Student ID:
Department of Computer E ngineering
Sharif International University of T echnology Spring 2007

Final Exam

Take Home: Due Friday $15^{\text {th }}$ of Tir at 12 M idnight
Send by email to: rabiee@sharif.edu or my office at Sharif phone number: 6600-6399

1. [20 points] B asic C oncepts

a. (10 points) Suppose you have a real random variable, X, that is G aussian with zero mean and a variance of σ^{2}. No take two independent, identically distributed Bernoulli random variables, Y_{1} and Y_{2} with

$$
p=0.5\left(p\left(Y_{i}=1\right)=0.5, p\left(Y_{i}=-1\right)=0.5\right)
$$

Define two new random variables: $W_{1}=Y_{1} X$ and $W_{2}=Y_{2} X$.
(1) Find the probability density functions of W_{1} and W_{2}.
(2) Find the $\mathrm{E}\left[\mathrm{W}_{1} \mathrm{~W}_{2}\right]$.
(3) Are W_{1} and W_{2} uncorrelated?
(4) Find the probability $\mathrm{W}_{1}=0$ given $\mathrm{W}_{2}=1$. Find the probability $\mathrm{W}_{1}=$ 1 given $W_{2}=1$. Are the two random variables W_{1} and W_{2} independent? Why?
b. (5 points) Show that if $\mathbf{x}(\mathrm{t})$ is a stochastic process with zero mean and autocorrelation $f\left(t_{1}\right) f\left(t_{2}\right) w\left(t_{1}-t_{2}\right)$, then the process $\mathbf{y}(t)=\mathbf{x}(t) / f(t)$ is W SS with autocorrelation $\mathrm{w}(\tau)$. If $\mathbf{x}(\mathrm{t})$ is white noise with autocorrelation $\mathrm{q}\left(\mathrm{t}_{1}\right) \sigma\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)$, then the process $z(t)=x(t) / \sqrt{q(t)}$ is WSS white noise with autocorrelation $\sigma(\mathrm{t})$.
c. (5 points) Show that if in an LTI system the output-input relation is given by $\mathbf{y}(\mathrm{t})=\mathbf{x}(\mathrm{t}+\mathrm{a})-\mathbf{x}(\mathrm{t}-\mathrm{a})$, then $R_{y}(\tau)=2 R_{x}(\tau)-R_{x}(\tau+2 a)-R_{x}(\tau-2 a)$ and $S_{y}(\omega)=4 S_{x}(\omega) \sin ^{2} a \omega$.

Student ID:
Department of Computer E ngineering
Sharif International U niversity of T echnology

2. [20 points] Linear Systems \& Stochastic Processes

Consider an experiment in which a point with coordinates $\left(\omega_{1}, \omega_{2}\right)$ is drawn at random from the unit square:
$\Omega=\left\{\left(\omega_{1}, \omega_{2}\right): 0 \leq \omega_{1}, \omega_{2} \leq 1\right\}$.
A continuous-Parameter random process (field) is defined on the same square according to
$\underline{f}_{\omega_{1}, \omega_{2}}(x, y)=\operatorname{sgn}\left[\left(x-\omega_{1}\right)\left(y-\omega_{2}\right)\right], 0 \leq x, y \leq 1$.
a) Draw a typical sample function of this process.
b) W hat is its probability?
c) Calculate $\mathrm{E}\{\underline{f}(x, y)\}$.
d) C alculate the second moment $\mathrm{E}\left\{\underline{f}^{2}(x, y)\right\}$. and the variance $\sigma_{\underline{f}}^{2}(x, y)$ of this random field.
e) Calculate the autocorrelation $R_{\underline{f f}}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=E\left\{\underline{f}\left(x_{1}, y_{1}\right) \underline{f}\left(x_{2}, y_{2}\right)\right\}$

3. [20 points] M aximum Likelihood (ML) \& Fisher Information M atrix (I)

Consider the random vector

$$
y=\left[\begin{array}{ll}
1 & 1 \\
2 & 3 \\
1 & 5 \\
4 & 2
\end{array}\right]\binom{x_{1}}{x_{2}}
$$

Where x is a normal Gaussian random vector with mean $\binom{\theta_{1}}{\theta_{2}}$ and covariance $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(a) Given y find the ML estimator of $\binom{\theta_{1}}{\theta_{2}}$.

2 of 6

Student ID:
Department of Computer E ngineering
Sharif International University of T echnology
(b) Find the covariance matrix of the ML estimate of θ_{1} and θ_{2}.
(c) Find the Fisher information matrix for estimating θ_{1} and θ_{2}.
(d) Find the F isher information matrix for estimating θ_{1} given you know θ_{2}.
(e) Find the ML estimate of θ_{1} given you know θ_{2}.
(f) Find the variance of θ_{1} given you know θ_{2}.
(g) Compare the variances and the Cramer-R ao bound for the case where θ_{2} is known and the case where θ_{2} is not known.

4. [20 points] B ayesian E stimation

Given an m-dimensional Gaussian random vector θ and an n-dimensional vector y such that

$$
\mathbf{y}=\mathbf{H} \theta+\mathbf{n}
$$

where \mathbf{n} is $\mathbf{N}(0, \mathbf{l})$ and θ is $\mathbf{N}(\mathrm{a}, \mathbf{I}), \mathbf{n}$ and θ are independent and \mathbf{H} is a $\mathrm{n} \times \mathrm{m}$ matrix, and $n \geq m$. Find
(a) The joint density of θ and \mathbf{y}.
(b) Find the Bayes estimator for minimizing MSE of θ.
(c) Is the above B ayes estimator unbiased?
(d) Find the Bayes Risk (probability of error) of the estimator.
(e) Find the MVUB estimator of θ.
(f) Find the probability of error of the MVUB estimator.

5. [20 points] Misc.

Let $\underline{\beta}_{k \ell} k=0, \ldots, M-1, \quad \ell=0, \ldots, N-1$ be the basis images associated with the $\mathrm{M} \times \mathrm{N}$ unitary transform: $\underline{F}=\underline{P} \underline{f} \underline{Q}$, and assume that $\underline{f}(m, n)$ is a zero mean random field with autocorrelation function:

$$
R_{\underline{f f}}(m, n ; r, s)=E\{\underline{f}(m, n) \underline{f}(r, s)\}
$$

Show that if the basis images satisfy the equation

$$
\sum_{r=0}^{M-1} \sum_{s=0}^{N-1} R_{f f}(m, n ; r, s)\left[\underline{\beta}_{k l}\right]_{t s}=\gamma_{k l}\left[\underline{\beta}_{k l}\right]_{m n}
$$

F or a set of constants $\gamma_{k \ell}$, then the transform coefficients are uncorrelated, i.e.

Department of Computer Engineering
Sharif International University of Technology

Student Name and Family:

$$
\mathrm{E}\{\underline{F}(k, \ell) \underline{\mathrm{F}}(\mathrm{r}, \mathrm{~s})\}=\sigma_{\underline{E}(k, \ell)}^{2} \delta(k-r, \ell-s) .
$$

6. [20 points] M arkov Chains

Consider a discrete-time M arkov chain $\{X n: n>=0\}$ with values in the positive integers. A ssume that the transition probabilities are all positive, i.e., $\mathrm{Pi}, \mathrm{j}>0$ for all i and j . Let the M arkov chain start off with initial probability vector α, i.e., $\alpha_{j} \equiv P\left(X_{0}=j\right)$ for $j>=1$.

Consider the following two statements:
A. There exist a probability vector $\pi \equiv\left\{\pi_{j}: j \geq 1\right\}$ such that

$$
\pi_{i} P_{i, j}=\pi_{j} P_{j, i} \text { for all } \mathrm{i} \text { and } \mathrm{j} .
$$

B. (i) there exist a probability vector π such that

$$
\pi_{j}=\sum_{i=1}^{\infty} \pi_{i} P_{i, j} \quad \text { for all } \mathrm{j}
$$

A nd (ii) for all I, j and k ,

$$
P_{i, j} \cdot P_{j, k} \cdot P_{k, i}=P_{i, k} \cdot P_{k, j} \cdot P_{j, i}
$$

Prove or disprove:
(i) A implies B .
(ii) B implies A .

A ppendix of the Take Home M idterm Exam

- The Score Function

Given $f_{x}(x \mid \theta)$ of a random vector \mathbf{X} and its log-likelihood function $\mathbf{L}(\theta \mid \mathbf{X})$, the score function \mathbf{U} is defined to be the gradient of \mathbf{L} :

$$
\mathbf{U}(\theta)=\mathrm{d} \mathbf{L} / \mathrm{d} \theta
$$

- Fisher Information M atrix

In general, the Fisher information measures how much "information" is known about a parameter θ.

Given $f_{\mathbf{x}}(x \mid \theta)$ of a random vector \mathbf{X}, the Fisher information matrix, \mathbf{I}, is the variance of the score function \mathbf{U}. Therefore,

$$
\mathbf{I}=\operatorname{var}(\mathbf{U})
$$

If there is only one parameter involved, then I is simply called the Fisher information or information of $f_{x}(x \mid \theta)$.

Remarks

- If $f_{x}(x \mid \theta)$ belongs to a exponential family, $I=E\left(\mathbf{U}^{\top} \mathbf{U}\right)$. F urthermore, with some regularity conditions imposed, $\mathbf{I}=-\mathrm{E}(\mathrm{d} \mathbf{U} / \mathrm{d} \theta)$.
- A s an example, the normal distribution, $N\left(\mu, \sigma^{2}\right)$, belongs to the exponential family and its log-likelihood function is $\mathbf{L}(\theta \mid \mathbf{X})$,

$$
-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{(x-\mu)^{2}}{2 \sigma^{2}}
$$

Department of Computer E ngineering
Sharif International University of Technology

Student Name and Family:

Where $\theta=\left(\mu, \sigma^{2}\right)$. Then the score function $\mathbf{U}(\theta)$ is given by

$$
\left(\frac{x-\mu}{\sigma^{2}}, \frac{(x-\mu)^{2}}{2 \sigma^{4}}-\frac{1}{2 \sigma^{2}}\right) .
$$

Taking the derivative with respect to θ, we have

$$
\partial U / \partial \boldsymbol{\theta}=\left(\begin{array}{cc}
-1 / \sigma^{2} & -(x-\mu) / \sigma^{4} \\
-(x-\mu)\left(\sigma^{4}\right) & 1 /\left(2 \sigma^{4}\right)-(x-\mu)^{2} /\left(4 \sigma^{6}\right)
\end{array}\right) .
$$

Therefore, the Fisher information matrix I is

$$
-\mathrm{E}(\partial U / \partial \boldsymbol{\theta})=\left(\begin{array}{cc}
1 / \sigma^{2} & 0 \\
0 & 1 /\left(2 \sigma^{4}\right)
\end{array}\right) .
$$

- Cramer-R ao Lower B ound

If \mathbf{T} is an unbiased estimator of θ, it can be shown that

$$
\operatorname{Var}[T(X)] \geq \frac{1}{I(\theta)}
$$

This is known as the Cramer-R ao inequality, and the number $\mathbb{I} / \mathbf{I}(\theta)$ is known as the Cramer-R ao lower bound. The samller the variance of the estimate of θ, the more information we have on θ. If there is more than one parameter, the above can be generalized by saying that

$$
\operatorname{Var}[T(X)]-I(\boldsymbol{\theta})^{-1}
$$

is positive semi-definite, where I is the F isher information matrix.

