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Uncertainty

due to lack of complete information

leads to stochastic behavior,

which i1s the source of risk.
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RISK MANAGEMENT STEPS

. RiIsk Identification

. RiIsk Assessment and Measurement
. Design of Risk Management System
. Implementation

. Maintenance and Review
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RISK QUANTIFICATION

Frequency of Events

Magnitude or Severity of Events
Available Information

Confidence in Available Information
Available Knowledge

Available Experience
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Systemic Risk
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RISK TYPES

\ Pure Risk

, Speculative Risk
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RISK TYPES

| Objective Risk

, Subjective Risk
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RISK TYPES

' Static Risk

Dynamic Risk
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TYPES OF FINANCIAL RISKS

e Credit RISk

e Commodity RISk

e Interest Rate RIisk

e Foreign Exchange Rate RIisk
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VALUE AT RISK

At significance level «, value at risk VaR
IS the value such that

P( Maximum Loss > VaR ) = «
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VALUE AT RISK

At significance level «, value at risk VaR
IS the largest value of x satisfying

P( Maximum Loss <z ) > 1—«
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CaPITAL
ASSET
PRICING

MODEL
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r4 = return on asset A
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Consider a portfolio:
1. 0 relative units of asset A
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o, = risk of asset A := /Var ry
oy = risk of the market := /Var r),
op = risk of the portfolio := ,/VVar rp
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Consider a portfolio:
1. 0 relative units of asset A
2. 1 — 0 relative units of “the market’.

pA,M = COrr(ra,rar)

. Cov A%\T ﬂiv
- OA OM
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CAPM

Consider a portfolio:
1. 0 relative units of asset A
2. 1 — 0 relative units of “the market’.

Q.W”/\/\m_\ﬁ %ﬁ>+AH|%v%,\§_

op = /\mmqw_ + (1 — 0)208; + 20(1 — 0)pa proaons
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CAPM

Consider a portfolio:
1. 0 relative units of asset A
2. 1 — 0 relative units of “the market’.

Sharpe ratio of the portfolio:

Portfolio’s Excess Return

Portfolio’s Risk
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CAPM

Consider a portfolio:
1. 0 relative units of asset A
2. 1 — 0 relative units of “the market’.

Sharpe ratio of the portfolio:

Tp—Tf

rE= risk-free interest rate
op
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Consider a portfolio:
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Obtain 6 maximizing the Sharpe ratio:

QA Eflﬁvl_.ﬁlmv?iliv v Io
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54



CAPM

Consider a portfolio:
1. 0 relative units of asset A
2. 1 — 0 relative units of “the market’.

CAPM Assumes that in equilibrium con-
dition of the market, the optimal portfo-
lio consists of only the “market”.
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CAPM

Consider a portfolio:
1. 0 relative units of asset A
2. 1 — 0 relative units of “the market’.

In other words:

@ﬁ §7€+:|3§|€ v
00 op

6=0

56



CAPM

Security Market Line ( SML ) :

rA—Tf = Ba/m ?i — Qv

Cov A%\T %iv . Cov A%NT %iv

Bans =
\»\i Var %i Q.W§
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CAPM

Oscillatory behavior through the cases:
ra—rg > Banr(rar—ry) (A attractive)
TA—TF = E\»\i AJ& — ﬁ,\uv (A neutral)

ra—rr < Bau Aﬁi _ Qv (A non-attractive)
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CAPM

higher beta «+— riskier asset
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CAPM

higher beta «+— riskier asset

Examples:

1.4 (1995 — 2002)

X

PIBM /S&P500
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CAPM

higher beta «+— riskier asset

Examples:

PIBM /S&P500

BSONY /TOPIX <

1.4 (1995 — 2002)

X

~ 1.45 (1995 — 2002)
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PORTFOLIO OPTIMIZATION

With market having n products, each port-
folio can be characterized be a vector

(9, )

02 Relative share of

0= 6, = the kth product
in the portfolio

\ On
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With market having n products, each port-
folio can be characterized be a vector

(9, )
0>
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PORTFOLIO OPTIMIZATION

n

Return of the portfolio =rp = ) 0.rp
Risk of the portfolio =1

/\/\mﬂ Tp

op

0'Co

(' := Covaiance Matrix = ~ Cov A?Qv Tx:
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PORTFOLIO OPTIMIZATION

Unconditional minimization of portfolio
risk:

\3/ (1)
1

(

Minimize 6’ C 6 2

Subject to 8/ u=1

\

\ ") \ 1)
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PORTFOLIO OPTIMIZATION

Solution with method of Lagrange mul-
tiplier

L:=6'Co+ \(0'u—1)

[ OL
90— °
1
A = 0 = o1
oL OPt T wC-1y, N
e
L O
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PORTFOLIO OPTIMIZATION

Return of the optimal portfolio

__
3u|%o_3 r

Risk of the optimal portfolio

op = /\mmoﬁ C' Oopt
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PORTFOLIO OPTIMIZATION

With A Target Return o

[ Minimize ¢’ C 6

Subject to«
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PORTFOLIO OPTIMIZATION

Solution with method of Lagrange mul-
tiplier

L:=60Co4+X1(0'r—a) 4+ X(0u—-1)
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PORTFOLIO OPTIMIZATION

Oopt = = Cir 4+ J Clu

with x and y solutions of

(i) a+ 0w y=a

(W Clrz4+ G Ccluwy=1
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PORTFOLIO OPTIMIZATION

Return of the optimal portfolio

__
3u|%o_3 r

Risk of the optimal portfolio

op = /\mmoﬁ C' Oopt
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PORTFOLIO OPTIMIZATION

With A Target Risk ¢
[ Maximize 6’ r

A 0 C 0= ¢2
Subject to

, 0 u=1
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PORTFOLIO OPTIMIZATION

Solution with method of Lagrange mul-
tiplier

L:=0"r4+ X (600CO—£2) 4+ 2o (0'u — 1)
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PORTFOLIO OPTIMIZATION

a = (W C7Y w) =2 071 w)?
b =2 (u C71 7) Amw?\ C—1 ) — Hv

c = (' Cc7t )2 ¢t r)?
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PORTFOLIO OPTIMIZATION

]
mooﬁﬂm C HQ u—+r)

with =z and y solutions of

ay® —by +c=0

r=( Ctw)y+ @ c 1)
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PORTFOLIO OPTIMIZATION

Return of the optimal portfolio

__
3u|%o_3 r

Risk of the optimal portfolio

op = /\mmoﬁ C' Oopt
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PORTFOLIO OPTIMIZATION

Dual Problems:

o Optimization With A Target Return

e Optimization With A Target Risk
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PORTFOLIO OPTIMIZATION

Dual Problems:

o Optimization With A Target Return

e Optimization With A Target Risk

DUALITY OF THE SOLUTIONS
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LEVY PROCESSES
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LEVY PROCESSES

Starting from zero

Independent Increments Property

Stationary Increments Property

Stochastic Continuity
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LEVY PROCESSES
Characteristic Function
with Levy triplet (v,0,v)

Wx, (u) =1t ¥x,(u)

1
Vx,(u) = iuy — o2’

+ \w Am@.@& —1— &Q&HEMHV v(dx)
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LEVY PROCESSES

1 (Xy) = Wy)(0) = EX;
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LEVY PROCESSES

Mean Function

EX; = ¢ ~Q+\_&_VH8TA&&V
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LEVY PROCESSES

Mean Function

EX; = ¢ ~Q+\_&_VH8TA&&V

Mean increases with time linearly.
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LEVY PROCESSES

o (X)) = W(0) = varx,
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LEVY PROCESSES

Variance Function

Var Xy t ~ o2 + \w&mt?&&v ~
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LEVY PROCESSES

Variance Function

VarX;

t ~ o2 |_|\w&mtA&8v ~
Variance increases with time linearly.
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LEVY PROCESSES

e3(Xy) = WP (0)

A/\m _\;vaw\w Skw X}

91



LEVY PROCESSES

Skewness Function

fr z3v(dz)

1
MX<<.NM =
Vi [ 02 4 g a2u(dz) 132

92



LEVY PROCESSES

Skewness Function

MX<<.NM =

fr z3v(dz)

Vit [ o2

&w&th&&vgw\w

Skewhness decreases to zero with
time, asymptotically like 1/+/t.
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LEVY PROCESSES

ca (Xp) = W§(0)

(VarXy)? ( KurX; —

3)
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LEVY PROCESSES

Kurtosis Function

1 kv (dz)

t [ 024 jrz2v(dr) %m
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LEVY PROCESSES

Kurtosis Function

1 kv (dz)

KurX; = 34 5
t [ 024 rz2v(dz) |

Kurtosis decreases to its normal value
3 with time, asymptotically like 1/¢.

96



LEVY PROCESSES

Kurtosis Function

1 kv (dz)

KurX; = 3 | >
t [ 024 rz2v(dz) |

All non-Brownian Levy Processes
( v #%# 0 ) are leptokurtic.
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BENEFITS OF RISK PRESENCE

e Makes life more rewarding
e Makes life more exciting

SO RiIsk avoidance is not an effective and
efficient risk management strategy, and
IN Most cases not possible.
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BENEFITS OF RISK PRESENCE

RiIsk must be understood and then

handled skillfully in the direction of

making profits and making progress.
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