � *x . � *2�3. t � *3�4t � � *2�3� (2.14)

Following Polyakov [24] we believe that this scale invariance signals conformal
symmetry of this system. Simple scaling arguments [16�21], show that in turbulent
2D-MHD the energy spectrum behaves as:

E(k)tk&3�2 (2.15)

Unfortunately this result is in poor agreement with recent numerical simulations
[29]. But our results show the deviation from this spectrum and is in agreement
with simulation [29]. Another important aspect to consider is the Alf 'ven effect
[22�23]. This effect essentially amounts to equipartition of energy between the
kinetic and the magnetic components of the energy. Thus V 2

k and B2
k should have

the same spectrum in the inertial range. We shall later show how this effect bears
on the critical dynamical index, and limits our choice of CFT. If Polyakov's ideas
were applicable here, a conformal field theory may exist such that its correlation
functions coincide with those of the 2D-MHD system. However such a system has
to be non-unitary in order to give the power law behaviour suggested by the scaling
relations (i.e. Eq.(2.14)). First of all, let us show that to describe turbulence by
means of CFT, we have to use non-unitary minimal models. Any local conformal
field Aj (x) have associated with it an anomalous dimension dj , i.e. under a transfor-
mation x � *x we have [24, 25]:

Aj (x) � *&djAj (x) (2.16)

We therefore observe that if associated with the fields of 2D-MHD system i.e. the
. and the �, they must have negative anomalous dimensions. On the other hand
negative anomalous dimensions are possible only in non-unitary minimal models
which in turn non-unitary minimal models result in infrared divergences. We shall
deal with this problem later.
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3. Conformal 2D-MHD Turbulence

The simplest model we consider is M2, 7 with three primary fields I, the identity
., with anomalous dimension (&2�7, &2�7), and �, with anomalous dimension
(&3�7, &3�7). The central change is C=&68�7. Now we can derive the small scale
behaviour of the two points functions.

(.(x). (0)) t |x| 8�7 (3.1)

(�(x)� (0)) t |x| 12�7 (3.2)

and the correlation function of . and � vanishes since they have different
anomalous dimensions. However the above expressions are clearly unphysical since
they grow with distance. To avoid this problem one has to introduce an infrared
cutoff [2]. Let us look at this problem in the momentum space

(.i (k) .i (&k))tCi |k|&2&4 |2.i | (3.3)

where .i can be either . or � and

Ci=24 |2.i |+1 1(4 |2.i | )
1(4 |2.i |+2)

(3.4)

To avoid the problem of infrared divergence we can restrict ourselves to the inertial
range i.e. 1�arKr1�R, where R is the large scale boundary of the system and a
is the dissipation range. Thus

(.(x) .(0)) &Ci |
�

k>(1�R)
k&2&4 |2.| eik } x dk (3.5)

which results in

(.(x) .(0)) tR4 |2.i |&x4 |2.i |+ :
�

m=1

(:m) \ x
2R+

m

x4 |2.i | (3.6)

where

:m=
1

m!
1(4 |2.i |+1)

1(2 |2.i |+1+m�2)
sin( 1

2(1&4 |2.i |&m) ?)
1( 1

2 (4 |2.i |+m+2))
(3.7)

Here the IR problem just as in the case of pure turbulence [2, 3, 26], and it may
be removed by considering of turbulent 2D-MHD with boundary.

On the other hand, there exists a dissipation scale `a$, so that the inertial range
was defined by kR1�a. Thus fully developed turbulence is equivalent to letting `a$
tend to zero, or equivalently letting the Reynold's number tend to infinity. However
the existence of an ultraviolet cutoff means that we have to be careful when
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products of operators at the same point are involved. To this end we handle such
products using the point splitting technique. Consider the right hand side of equa-
tion (2.3, 2.4)

e:; �: � �; {2�=l� imit
a � 0

e:; �: � \x+
a
2+ �; {2� \x&

a
2+ (3.8)

e:; �:. �;�=l� imit
a � 0

e:; �: . \x+
a
2+ �;� \x&

a
2+ (3.9)

Where l� imita � 0 , expresses angle averaging. Now to evaluate the above, we take
advantage of the operator product expansion. We have the general form for the
fusion rule of ( p, q) minimal model [27, 28]:

[�n1m1
][�n2 , m2

]= :
min(n1+n2&1, 2p&n1&n2&1)

k=|n1&n2 |+1

:
min(m1+m2&1, 2q&m1&m2&1)

l=|m1&m2 |+1

[�(k, l)]

(3.10)

Where variables k, l run over odd or even numbers if they are bounded by odd or
even numbers respectively. For our particular choice of (q, p)=(2, 7) we have two
primary fields . and � and their families [.] and [�] satisfy:

[.]_[.]=[I]+[�] (3.11)

[.]_[�]=[�]+[.] (3.12)

[�]_[�]=[I]+[�]+[.] (3.13)

Note that by the family of ., we mean all operators which can be constructed from
. using the Virasoro generators Ln , such as:

L&n1
L&n2

} } } L&nk . (3.14)

In order to explicitly calculate the rhs. of Eqs. (3.8) and (3.9) by means of the fusion
rules, we use the following relations for the OPE of field operators:

.n \x+
a
2+ .m \x&

a
2+t |a| 2(2p&2n&2m)(.p+:1aL&1.p+a2(:2L2+:3 L2

&1) .p

+a3(:4L3
&1+:5L&1L&2+:6 L&3) .p+ } } } (3.15)

where n, m, p=1, 2 and .1=., .2=�. In the appendix we have given a method of
deriving the coefficients :1 , :2 , :3 etc. and have derived these coefficients up to the
third level. By differentiation of lhs. of Eq. (3.15) we will find the leading term in
product of . and � in the limit a � 0 as follows:

e:; �: . �;�=C1 |a| 11�7 (:L� &1(L&2+sL2
&1)&C } C) � (3.16)
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where s is a constant, determined by the operator product expansion and : is
a constant. It is clear that the antisymmetry of rhs. of Eq. (3.16) under complex
conjugation is just the consequence of the e-tensor at the lhs. Similar calculation
shows that the other terms in Eqs. (2.3) and (2.4) by means of OPE and point splitting
procedure can be written in terms of Virasoro generators in the limit a � 0 as follows:

e:; �:� �; �2�=C2 |a| 6�7 (L&2L� 2
&1&L� &2L2

&1) � (3.17)

e:; �:. �; �2.=C4 |a| 1�7 (L&2L� 2
&1&L� &2L2

&1) � (3.18)

Before proceeding further let us look at the various constants of motion Rn , A2 ,
H and E:

dRn

dt
=&'(n&1) | �n&1 {2� d 2X (3.19)

For Rn , A2 , H and E to be constants of motion, we must have +, '=0 ('=1�+0_
where +0 and _ are permeability and conductivity, respectively) which require the
conductivity _ to be infinite. On the other hand it is obvious that the above quantities
are conserved in the limit of + and {2� � 0, that is for finite conductivity we have the
same conserved quantities. But, letting {2� tend to zero is equivalent to vanishing
of J. This situation is well known as force free MHD [10]. Let us return to conformal
field theory and look at {2� � 0, it is evident that;

{2�=4L&1L� &1�=0 (3.20)

With this condition we can proceed further with the rhs. of Eqs. (3.16), (3.17), and
(3.18) and we find that they are all zero. In non-unitary minimal model M2, 7 with
C=&68�7, � is degenerate in the second level that is:

(L&2& 21
2 L2

&1) �=0, 2�=&3�7 (3.21)

Thus the rhs.s of Eqs. (3.16), (3.17), and (3.18) vanish. The more general N-point
correlation function satisfies the well known BPZ equation:

\&21
2

�2

�z2& :
n&1

j=1

&3�7
(z&zj)

2+
1

(z&zj)
�

�zj+ (�(z1) } } } �(zn&1)) =0 (3.22)

Now for a generalisation of our simple model let us postulate fusion rules as below:

[.]_[�]=[X1]+ } } } (3.23)

where X1 , is the primary field of the lowest dimension in the OPE of . and �.
Equation (3.16) changes to

��
�t

t lim
a � 0

|a| 2(2X&2.&2�)(:L� &1(;L2
&1+L&2)&C.C.) X1 . (3.24)
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Let us now use the conserved quantities to find the constraints on dimensions of the
fields. Similar to the arguments used in [4], we consider the cascade of mean
square magnetic potential:

A=| �2 d 2x (3.25)

this requires that (�4 (x)�(x)) be scale invariant.
Thus, using Eqs. (3.24), we have

2X1+2+2�=0 (3.26)

2X1�2.+2� (3.27)

where the second condition comes from requiring non-singularity of the rhs. of (3.24)
in the limit a � 0. Table I gives a list of models which satisfy these conditions.

Let us now consider the implications of the Alf 'ven effect [22, 23]. It is well
known that [30] the excitations of the Elsasser's fields propagate as the Alf 'ven
waves in opposite directions along the lines of force of the `B' field at speeds of
order `B'. What is meant by the `inertial range' in this context is, the region where
the wavenumber of the Alf 'ven waves lie whitin the inertial range and the energy

TABLE I

Solution Satisfying the Constant Mean Square
Magnetic Potential Flux Condition

( p, q) 8 9 X 42.+1 42�+1

(2, 13) 91, 2 91, 4 91, 5 &2.69 &0.53
(2, 17) 91, 6 91, 2 91, 7 &0.64 &4.88
(2, 19) 91, 5 91, 2 91, 6 &0.68 &4.47
(2, 23) 91, 2 91, 3 91, 4 &2.30 &0.73
(2, 27) 91, 4 91, 2 91, 5 &0.77 &3.88
(3, 29) 92, 12 91, 3 92, 14 &2.17 &1.20
(3, 34) 91, 2 91, 3 91, 4 &2.29 &0.73
(3, 37) 91, 5 92, 14 92, 18 &0.18 &5.05
(3, 40) 91, 4 91, 2 91, 5 &0.77 &3.87
(3, 46) 92, 17 91, 3 92, 19 &2.47 &0.21
(3, 50) 91, 3 92, 19 92, 21 &1.4 &2.52
(3, 52) 92, 21 91, 2 92, 22 &0.82 &3.61
(3, 62) 91, 5 92, 22 92, 26 &0.37 &5.83
(3, 77) 92, 27 91, 3 92, 29 &2.68 &0.36
(3, 79) 91, 2 92, 29 92, 30 &2.10 &0.88
(3, 80) 92, 28 91, 3 92, 30 &2.7 &0.36
(3, 82) 91, 2 92, 30 92, 31 &2.10 &0.89
(3, 89) 92, 33 91, 2 92, 34 &0.89 &3.35
(3, 92) 92, 34 91, 2 92, 35 &0.90 &3.33
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TABLE II

Solutions that Satisfy Both the Constant Mean Square Magnetic
Potential and the Alf 'ven Constraint

( p, q) 8 9 X 42.+1 42�+1 2t

(6, 35) 92, 11 92, 12 93, 22 &2.98 &2.92 2.99
(6, 41) 93, 17 92, 10 94, 26 &2.01 &2.18 2.75

cascade results from the scattering of Elsasser's fields [30]. This implies that, there
should be asymptotically exact equipartition of energy in the inertial range, i.e.
V 2

k=:B2
k where : is of order unity. As discussed in detail by Chandrasekhar [31],

for Kolmogorov's hypotheses of similarity to holds here the constant : shuld take
value 1.62647. Therefore the equipartition of energy requires : and � to have
similar scaling behavior:

2.=2� (3.28)

We can derive the dynamical index of Eqs. (2.3) and (2.4) as:

2t=&2.+2 (3.29)

and

2t=2.&22�+2 (3.30)

Where the Eqs. (3.29) and (3.30) come from Eqs. (2.4) and (2.3) respectively. Thus
again the existence of a single index for temporal scaling require 2.=2�. We can
therefore extract models out of the table, which are nearly consistent with the
Alf 'ven effect. These are given in Table II. By means of the anomalous dimensions
of � and ., we can write the energy spectrum as follows:

E(k)tk4 |2.|+1+k4 |2�|+1

Where the exponents of energy spectrum for are given in Tables 1 and 2.

4. Concluding Remarks

In this paper we have derived a number of CFT which are possible candidates
for describing 2D-MHD. In the limit of finite conductivity requires 2D-MHD to be
force free and increases the number of candidate CFT's. The imposition of the
Alf 'ven effect is equivalent to requiring a consistent dynamical index and greatly
reduces the number of candidates. A direct interpretation of primary fields is as yet,
not possible, therefore those candidate CFT's which have more than two primary
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fields seem as plausible as M2, 7 , which has two primary fields. Adding boundaries
is the next step in this theory, which may take it closer to some physical problems
such as the quantum wire. Work along this line is already proceeding.

APPENDIX: Calculation of OPE Coefficients

The most general expression for the operator product expansion is [27]:

8n(z, z� ) 8m(o, o)=:
p

:
k

C p, [k], [k� ]
nm z2p&2n&2m+� ki z� 2� p&2� n&2� m+� k� i 8[k], [k� ]

p (0, 0)

(A.1)

where the coefficients are

C p, [k], [k� ]
nm =C p

nm ; p, [k]
nm ;� p, [k� ]

nm (A.2)

[k]=[k1 , k2 , ..., kn] (A.3)

Note that we have .i (0) |0)=|i), for the vacuum state |0). Now let equation
(A.1) act on |0):

8n(z) |2m)=: C p
nmz2p&2n&2m �p(z) |2p) (A.4)

�p(z)=: z� ki ; p, [K]
nm L&k1

} } } L&kn (A.5)

|z, 2p)=�p |2p) (A.6)

Expand |z, 2p) in terms of the complete basis |N, 2p) where |N, 2p) is defined
such that the coefficients of expansion are zN:

|z, 2p) =: zN |N, 2p) (A.7)

By applying of Lj over Eq. (A.4) we have:

Lj |N+j, 2p)=(2p&2m+j 2n+N ) |N, 2p) (A.8)

and by solving the recursion relations we can find ; p, [k]
nm . For level one we have:

L1 |1, 2p)=(2p&2m+2n) |2p) (A.9)

which results is

|1, 2p) =:1 L&1 |2p) (A.10)
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or

:1=
2p&2m+2n

22p
. (A.11)

For the second level by means of Eqs. (A.7) and (A.10) we have:

L1 |2, 2p) =
(2p&2m+2n+1)(2p&2m+2n)

22p
L&1 |2p) (A.12)

L2 |2, 2p) =(2p&2m+22n) |2p) (A.13)

which results in:

|2, 2p) =(:2 L&2+:3L2
&1) |2p) (A.14)

where :2 and :3 satisfy a system of equations:

Mij :j=Ai i, j=2, 3

where

M=_42p+c�2
O

62p

42p+2&
(A.15)

_A2

A3&=_ 2p&2m+22n

((2p&2m+2n+1)(2p&2m+2n))�22p& .

This system can now be solved to give:

_:2

:3&=_62p A3&A2(42p+2)
3A1&A2(42p+C�2)&

1
22p(5&82p)&(22p+1)C

. (A.16)

A similar method will work for higher levels. For level N, we have in place of
Eq. (A.14), an expansion corresponding to the partition of N. We then find a
system of equations by successively applying Lj , and finally the coefficients are
derived. For the third level, using Eq. (A.8), we have:

L1 |3, 2p) =[2p&2m+2+2n] |2, 2p) (A.17)

L2 |3, 2p) =[2p&2m+1+22n] |1, 2p) (A.18)

L3 |3, 2p) =[2p&2m+32n] |2p) (A.19)

and |3, 2p) is given by:

|3, 2p) =(:4 L3
&1+:5L&1 L&2+:6 L&3) |2p) (A.20)
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where :4 , :5 and :6 satisfy the following system of equations:

:4(242p+6)+:5{\42p+
C
2 ++9=+5:6=

B� (2p+2n&2m)
22p

(A.21)

:4(242p)+:5 \4 \42p+
c
2+++:6(62p+2c)=C� (A.22)

:4(8(2p+1))+:5(7+22p)+4:6=A� (:2+:3) (A.23)

and :2 ,:3 are given by (A.15). The coefficients A� , B� and C� are given by:

A� =[2p&2m+2+2m] (A.24)

B� =[2p&2m+1+22n] (A.25)

C� =[2p&2m+32n] (A.26)

the inverse of the matrix of coefficients is

M &1
ij =

1
2

Bij (A.27)

where

B11=C(22p+3)+2p(62p&11)

B12=C+32p+1�2

B13=1�2[C2+C(112p+8)+22p(122p&13)]

B21=4[C(2p+1)+32p(2p&1)]

B22=2(72p&2)

B23=3[C(42p+1)+2p(122p&7)]

B31=2[2C(2p+1)+52p(22p&1)]

B32=2C(2p+1)&822
p&382p+15

B33=3[C(32p+1)+22p(122p&5)]

and

2=2(2c2(2p+1)+c(&222
p&162p+7)&2p(2422

p&742p+25)) (A.28)
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