2 ANALYSIS OF LINEAR
CONTROL SYSTEMS

2.1 INTRODUCTION

In this introduction we give a brief description of control problems and of the
contents of this chapter.

A contro] system is a dynamic system which as time evolves behaves in a
certain prescribed way, penerally without human interference. Control
theory deals with the analysis and synthesis of control systems,

The essential components of a control system (Fig. 2.1) are: (1) the plant,
which is the system to be controlled; (2) one or more sensors, which give
information about the plant; and (3) the controller, the “heart” of the control
system, which compares the measured values to their desired values and
adjusts the input variables to the plant.

An example of a control system is a self-regulating home heating system,
which maintains at all times a fairly constant temperature inside the home
even though the outside temperature may vary considerably. The system
operates without human intervention, except that the desired temperature
must be set. In this control system the plont is the home and the heating
equipment. The sensor generally consists of a temperature transducer inside
the home, sometimes complemented by an cutside temperature transducer.
The controffer is usnally combined with the inside temperature sensort in the
thermostat, which switches the heating equipment on and off as necessary.

Another example of a control system is a tracking antenna, which without
human aid points at all times at a moving object, for example, a satellite.
Here the plant is the antenna and the motor that drives it. The sensor con-
sists of a potentiometer or other transducer which measures the antenna
displacerment, possibly augmented with a tachometer for measuring the
angular velocity of the antenna shaft. The controller consists of electronic
equipment which supplies the appropriate input voltage to the driving motor.

Although at first plance these two control problems seem different, upon
further study they have much in common. First, in both cases the plant and
the controller are described by differential equations. Consequently, the
mathematical tool needed to analyze the behavier of the control system in
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desired
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Fig. 2.1. Schemalic representation of a conlrol system.

both cases consists of the collection of methods usually referred to as system
theory. Second, both control systems exhibit the feature of feedback, that is,
the actual operation of the control system is compared to the desired opera-
tion and the input to the plant is adjusted on the basis of this comparison.

Feedback has several attractive properties. Since the actual operation is
continuously compared to the desired operation, feedback control systems
are able to operale satisfactorily despite adverse conditions, such as dis-
turbances that act upon the system, or variations in plant properties. In a
home heating system, disturbances are caused by fluctuations in the outside
temperature and wind speed, and variations in plant properties may occur
because the heating equipment in parts of the home may be connected or
disconnected. In a tracking antenna disturbances in the form of wind gusts
act upon the system, and plant variations occur because of different friction
coefficients at different temperatures.

In this chapter we introduce control problems, describe possible solutions
to these problems, analyze those solutions, and present basic design objec-
tives. In the chapters that follow, we formulate control problems as mathe-
matical optimization problems and use the results to synthesize control
systems,

The basic design objectives discussed are stated mainly for time-invariant
linear control systems. Usually, they are developed in terms of frequency
domain characteristics, since in this domain the most acute insight can be
gained. We also extensively discuss the time domain description of control
systems via state equations, however, since numerical computations are
often more conveniently performed in the time domain.

This chapter is organized as follows. In Section 2.2 a general description is
given of tracking problems, regulator problems, and {erminal control
problems. In Section 2.3 closed-loop controllers are introduced. In the re-
maining sections various properties of control systems are discussed, such
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as stability, steady-state tracking properties, transient tracking properties,
effects of disturbances and observation noise, and the influence of plant
variations. Both single-input single-output-and multivariable control systems
are considered. !

2,2 THE FORMULATION OF CONTROL PROBLEMS

2.2.1 Introduction

In this section the following two types of control problems are introduced:
(1) tracking problems and, as special cases, regulator problems; and (2)
terminal control problems.

In later sections we give detailed descriptions of possible control schemes
and discuss at length how to analyze these schemes. In particular, the
following topics are emphasized : root mean square {rms) tracking error, rms
input, stability, transmission, transient behavior, disturbance suppression,
observation noise suppression, and plant parameter variation compensation.

2.2.2 The Formunlation of Tracking and Regulator Problems

We now describe in general terms an important class of control problems—
tracking problems. Given is a system, usually called the plant, which cannot
be altered by the designer, with the following variables associated with it
(see Fig. 2.2).

disturbance vaoriable
vp

controlled variohle z

input variohle

[ E— plant Sensors

observed varichle y
reference voriohle observation noise
- . vYm

Fig. 2.2. The plant.

1. An input variable u(f) which influences the plant and which can be
manipulated;
2. A disturbance variable v, (t) which influences the plant but which cannot

be manipulated;
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3. An observed variable y(t) which is measured by means of sensors and
which is used to obtain information about the state of the plant; this observed
varjable is usually contaminated with observation noise v,,(};

4. A eontrolled variable =(¢) which is the variable we wish to control;

5. A reference variable r(f) which represents the prescribed value of the
controlled variable z(¢).

The tracking problem roughly is the following. For a piven reference
variable, find an appropriate input so that the controlled variable tracks the
reference variable, that is,

2(t) = r(f),  t>ty 2-1

where 1, is the time at which control starts. Typically, the reference variable
is not known in advance. A practical constraint is that the range of values
over which the input «(t) is allowed to vary is limited. Increasing this range
usually involves replacement of the plant by a larger and thus more expen-
sive one. As will be seen, this constraint is of major importance and prevents
us from obtaining systems that track perfectly.

In designing tracking systems so as to satisfy the basic requirement 2-1,
the following aspects must be taken into account.

1. The disturbance influences the plant in an unpredictable way.

2. The plant parameters may not be known precisely and may vary.

3. The initial state of the plant may not be known.

4. The observed variable may not directly give information about the
state of the plant and moreover may be contaminated with observation noise.

The input to the plant is to be generated by a piece of equipment that will
be called the controller. We distinguish between two types of controllers:
open-loop and closed-logp controllers. Open-loop controllers generate u(z) on
the basis of past and present values of the reference variable omly (see
Fig. 2.3}, that is, )

) =forlrGhtt L7 <1, 24 2-2

disturbonce vorioble

vp
reference input controlled
voru:hle controtler vurluuhle plant _________vnrlgble

Fig. 2.3. An cpen-loop control system,
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disturbance vorioble

vp
cantralled
reference . input voriable z
vorioble varioble d
—_— sensors observe
5 contraller n plant o aeried

observation noise
Ym

Fig. 24. A closed-loop control system.

Closed-loop controllers take advantage of the information about the plant
that comes with the observed variable; this operation can be represented by

{see Fig. 2.4)
) =forlrGh <7< Kyl L <7 <], 121 2-3

Note that neither in 2-2 nor in 2-3 are future values of the reference variable
or the observed variable used in generating the input variable since they are
unknown. The plant and the controller will be referred to as the control
systent.

Already at this stage we note that closed-loop controllers are much more
powerful than open-loop controllers. Closed-loop controllers can accumulate
information about the plant during operation and thus are able to collect
information about the initial state of the plant, reduce the effects of the dis-
turbance, and compensate for plant parameter uncertainty and variations.
Open-loop controllers obviously have no access to any information about the
plant except for what is available before control starts. The fact that open-loap
controllers are not afflicted by observation noise since they do not use the
observed variable does not make up for this.

An important class of tracking problems consists of those problems where
the reference variable is constant over long periods of time. In such cases it is
customary to refer to the reference variable as the sef point of the system and
to speak of regulator problems, Here the main problem usually is to maintain
the controlled variable at the set point in spite of disturbances that act upon
the system. In this chapter tracking and regulator problems are dealt with
simultaneously.

This sectionis concluded with two examples.
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Example 2.1. A position servo systen

In this example we describe a control problem that is analyzed extensively
later. Imagine an object moving in a plane. At the origin of the plane is a
rotating antenna which is supposed to point in the direction of the object at
all times. The antenna is driven by an electric motor. The control problem is
to command the motor such that

g(r) ~ 0.(1), P>t 24

where #{t) denotes the angular position of the antenna and 0,.(t) the angular
position of the object. We assume that 0_(¢) is made available as a mechanical
angle by manually pointing binoculars in the direction of the object.

The plant consists of the antenna and the motor. The disturbance is the
torque exerled by wind on the antenna. The observed variable is the output
of a potentiometer or other transducer mounted on the shaft of the antenna,
given by

n(f) = 0(t) + (1), 1-5

where »(t) is the measurement noise. In this example the angle () is to be
controlled and therefore is the controfled variable. The reference variable is
the direction of the object 8,(r). The input to the plant is the input voltage
to the motor .

A possible method of forcing the antenna to point toward the object is as
follows. Both the angle of the antenna 8(t) and the angle of the object 6,(r)
are converted to electrical variables using potentiometers or other trans-
ducers mounted on the shafts of the antenna and the binoculars. Then 8(¢) is
subtracted from 8.{f); the difference is amplified and serves as the input
voltage to the motor. As a result, when 8,(¢) — 8(t) is positive, a positive
input voltage is produced that makes the antenna rotate in a positive direc-
tion so that the difference between 0.(t) and 6(¢) is reduced. Figure 2.5 gives
a representation of this control scheme.

This scheme obvicusly represents a closed-loop controller. An open-loop
controller would generate the driving voltage x(¢) on the basis of the reference
angle 6.(t) alone. Intuitively, we immediately see that such a controller has
no way to compensate for external disturbances such as wind torques, or
plant parameter variations such as different friction coefficients at different
temperatures. As we shall see, the closed-loop controller does offer pro-
tection against such phenomena,

This problem is a typical fracking problem.

Example 2.2. A stirred tank regulator system

The preceding example is relatively simple since the plant has only a single
input and a single controlled variable. Multivariable control problems, where
the plant has several inputs and several controlled variables, are usually
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much more difficult to deal with. As an example of a multivariable problem,
we consider the stirred tank of Example 1.2 (Section 1.2.3). The tank has two
feeds; their flows can be adjusted by valves. The concentration of the material
dissolved in each of the feeds is fixed and cannot be manipulated. The tank
has one outlet and the control problem is to design equipment that auto-
matically adjusts the feed valves so as to maintain both the outgoing flow and
the concentration of the cutgoing stream constant at given reference values
{(see Fig. 2.6},

This is a typical regulator problem. The components of the input variable
are the flows of the incoming feeds. The components of the controlied
variable are the outgoing flow and the concentration of the outgoing stream.
The set point also has two components: the desired outgoing flow and the
desired outgoing concentration. The following disturbances may occur:
fluctuations in the incoming concentrations, fluctuations in the incoming
flows resulting from pressure fluctuations before the valves, loss of fluid
because of Ieaks and evaporation, and so on. In order to control the system
well, both the outgoing flow and concentration should be measured; these
then are the components of the observed variable. A closed-loop controller
uses these measurements as well as the set points to produce a pneumatic
or electric signal which adjusts the valves.

2.2.3 The Formulation of Terminal Centrol Problems

The framework of terminal control prablems is similar to that of tracking
and regulator problems, but a somewhat different goal is set. Given is a
plant with input variable , disturbance variable v,, observed variable y,
and controlled variable z, as in the preceding section, Then a typical terminal
control problem is roughly the following. Find u(#), 1, <t < ¢, so that
z(#,) =~ r, where r is a given vector and where the terminal time #, may or
may not be specified. A practical restriction is that the range of possible
input amplitudes is limited. The input is to be produced by a controller, which
again can be of the closed-loop or the open-loop type.

In this hook we do not claborate on these problems, and we confine
ourselves to giving the following example.

Example 2.3. Position control as a terminal control problem

Consider the antenna positioning problem of Example 2.1, Suppose that
at a certain time #, the antenna is at rest at an angle 8,. Then the problem of
repositioning the antenna at an angle 0;, where it is to be at rest, in as short
a time as possible without overlpading the motor is an example of a terminal
control problem,
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2.3 CLOSED-LOOP CONTROLLERS; THE BASIC
DESIGN .OBJECTIVE

In this section we present detailed descriptions of the plant and of closed-loop
controllers. These descriptions constitute the framework for the discussion
of the remainder of this chapier. Furthermore, we define the mean square
tracking error and the mean square input and show how these quantities can
be computed.

Throughout this chapter and, indeed, throughout most of this boolk, it
is assumed that the plant can be described as a linear differential system
with some of its inputs stochastic processes. The state differential equation of

the syster is #(1) = A(OR(1) + BOu() + v,(0),

2-6
x(ty) = .

Here =(t) is the state of the plant and «(r) the input variable. The initial state
x, is a stochastic variable, and the disturbance variable v (t) is assumed to be
a stochastic process. The observed variable y(t) is given by

§(f) = COR() + 0,0, 27

where the observation noise v, (t) is also assumed to be a stochastic process.
The controfled variable is
z2(t) = D(Na(). 2-8

Finally, the reference variable r(t) is assumed to be a stochastic process of the
same dimension as the controlled variable z(t).

The general closed-loop controfler will also be taken to be a linear differen-
tial system, with the reference variable r(t) and the observed variable y(¢) as
inputs, and the plant input #(t) as output. The state differential equation of
the closed-loop controller will have the form

4(1) = L()g(t) + K.()r(t) — KAy (®), 2.9
q@u) = ‘In:

while the output equation of the controller is of the form
u(r) = F{t)g(t) -+ H(Or(1) — H(0y (). 2-10

Here the index r refers to the reference variable and the index fto feedback.
The guantity g(1) is the state of the controller. The initial state g, is either a
given vector or a stochasti¢ variable. Figure 2.7 clarifies the interconnection
of plant and controller, which is referred to as the control system. If K, () =
0 and H,(f) =0, the closed-loop controller reduces to an open-loop con-
troffer (see Fig. 2.8). We refer to a control system with a closed-loop
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coniroller as a closed-loop control system, and to a control system with an
open-loop controller as an open-loop control system.

We now define two measures of control system performance that will
serve as our main tools in eyaluating how well a control system performs its
task:

Definition 2.1. The mean square tracking evvor C,(t) and the mean square
input C,(t) are defined as:

C (1) = E{e"(O)W,(De(1)}, t > s

211
C D) = E{uv*(OW,(Du(®)}, 2>t
Here the tracking eveor e(t) is given by
B(I) = Z(t) - f'(.t), 4 2 fg, 2-12

and Wt) and W, (1), t > t,, are given nonnegative-definite symmetric
weighting matrices.

When W,(r) is diagonal, as it usually is, C,(t) is the weighted sum of the
mean square tracking errors of each of the comporents of the controlled
variable. When the error e(t) is a scalar variable, and W, = 1, then J C, (1)
is the rins fracking error. Similarly, when the input «(r) is scalar, and W, =1,
then ~/ C, (1) is the rns input.

Our aim in designing a control system is to reduce the mean square tracking
error C,(t) as much as possible. Decreasing C,{t) usually implies increasing
the mean square input C,(t). Since the maximally permissible value of the
mean square input is determined by the capacity of the plant, a compromise
must be found between the requirement of a small mean square tracking
error and the need to keep the mean square input down to a reasonable
level. We are thus led to the following statement.

Basic Design Objective. In the design of control systems, the lowest possible
mean square tracking ervor should be achieved without letting the mean square
input exceed its maximally permissible value.

In later sections we derive from the basic design objective more specific
design rules, in particalar for time-invariant control systems.

We now describe how the mean square tracking error C,(¢) and the mean
square input C,(f) can be computed. First, we use the state augmentation
technique of Section 1.5.4 to obtain the state differential equation of the
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control system. Combining the various state and output equations we find

(ﬂi(f)) (A(I) — B(t}H()C(1) B(f)F(I)) (w(!))

(1) —K (1) C({) L) /\q() 13
(B(:)H,(x)) (r —BOH,()\ [5,(1) 2z
+ r{t) + )
Kr'(t) 0 —K!(t) ) (Um(t)
For the tracking error and the input we write
(1)
e(t) = [D(FLOJ( ) = (1),

q(t) 2-14

(1)
u(t) = [—H,()C(®), F(f)]( (t)) + H()r(t) — H (o, (1)
q
The computation of C,(t} and C,(t) is performed in two stages. First, we
deterntine the mean or deterministic part of e(t) and u(t), denoted by

é(ty = Efe(t)}, a(t)= E{u(®)}, t2>1. 2-15

These means are computed by using the augmented state equation 2-13 and
the output relations 2-14 where the stochastic processes r(t), v,(f), and
v,,(#) are Teplaced with their means, and the initial state is taken as the mean
of col [x(ty), g{ts)]. .

Next we denote by Z(t), §{t), and so on, the variables =(t}, ¢(#), and so on,
with their means (r), ¢(t), and so on, subtracted:

1) = o) — #1),  §t) = q(f) — (1), and so om, 13> fy. 2-16

With this notation we write for the mean square tracking error and the
mean square input

Cyt) = E{e"(OW,(e(t)} = ET(OW (&) + Ee" (W (DD},

Cu(t) = E{uT(OW,(Du(n)} = aT(OW.(Di(t) + E{aT@W(OF(1)}.

The terms E{&T(1)W,(N8(t)} and E{#T (1)W,(1)fi(1)} can easily be found when
the variance matrix of col [#(r}, §(t}] is known. In order to determine this
variance matrix, we must model the zero mean parts of r{(t), v,(t), and
v,,(t) as output variables of linear differential systems driven by white noise
(see Section 1.11.4). Then col [&(?), §(1)] is augmented with the state of the
models generating the various stochastic processes, and the variance matrix
of the resulting augmented state can be computed using the differential
equation for the variance matrix of Section 1.11.2. The entire procedure is
iflustrated in the examples.

2-17
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Example 2.4. The position servo with three different controllers

We continue Example 2.1 (Section 2.2.2). The motion of the antenna can
be described by the differential equation
JO) + BO(@) = () + ,00). 2-18

Here J is the moment of inertia of all the rotating parts, including the antenna.
Furthermore, B is the coefficient of viscous friction, +(¢) is the torque applied
by the motor, and T,(t) is the disturbing torque caused by the wind. The
motor torque is assumed to be proportional to u(r), the input voltape to the
motor, so that

7(t) = ku(t).

Defining the state variables &,(#) = 8(t} and £4(¢) = (), the state differential
equation of the system is

0 1 0 0
#(1) = () + | Ju + | (s 2-19
. 0 —= K o
where
B i 1
z(f) = col [£4(1), £()], o= 7 k= }c . r=7 2-20
The controlled variable {(f) is the angular position of the antenna:
L1y = (1, 0)=(2). 2-21
When appropriate, the following numerical values are used:
«=46s1,
w = 0.787 radf(V 5%, 2-22
J=10kg m?

Design L. Position feedback via a zero-order controller

In a first atiempt to design a control system, we consider the control
scheme outlined in Example 2.1. The only variable measured is the angular
position #(t), so that we write for the observed variable

7{6) = (1, 0)=(2)} + »(1), 2-23

where #(¢) is the measurement noise. The controller proposed can be de-
scribed by the relation

#(t) = AT, — (0], 224

where 8 (t) is the reference angle and 1 a gain constant. Figure 2.9 gives a
simplified block diagram of the control scheme. Here it is seen how an input
voltage to the motor is penerated that is proportional to the difference
between the reference angle 0,.(¢) and the observed angular position #(t).
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disturbing tarque

Td
reference s driving
angle + A voltage »|  motor angulor paosition
Br N <]
- gain

observation
4  noise
v

observed
lvorioble
L
Fig. 2.9. Simplified block diagram of a position feedback control system via o zero-order
controller.

The signs are so chosen that a positive value of 0.(t) — »(f) results in a
positive torque upon the shaft of the antenna. The question what to choose for
A is left open for the time being; we return to it in the examples of later
sections.

The state differential equation of the closed-loop system is obtained from
2-19, 2-23, and 2-24:

0= (2, LJuoe (Do (o D)o o
1) = —icd —u w0 + el 0+ ¥ )+ —rd "0 i

We note that the controller 2-24 does not increase the dimension of the
closed-loop system as compared to the plant, since it does not contain any
dynamics. We refer to controllers of this type as zero-order controllers.

In later examples it is seen how the mean square tracking error and the
mean square input can be computed when specific models are assumed for
the stochastic processes 9,(f), 7;(¢), and »(¢) entering into the closed-loop
system equation.

Design II.  Position and velocity feedback via a zero-order controller

As we shall sec in considerable detail in later chapters, the more informa-
tion the control system has about the state of the system the better it can be
made to perform. Let us therefore introduce, in addition to the potentiometer
that measures the angular position, a tachometer, mounted on the shaft of
the antenna, which measures the anpular velocity. Thus we observe the
complete state, although contaminated with observation noise, of course.
We write for the observed variable

y(1) = (1) + o), 2-26
01
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Fig. 2.10. Simplified block diagram of a position and veloclty feedback control system via.
a zero-order controller.

where (1) = col [7,(f), 4.(t)] and where v(t) = col [(1), vo(t)] is the
observation noise.
We now suggest the following simple control scheme (see Fig. 2.10):

p(t) = A8 — ()] — Apna(?). 227
This time the motor receives as input a voltage that is not only proportional
to the tracking error 8.(t) — @(¢) but which also contains a contribution pro-
portional to the angular velocity @(f). This serves the following purpose.
Let us assume that at a given instant 8,(+) — 6(¢) is positive, and that £(#) is -
positive and large. This means that the antenna moves in the right direction
but with great speed. Thercfore it is probably advisable not to continue
driving the antenna but to start decelerating and thus avoid “overshooting™
the desired position. When g is correctly chosen, the scheme 2-27 can
accomplish this, in contrast to the scheme 2-24. We see later that the present
scheme can achieve much better performance than that of Design I.

Design II1. Position feedback via a first-order controfler

In this design approach it is assumed, as in Design I, that only the angular
position {t) is measured. If the observation did not contain any noise, we
could use a differentiator to obtain 6(¢) from 0(z) and continue as in Design
II. Since observation noise is always present, however, we cannot differen-
tiate since this greatly increases the mnoise level. We therefore aitempt to
use an approximate differentiator (see Fig. 2.11), which has the property of
“filtering” the noise to some extent. Such an approximate differentiator can
be realized as a system with transfer function

3

—_— 2-28
Ts+1
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Fig.2.11. Simplified block dingram of o position feedbnack control system using a first-order
centroller.

where T is a (small) positive time constant. The larger T is the less accurate
the differentiator is, but the less the noise is amplified.
The input to the plant can now be represented as

u(t) = A[B,() — ()] — Apb(2), 2-29

where #(z) is the observed angular position as in 2-23 and where 4(z) is the
“approximate derivative,” that is, 8(¢) satisfies the differential equation

T.5(8) + 8(1) = 7(1). 2-30

This time the controller is dynamic, of order one. Again, we defer to later
sections the detailed analysis of the performance of this control system;
this leads to a proper choice of the time constant T, and the gains 4 and p.
As we shall see, the performance of this design is in between those of Design
1 and Design II; better performance can be achieved than with Design I,
although not as good as with Design II.

2.4 THE STABILITY OF CONTROL SYSTEMS

In the preceding section we introduced the control system performance
measures C,{t) and C,(#). Since generally we expect that the control system
will operate over long periods of time, the least we require is that both
C(ty and C,(t) remain bounded as ¢ increases. This leads us directly to an
investigation of the stability of the control system.

If the control system is not stable, sooner or later some variables will
start to grow indefinitely, which is of course unacceptable in any control
system that operates for some length of time (i.e., durg a period larger
than the time constant of the growing exponential). If the control system is
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unstable, usually C,{#) or C,{#), or both, will also grow indefinitely. We thus
arrive at the following design objective.

Design Objective 2,1,  The control system should be asymptotically stable.

Under the assumption that the control system is time-invariant, Design
Objective 2.1 is equivalent to the requirement that all characteristic values of
the augmented system 2-13, that is, the characteristic values of the matrix

A — BH,C BF
—-KC L

2-31

have strictly negative real parts. By referring back to Section 1.5.4, Theorem
1.21, the characteristic polynomial of 2-31 can be written as

det (s — A) det (s] — L) det [I + H()G()], 2-32

where we have denoted by
' H(s) = C(sI — A)'B 2-33

the transfer matrix of the plant from the input « to be the observed variable
i, and by ;
G(s) = F(sI — LYK, + H, ' 2-34

the transfer matrix of the controller from y to —u.

One of the functions of the controller is to move the poles of the plant
to better locations in the left-hand complex plane so as to achieve an im-
proved system performance. If the plant by itself is unstable, stabilizing the
system by moving the closed-loop poles to proper locations in the left-half
complex plane is the main function of the controller (see Example 2.6).

Exomple 2.5. Position servo

Let us analyze the stability of the zero-order position feedback control
system proposed for the antenna drive system of Example 2.4, Design I.
The plant transfer function (the transfer function from the driving voltage
to the antenna position) is given by

Lo

H(s) = ) 2-35
s(s + o)
The controller transfer function is
G(s) = A. C 2-36
Thus by 2-32 the closed-loop poles are the roots of
(+)[1+ e :‘ s+ s + el 237
s(s + o = ws + wd.
s(s + a)
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Fig. 212. Root loci for position serve. Solid lines, loci for second-order system; dashed
lines, modifications of loci due to the presence of the pole nt —10 s~

Figure 2.12 shows the loci of the closed-loop poles with 4 as a parameter for
the numerical values 2-22.

It is seen that ideally the control system is stable for all positive values of
A. In practice, however, the system becomes unstable for large A. The reason
is that, among other thinps, we have neglected the electrical time constant
T, of the motor. Taking this into account, the transfer function of motor
plus antenna is :

H(s) = . : 2-38
5(s + (5T, + 1)
As a result, the closed-loop characteristic polynomial is
: 1 wld
s(s + (s—{-—) —. 2-39
sk as ko) +
Figure 2.12 shows the madification of the root loci that resulis for
T,= 0.1s. 2-40
For A > 2,,, where ’
A, = E(a + ——), 2-41
i T,

the closed-loop system is unstable. In the present case 4, = 85.3 V/rad.
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Example 2.6. The stabilization of the inverted pendulum
As an example of an unstable plant, we consider the inverted pendulum of
Example 1.1 (Section 1.2.3). In Example 1.16 (Section [.5.4), we saw that by
feeding back the angle ¢(¢) via a zero-order controller of the form
() = (D) 242
it is not possible to stabilize the system for any value of the gain 4. It is
possible, however, to stabilize the system by feeding back the complete
state z(¢) as follows
uit) = —kz(1). - 243
Here k is a constant row vector to be determined. We note that implementa-
tion of this controller requires measurement of all four state variables,
In Example [.1 we gave the linearized state differential equation of the
system, which is of the form

2(1) = Az(1) + bu(). 2-44
where b is a column vector. Substitution of 2-43 yields
&(f) = A=z(r) — bk=z(s), 2-45
or
&) = (4 — bk)=(1). 2-46

The stability of this system is determined by the characteristic values of the
matrix A - bk. In Chapter 3 we discuss methods for determining optimal
controllers of the form 2-43 that stabilize the system. By using those methods,
and using the numerical values of Example [.1, it can be found, for example, .

that - :
ke = (B6.B1,12.21, —118.4, —33.44) 2-47

stabilizes the linearized system. With this value for A, the closed-loop
characteristic values are —4.706 4 j1.382 and —1.902 4 j3.420.

To determine the stability of the actual (nonlinear) closed-loop system, we
consider the nonlinear state differential equation

£(f) = £,
E() = I14 (o) —

':Ea(t) = IE¢(I),
o TEM = &G
£(t) = gsin |:—-———E :|

+ [#(l’) ;4 F Ea(f)] [1 — cos En(f); EI(I)J,

ﬁ £,

2-48
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where the definitions of the components £, £, &, and £, are the same as
for the linearized equations. Substitution of the expression 2-43 for u(f) into
2-48 yields the closed-loop state differential equation. Figure 2.13 gives the
closed-loop response of the angle ¢(¢) for different initial values ¢(0) while
all other initial conditions are zero. For ¢(0) = 10° the motion is indistin-
guishable from the motion that would be found for the linearized system.
For ¢(0) = 20° some deviations occur, while for ¢(0) = 30° the system is no
longer stabilized by 2-47.

¢
i 401
[degrees)
20
o [l 1 1
K] 0.8 08 12 15
V/ t—=(5}
_zu..
_LD L

Fig. 2.13. 'The behavior of the angle ¢(¢) for the stabilized inverted pendulum: (@) ¢(0) =
10°%; (5) $(0) = 20°; () $(0) = 30°.

This example also ijllustrates Theorem 1.16 (Section 1.4.4), where it is
stated that when a linearized system is asymptotically stable the nonlinear
system from which it is derived is also asymptotically stable. We see that in
the present case the range over which linearization gives useful results is
quite large.

2.5 THE STEADY-STATE ANALYSIS OF THE
TRACKING PROPERTIES

2.5.1 The Steady-State Mean Square Tracking Lrror and Input

In Section 2.3 we introduced the mean square tracking error C, and the mean
square input C,,. From the control system equations 2-13 and 2-14, it can be
seen that all three processes r{t), v,(f), and v,(¢), that is, the reference
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variable, the disturbance variable, and the observation noise, have an effect
on C, and C,. From now until the end of the chapter, we assume that #(t),
v,(t), and v,,{(t) are stanstmaﬂy uneorrelagted stochastic processes so that their
contributions to C, and C, can be investigated separately. In the present
and the following section, we consider the contribution of the reference
variable r(t) to C,(t) and C,(f) alone. The effect of the disturbance and the
ohservation noise are investigated in later sections.

We divide the duration of a control process into two periods: the transient
and tbe steady-state period, These two periods can be characterized as
follows. The transient period starts at the beginning of the process and ter-
minates when the quantities we are interested in (usually the mean square
tracking error and input) approximately reach their steady-state values. From
that time on we say that the process is in its steady-state period. We assume,
of course, that the quantities of interest converge to a certain limit as time
increases. The duration of the transient period will be referred to as the
settling time.

In the design of control systems, we must take into account the perfor-
mance of the system during both the transient period and the steady-state
period. The present section is devoted to the analysis of the steady-state
properties of tracking systems. In the next section the transient analysis is
discussed. In this section and the next, the following assumptions are made.

1. Design Objective 2.1 is satisfied, that is, the control system is asymp-
totically stable;
2. The conirol system is time-invariant and the weighting matrices W, and

W, are constant;
3. The disturbance v,(t) and the observation noise v,(t) are identical to zero;
4. The reference variable r(t) can be represented as

r(t) = rq -+ r (1), 2-49

where ry is a siochastic vector and r (t) is a zero-mean wide-sense stationary
vector stochastic process, uncorrelated witl ry.

Here the stochastic vector ry is the constant part of the reference variable
and is in fact the set point for the controlled variable. The zero-mean process
r (1) is the variable part of the reference varjable. We assume that the second-
order moment matrix of ry is given by

E{rors"} = Ry, 2.50
while the variable part r {r) will be assumed to have the power spectral
density matrix X (w).

~ Under the assumptions stated the mean square tracking error and the
mean square input converge to constant values as f increases. We thus define
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the steady-state mean square tracking error

Cuw = lim C,(1), 2-51

[3ad--]

and the steady-sfate mean square fnput
Cuw = Him C,(1). 2-52
i—+oa

In order to compute C,, and C, ., let us denote by T(s) the transmission of
the closed-loop control system, that is, the transfer matrix from the reference
variable r to the controlled variable z. We furthermore denote by N(s) the
transfer matrix of the closed-loop system from the reference variable r to
the input variable u.

In order to derive expressions for the steady-siate mean square fracking
etror and input, we consider the contributions of the constant part r, and
the variable part r_(t) of the reference variable separately. The constant part
of the reference variable yields a steady-state response of the controlled
variable and input as follows

lim 2() = T(0)ry 2-53
{wrca

and
lim u(f) = N(Q)ry, 2-54
f—+m

respectively. The corresponding contributions to the steady-state square
tracking error and input are

[T(©)ry — rol " W[TO)ry — #0] = tr {ryro"[T(0) — IJ*W,IT(0) — I]} 2-55
and
[N(O)rg}” WIN(O)ro] = tr [rgry " NT(O)W, N(O)]. 2-36
1t follows that the contributions of the eonstant part of the reference variable
to the steady-state mean square tracking error and input, respectively, are
tr {Ry[T(0) — 1T W,[T(0) — 1] and  tr [R_yNT(OYW,N(D)].  2-57
The contributions of the varigble part of the reference variable to the steady-
state mean square tracking error and input are easily found by using the

results of Section 1.10.4 and Section 1.10.3. The steady-state mean square
tracking error turns out to be

Coo = tr'[Rn[T(O) — IFW,IT(O) — 1]

+[ S r(—jo) - 17WITGe) — ], 28
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while the steady-state mean square input is

Cuw = tr [R.,'N?‘(o) W.N(O) + f 5 () NZ(—jw) W, N( jo) df]- 259

These formulas are the starting point for deriving specific design objectives.
In the next subsection we confire ourselves to the single-input single-output
case, where both the input » and the controlled variable z are scalar and
where the interpretation of the formulas 2-58 and 2-59 is straightforward. In
Section 2.5.3 we turn o the more peneral multiinput multioutput case.

In conclusion we obtain expressions for T(s) and N(s) in terms of the
various transfer matrices of the plant and the controller. Let us denote the
transfer matrix of the plant 2-6-2-8 (now assumed to be time-invariant)
from the input # to the controlled variable z by K(s) and that from the input
u to the observed variable y by H{s). Also, let us denote the transfer matrix
of the controller 2-9, 2-10 (also time-invariant) from the reference variable
r to u by P(s), and from the plant observed variable y to —u by G(s). Thus
we have:

K(s) = D(sI — A)B, H(s) = C(sT — A)B,

2-60
P(s) = F(sI — I)K, + H,,  G(s) = F(sT — L)'K, + H,.

The block diagram of Fig. 2.14 pives the relations between the several system
variables in terms of transfer matrices. From this diagram we see that, if

K(s) [ p—

et Pl ()

!

L e — — —

=
|
|
}
!
§
|
i
|
i

Fig. 2.14. 'The transfer matrix block diagram of a finear time-invariant clased-loop control
system, :
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r(¢) has a Laplace transform R(s), in terms of Laplace transforms the several
variables are related by
U(s) = P()R(s) — G(s)Y(s),
Y(s)} = H({s)U(s), 2-61
Z(s) = K(s)U(s).
Elimination of the appropriate variables yields

Z(s) = T(s)R(s),

U(s) = NR(s), 762
where
T(s) = K(s)[{ + G(s)H(S)IP(s), 2.63
N(s) = [T + GG)H)P(s).
T(s) and N(s) are of course related by
T(s) = K(s)N(s). 2-64

2.52 The Single-Input Single-Output Case

In this section it is assumed that both the input « and the controlled variable
z, and therefore also the reference variable r, are scalar variables. Without
loss of generality we take both W, = 1 and ¥, = 1. As a result, the steady-
state mean square tracking error and the steady-state mean square input can
be expressed as

Coo = Ko ITO = 1P 4 | S0 |TG0) — 1P, 265

Cuw = Rg IN(O)I* +J. S{w) |N(jw)|* df. 2-65b

From the first of these expressions, we see that since we wish to design
tracking systems with a small steady-state mean square tracking error the
following advice must be given.

Design Objective 2.2. In order to obtain a small steady-state mean square
tracking error, the transmission T(s) of a time-invariant linear control system

should be designed such that
I (w) |T(je) — 11 2-66

is small for all real w. In particular, when nonzero set poinis are filcely to occur,
T(0) should be made close to 1.

The remark about 7(0) can be clarified as follows. In certain applications
it is important that the set point of the control system be maintained very
accurately. In particular, this is the case in regulator problems, where the
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variable part of the reference variable is altogether absent, In such a case
it may be necessary that 7Y(0) very precisely equal 1.

We now examine the contributions to the integral in 2-65a from various
frequency regions. Typically, as w increases, X, (w) decreases to zero. It
thus follows from 2-65a that it is sufficient to make |T(jw) — 1| small for
those frequencies where X (w) assumes significant values.

_In order to emphasize these remarks, we introduce two notions: the
frequency band of the control system and the frequency band of the reference
variable. The frequency band of the control system is roughly the range of
frequencies over which 7'(jw) is ““close” to 1:

Definition 2.2. Let T(s) be the scafar transmission of an asymptotically stable
time-invariant linear control system with scalar input and scalar controlled
variable. Then the frequency band of the control system is defined as the set
of frequencies w, w > 0, for which

IT(jw) = 1| < & 2-67

where € is a given nmumber that is small with respect to 1. If the frequency band
is an interval [w,, wyl, we call wg — w, the bandwidth of the control system. If
the frequency band is an interval [0, w ], we refer to w_ as the cutoff frequency
of the systen.

Figure 2.15 illustrates the notions of frequency band, bandwidth, and cutoff
frequency.

[Ttiw-1

|

g W —m—

frequency bond cut-off freguency

L |
bondwidth of !
the control system

Fig. 2,15, Ilustration of the definition of the frequency band, bandwidth, and cutoff
frequency of a single-input single-output time-invariant control system. It is assumed that
T{jw) —0as w— oo,
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In this book we usually deal with /ow-pass transmissions where the fre-
quency band is the interval from the zero frequency to the cutoff frequency
w,. The precise value of the cutoff frequency is of course very much dependent
upon the number &, When & = 0.01, we refer to w, as the 1 ¥, cutaff frequency.
We use a similar terminology for different values of . Frequently, however,
we {ind it convenient to speak of the break frequency of the control system,
which we define as that corner frequency where the asymptotic Bode plot of
| T(jw)| breaks away from unity. Thus the break frequency of the first-order
transmission

T(s) = 2-68
(8) =~ T
is e, while the break frequency of the second-order transmission
a
T(s) = e 2-69

58+ 2Lmgs + wy”

is wy. Note, however, that in both cases the cutoff frequency is considerably
smaller than the break frequency, dependent upon &, and, in the second-order
case, dependent upon the relative damping {. Table 2.1 lists the 1% and
1077 cut-off frequencies for various cases,

Table 2.1 Relation between Break Frequency and Cutoff Frequency for First- and
Second-Order Scalar Transmissions

Second-order system
with breal frequency v,

First-order system
with break frequency 2 { = 0.4 { = 0.707 £=15

1% cutoff freq. 0.0l 0.012a, 0.0071w,  0.0033w,

109 cutolT [req, 0.1 0.12am, 0.071w, 0.033w,

Next we define the frequency band of the reference variable, which is
the range of frequencies over which X, (w) is significantly different from zero:

Definition 2.3. Let r be a scalar wide-sense stationary stochastic process with
power spectral density function 3 (w). The frequency band C of r(t) is defined
as tire set of frequencies w, w > 0, for which

T ()} > a. 2-70
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Here v is so chosen that the frequency band contains a given fraction 1 — &
where £ is small with respect to 1, of half of the power of the process, that is

f T{w)df = (1 — &) f T {w) df. 271
wel) w>0

If the frequency band is an interval [w,, w,], we define wy — wy as the band-
width of the process. If the frequency band is an interval [0, w], we refer to w,
as the cutoff frequency of the process,

Figure 2.16 illustrates the notions of frequency band, bandwidth, and cuteff
frequency of a stochastic process.

‘-Ul:\ W o————

A \\
frequency band cut-off frequency

bandwidth of the
stochostic process

Fig. 2.16. Ilustration of the definition of the frequency band, bandwidth, and cotoff
frequency of a scalar stochastic process r.

Usually we deal with low-pass-type stochastic processes that have an
interval of the form [0, w,] as a frequency band., The precise value of the
cutoff frequency is of course very much dependent upon the value of &.
When & = 0.01, we speak of the 13/ cutoff frequency, which means that the
interval [0, w,] contains 999 of half the power of the process. A similar
terminology is used for other values of e. Often, however, we find it convenient
to speak of the break frequency of the process, which we define as the corner
frequency where the asymptotic Bode plot of X (w) breaks away from its
low-frequency asymptote, that is, from %.{0). Let us take as an example
exponentially correlated noise with rms value ¢ and time constant 8. This
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pracess has the power spectral density function

26°0
1+ w'f®’
so that its break frequency is 1/f. Since this power spectral density function
decreases very slowly with w, the 1 and 109/ cutoff frequencies are much
_larger than 1/); in lact, they are 63.66/0 and 6.314/f], respectively.

Let us now reconsider the integral in 2-65a. Using the notions just intro-
duced, we see that the main contribution to this integral comes from those
frequencies which are in the frequency band of the reference variable but
not in the frequency band of the system (see Fig. 2.17). We thus rephrase
Design Objective 2.2 as follows.

2-72

. -

y I
frequency bond of |
control system |
f
|
I

R v
frequency bond of
reference

a
|
‘L
|
|
|
|

frequency range thot is respansible for the
greaoter port of the mean sguare tracking error

Fig. 2.17. [Illustration of Design Objective 2.2, A,

Design Objective 2.2A. Inn order to obtain a small steady-state mean square
tracking error, the frequency band of the control system should contain as much
as possible of the frequency band of the variable part of the reference variable.
If nonzero set paints are likely to occur, T(0) should be made close to 1.

An important aspect of this design rule is that it is also useful when very
little is known about the reference variable except for a rough idea of its
frequency band.
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Let us now consider the second aspect of the design—thé steady-state
mean square input. A consideration of 2-65b leads us to formulate our next
design objective,

Design Ohjective 2.3. [fn order to obtain a small steady-state mean square
input in an asymptotically stable single-input single-ontput time-invariant
linear conirol sysiem,

(@) |N(jw)l* 2-73

should be made small for all real w. This can be achieved by making |N(jw))
sufficiently small aver the frequency band of the reference variable,

It should be noted that this objective does not contain the advice to keep
N(0) small, such as would follow from considering the first term of 2-65b.
This term represents the contribution of the constant part of the reference
variable, that is, the set point, to the input. The set point determines the
desired level of the controlled variable and therefore also that of the input.
It must be assumed that the plant is so designed that it is capable of sustaining
this level. The second term in 2-65b is important for the dynamic range of the
input, that is, the variations in the input about the set point that are per-
missible. Since this dynamic range is restricted, the magnitude of the second
term in 2-65b must be limited.

It is not difficult to design a control system so that one of the Design
Objectives 2.2A or 2.3 is completely satisfied. Since T(s) and N(s} are related
by

T(s) = K(5)N(s), "2-74

however, the design of 7(s) affects N(s), and vice-versa. We elaborate a little
on this point and show how Objectives 2.2 and 2.3 may conflict. The plant
frequency response function |K(jw)}| usually decreases beyond a certain
frequency, say w,. If |7'(jw)| is to stay close to ! beyond this frequency, it
is seen from 2-74 that [N(jw)| must increase beyond w,. The fact that
[T( jw)| is not allowed to decrease beyond w, implies that the reference
variable frequency band extends beyond w, As a result, [N(jw)| will be
large over a frequency range where X (w) is not small, which may mean an
important contribution to the mean square input. If this results in over-
loading the plant, either the bandwidth of the control system must be reduced
(at the expense of a larger tracking error), or the plant must be replaced by a
more powerful one.

The designer must find a technically sound compromise between the
requirements of a small mean square tracking error and a mean square input
that matches the dynamic range of the plant. This compromise should be
based on the specifications of the control system such as the maximal
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allowable rms tracking error or the maximal power of the plant. In later
chapters, where we are concerned with the synthesis problem, optimal
compromises to this dilemma are found.

At this point a brief comment on computational aspects is in order. In
Section 2.3 we outlined how time domain methods can be used to calculate
the mean square tracking error and mean square input. In the time-invariant
case, the integral expressions 2-65a and 2-65b offer an alternative computa-
tional approach. Explicit solutions of the resulting integrals have been
tabulated for low-order cases (see, e.g., Newton, Gould, and Kaiser {1957),
Appendix E; Seifert and Steeg (1960), Appendix). For numerical computa-
tions we usually prefer the time-domain approach, however, since this is
better suited for digital computation. Nevertheless, the frequency domain
expressions as given are extremely important since they allow us to formulate
design ohjectives that cannot be easily seen, if at all, from the time domain
approach.

Example 2.7. The tracking praperties of the position serva

Let us consider the position servo probiem of Examples 2.1 (Section 2.2.2)
and 2.4 (Section 2.3}, and let us assume that the reference variable is ade-
quately represented as zero-mean exponentially correlated noise with rms
value o and time constant 7,. We use the numerical values

o = 1rad,

<75
T =10s. 21

It Follows from the value of the time constant and from 2-72 that the reference
variable break frequency is 0.1 rad/s, its 109 cutoff frequency 0.63 radfs,
and its 1% cutoff frequency 6.4 rad/s.

Design I.  Let us first consider Design I of Exampie 2.4, where zero-order
feedback of the’ position has been assumed. It is easily found that the trans-
mission T{s) and the transfer function N(s) are given by

T = —4— |
F4ast+ 276
N(s) = M .
54 s+ &4
‘We rewrite the transmission as
T(s) = o 2-77

. s+ 20ees + wet
where

g = \/xA 278
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is the undamped natural frequency, and

[=—= A 2-79

2\/ el

the relative damping. In Fig. 2.18 we plot | 7( jw)| as a function of w for various
values of the gain 1. Following Design Objective 2.2A the gain A should
probably not be chosen less than about 15 V/rad, since otherwise the cutoff
frequency of the control system would be too small as compared to the 1%
cutoff frequency of the reference variable of 6.4 radfs. However, the cutoff

10
Tty &<\
W ———
{rod/s}
I 1 N0 100 /
01 A=B00
A= 400
A=200
g.ovp A=100
A=50
k=25
0.001F A=15
A=5
o.00m L

Fig. 2.18. Bode plots of the transmission of the position control system, Design I, for
various volues of the pain 4.

frequency does not seem to increase further with the gain, due to the
peaking effect which becomes more and more pronounced. The value of
15 V{rad for the gain corresponds to the case where the relative damping {
is about 0.7. )

It remains to be seen whether or not this gain leads to acceptable values of
the rms tracking error and the rms input voltage. To this end we compute
both. The reference variable can be modeled as follows

6,(t) = — %6,(:) + w(t), 2-80

r

where w(t) is white noise with intensity 2¢%T,. The combined state equations
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of the control system and the reference variable are from 2-19, 2-24, and
2-80:

EOV 0 1 0 E.(D 0

EOl=]—-xi —« < Ylam)+{olwe 281
. 1
6.() 0o 0 - T 0.1 1

With this equation as a starting point, it is easy to set up and solve the
Lyapunov equation for the steady-state variance matrix @ of the augmented
state col [£1(2), £u(2), 0,(1)] (Theorem 1.53, Section 1.11.3). The result is

el (l + T,.)
K a
—_—

0
1
+ = + «AT,
o T K

()

0= 0 z a”
&+ — + AT,

kAT, a il a
a o

.+%‘+xﬂ.ﬂ_ GC+"“;":+K1T,.

r r

As a result, we obtain for the steady-state mean square tracking error:
Co = lim E{[6(1) — 0401} = g1 — 20 + Gua

cm+%+x—'1 ‘
—_— - 283

where the §,; are the entries of §. A plot of the steady-state rms tracking error
is given in Fig. 2.19. We note that increasing 2 beyond 15-25 V/rad decreases
the rms tracking error only very little. The fact that C,_. does not decrease to
zero as A — o0 is attributable to the peaking effect in the transmission which
becomes more and more pronounced as A becomes larger.

'The steady-state rms input voltage can be found to be given by

Cuw = E{p*(0)} = EQZ?[6(1) — D))} = 2°C, . 2-84
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Fig. 2.19. Rms tracking error and rms input voltage as lunctions of the gain 4 for the
position servo, Design L

Figure 2.19 shows that, according to what one would intuitively feel, the rms
input keeps increasing with the gain i. Comparing the behavier of the rms
tracking error and the rms input voltage confirms the opinion that there is
very little point in increasing the gain beyond 15-25 V/rad, since the increase
in rms input voltage does not result in any appreciable reduction in the rms
tracking erfor. We observe, however, that the resulting design is not very
good, since the rms tracking error achieved is about 0.2 rad, which is not
very small as compared to the rms value of the reference variable of 1 rad.

Design II. The second design suppested in Example 2.4 gives better resulis,
since in this case the tachometer feedback gain factor p can be so chosen that
the closed-loop system is well-damped for each desired bandwidth, which
eliminates the peaking effect. In this design we find for the transmission

ICA
st 4 (o + wlp)s + xi g

T(s) = 2-85

which is similar to 2-76 except that « is replaced with e + «Ap. As a result,
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the undamped natural frequency of the system is

wy = VA 2-86

; _a =+ .tc).p
o2kl

The break frequency of the system is w,, which can be made arbitrarily large

by choosing 4 large enough. By choosing p such that the relative damping

is in the neighborhood of 0.7, the cutoff frequency of the control system can
be made correspondingly large. The steady-state rms tracking error is

and the relative damping

2-87

(x4 kAp) + ( + sz)% ¥ il
Cop = " L o 2-88
(o + «dp) (:x + «lp + T + rde)

r

while the steady-state mean square input voltage is given by

2+ % + ";—‘—P + kel
Cu = 1° L r g 2-89
(cx +dp + % + KAT,) ( + «ip)

r

C,., can be made arbitrarily small by choosing 4 and p large enough. For a
piven rms input voltage, it is possible to achieve an rms tracking error that
is less than for Design I. The problem of how to choose the gains 4 and p
such that for a given rms input a minimal rms tracking error is obtained
is a mathematical optimization problem.

. In Chapter 3 we see how this optimization problem can be solved. At
present we confine ourselves to an intuitive argument as follows. Let us sup-
pose that for each value of 1 the tachometer gain p is so chosen that the rel--
ative damping { is 0.7. Let us furthermore suppose that it is given that
the steady-state rms input voltage should not exceed 30 V. Then by trial
and error it can be found, using the formulas 2-88 and 2-89, that for

A = 500 V/rad, p = 0.06s, 2-90

the steady-state rms tracking error is 0.1031 rad, while the steady-state rms
input voltage is 30.64 V. These values of the gain yield a near-minimal rms
tracking error for the given rms input, We observe that this design is better
than Design I, where we achieved an rms tracking error of about 0.2 rad.
Still Design II is not very good, since the rms tracking error of 0.1 rad is not
very small as compared to the rms value of the reference variable of 1 rad.
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This situation can be remedied by either replacing the motor by a more
powerful one, or by lowering the bandwidth of the reference variable. The
10% cutoff frequency of the present closed-loop design is 0.071w, =
0.071v ek == 1.41 radfs, where wy is the break frequency of the system (see
Table 2.1). This cutoff frequency is not large enough compared to the 13
cutoff frequency of 6.4 rad/s of the reference variable.

Design III. The third design proposed in Example 2.4 is an intermediate
design: for T, = ( it reduces to Design II and for T, = co to Design I. For
a given value of T, we expect its performance to lie in between that of the
two other desipns, which means that for a given rms input voltage an rms
tracking error may be achieved that is less than that for Design I but larger
than that for Design II.

From the point of view of tracking performance, T; should of course be
chosen as small as possible. A too small value of T, however, will unduly
enhance the effect of the observation noise. In Example 2.11 (Section 2.8},
which concludes the section on the eflect of observation noise in the control
system, we determine the most suitable value of T}.

2,53 The Multiinpnt Multiouiput Case

In this section we return to the case where the plant input, the controlled
variable, and the reference variable are muitidimensional variables, for which
we rephrase the design objectives of Section 2.5.2,

When we first consider the steady-state mean square tracking error as
given by 2-58, we see that Design Objective 2.2 should be modified in the
sense that

tr (S @)T( — jw) — I W[T( jw) — 11} 291

is to be made small for all real @ > 0, and that when nonzero set points are
likely to occur,

tr {Ro[T(0) — IITW,[T(0) — I1} 2.92

must be made small. Obviously, this objective is achieved when T jw) equals
the unit matrix for all frequencies. It clearly is sufficient, however, that
T(jw) be close to the unit matrix for all frequencies for which X (w) is
significantly different from zero. In order to make this statement more
precise, the following assumptions are made.

1. The variable part of the reference variable is a stoehastic pracess with
uncarrelated components, so that its power spectral density matrix can be
expressed as

1‘(0)) = dlﬂg [Tr ]_(CU) ~r, .(m) ) E1“.1!:(““)]' 2-93
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2. The constant part of the reference variable is a stochastic variable with
uncorrelated components, so that its second-order moment matrix can be
expressed as

R, == diag (Ry1, Rpe, ** 7 5 Ry ). 2-94

From a practical point of view, these assumptions are not very restrictive.
By using 2-93 and 2-94, it is easily found that the steady-state mean square
tracking error can be expressed as

m

Cpos = gl Ry {IT(@ — IFW,T©) — 11}

+ é mzr.i(w){[T(—j&)) — I]TWU[T(jw) — []}ﬁ df, 2.95

where
{[T(—jw) — IFWIT(jw) — N} 2.96

denotes the i-th diagonal element of the matrix [T(—jw) — nTw,[T( Jw) — I,
Let us now consider one of the terms on the right-hand side of 2-95:

J. Z, {o{[T(—jw) — TP WIT(jw) — 1T} df. 297
This expression describes the contribution of the i-th component of the
reference variable to the tracking error as transmitted through the system.
It is therefore appropriate to introduce the following notion.

Definition 2.4. Let T(s) be the m x m transmission of an asymptotically
stable time-invariant linear control system. Then we define the frequency band
of the i-th link of the control system as the set of frequencies w, w > 0, for
which

{[T(—jow) — IFW,[T(jw) — Nt < " We 2-98

Here & is a given number which is small with respect to 1, W, is the weighting
matrix for the mean square tracking error, and W, ;; denotes the i-th diagonal
element of W,

Once the frequency band of the i-th link is established, we can of course
define the bandwidil and the cuioff frequency of the i-th link, if they exist, as
in Definition 2.2. It is noted that Definition 2.4 also holds for nondiagonal
weighting matrices W,. The reason that the magnitude of

{[T(—jw) — T W T (jow) — I}
is compared to W, ,; is that it is reasonable to compare the contribution

297 of the i-th component of the reference variable to the mean square
tracking error to its contribution when no control is present, that is, when
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T(s) = 0. This latter contribution is given by

= <]
J. 3, (@)W, df. 2-99

We refer to the normalized function {[T(—jw) — IIT W,[T(jw) — I} W, .
as the difference function of the i-th link. In the single-input single-output
case, this function is |7(jw) — 1%
We are now in a position to extend Pesign Objective 2.2A as follows.
Design Objective 2.2B. Let T(s) be the m X m transmission of an asymp-
totically stable time-invariant linear control system for which both the constant
part and the variable part of the reference variable have uncorrelated com-
ponents. Then in order to obtain a small steady-state mean square tracking
error, the frequency band of each of the m links should contain as much as
possible of the frequency band of the corresponding component of the reference
variable. If the i-th component, i = 1,2,---,m, of the reference variable is
likely to have a nonzero set point, {[T(0) — IIT W,[T(0) — I1};, should be made
small as compared to W, ;.

As an amendment to this rule, we observe that if the contribution to C,,, of
one particular term in the expression 2-95 is much larger than those of the
remaining terms, then the advice of the objective should be applied more
severely to the corresponding link than to the other links.
In view of the assumptions 1 and 2, it is not unreasonable to suppose that
the weighting matrix W, is diagonal, that is,
W, = diag (W, 11, Wm0, "« Wy 2-100

Then we can write
{[T(—jw) - I]TWu[T(jw) - I]}fi
= E I{T(_](JJ) — I}[i|2 m.!b [ = 19 2,00 » 1, 2-101
=1

where {T(jw) — I},; denotes the (/, i)-th element of T'(jw) — 7. This shows
that the frequency band of the i-th link is determined by the i~th column of
the transmission 7(s).

It is easy to see, especially in the case where W, is diagonal, that the design
objective forces the diagonal elements of the transmission T'(jw) ta be close
to 1 over suitable frequency bands, while the off-diaponal elements are to be
small in an appropriate sense. If all off-diagonal elements of T'( jw) are zero,
that is, 7(jw) is diagonal, we say that the control system is completely de-
coupled. A control system that is not completely decoupled is said to exhibit
interaction. A well-designed control system shows little interaction. A control
system for which T(0) is diagonal will be called statically decoupled.

We consider finally the steady-state mean square input. If the components
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of the reference variable are uncorrelated (assumptions | and 2), we can
write
e @

= ZRu ANT(OW N + 2 r.i(w){N T(—je)WuN(jw)}adf,

2-102
where {NT (—jw)W N(jw)};,; is the i-th diagonal element of NT {—jw) -
W N{jw). This immediately Jeads to the following design objective.

Design Objective 2.3A. it order to obtain a small steady-state niean square
input in an asymptotically stable time-invariant linear control system with an
m-dimensional reference variable with uncorrelated components,

{NT(—jow)WuN(jo) }s 2-103
shoyld be made small over the frequency band of the i-th component of the
reference variable, for i =1,2,---,m.

Apain, as in Objective 2.3, we impose no special restrictions on
{NT(0) W, N(0)};; even if the ith component of the reference variable is
likely to have a nonzero set point, since only the fluctuations abou! the set
point of the input need be restricted.

Example 2.8, The control of a stirred tank

Let us take up the problem of controlling a stirred tank, as described in
Example 2.2 (Section 2.2.2). The linearized state differential equation is
given in Example 1.2 (Section 1.2.3}; it is

) —0.01 0 1 1
1) = ( 0 _0'02):5(!) + (_0.25 0.75)"(0' 2-104

As the components of the controlled variable 2(#) we choose the outgoing
flow and the outgoing concentration so that we write

) &L 0.01 0) ) 2.105
2 = = x{t), -
@ (Ez(t)) (0 1 (

The reference variable r{f) thus has as its components p,(¢) and p(f), the
desired outgoing flow and the desired outgoing concentration, respectively.

We now propose the following simple controller. I the outgoing flow is too
small, we adjust the flow of feed 1 proportionally to the difference between
the actual flow and the desired flow; thus we let

pa(t) = ken[py (1) — L(D). 2-106
However, if the outgoing concentration differs from the desired value, the
flow of feed 2 is adjusted as follows:

_ salt) = ka[pa(t) — Lu(D)])- 2-107
Figure 2.20 gives a block diagram of this control scheme. The reason that
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this simple scheme is expected to work is that feed 2 has a higher concentra-
tion than feed 1; thus the concentration js more sensitive to adjustments of
the second flow. As a result, the first flow is more suitable for regulating the
outgoing flow. However, since the second flow also affects the outgoing fiow,
and the first flow the concentration, a certain amount of interaction seems
unavoidable in this scheme.

For this control system the various transfer matrices occurring in Fig.
2.14 can be expressed as follows:

0.01 0.01
s+ 001 54001
K)=HO=Y 155 o075 [
s+002 s+ 002 2108

kL 0
P(s) = G(s) = .
0 ks
In Example 1.17 (Section 1.5.4), we found that the characteristic polynomial

of the closed-loop system is given by

¢, () = 52 4+ 5(0.00%; + 0.75k, + 0.03)
' + (0.0002k, + 0.0075k, 4 0.01k,k, + 0.0002), 2-109

from which we see that the closed-loop system is asymptotically stable for
all positive values of the gains &, and /.
It can be found that the transmission of the system is given by

T(s) = K()[I + G(s)H()IP(s)

1 (0.0Ikl(s + ky + 0.02) 0.01/cq(s + 0.02) ) 2110
$s)\ —0.25ky(s + 0.01)  ky(0.75s + 0.01k, + 0.0075)/
As a result, we find that
T(s)—1I
~[s* 4 5(0.75k, + 0.03)
_ 1 + 0.0075/, + 0.0002] 0.01ky(s + 0.02)
bo(s) 0.25y(s + 0.01) —[s* + s(0.01%, + 0.03)

+ 0.0002f, 4 0.0002]
: 2-111

It is easy to see that if &, and k, simultaneously approach infinity then
[T(s) — I]— 0 so that perfect tracking is obtained.
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The transfer matrix N(s) can be found to be

N() = [ + GHE)™P(s)

key[s* -+ 5(0.75k, 4+ 0.03) —0.01kyfls + 0.02)

_ 1 © 4 0.0075k, -+ 0.0002]
b.(s) - ko[s* + 5(0.01k, + 0.03)
0.25k ke(s + 0.01) + 0.0002, + 0.0002]
2-112
When k; and /. simultaneously approach infinity,

73(s 4+ 0.0} —(s- 0.02)

N(s)— 2-113
25(s -+ 0.01) 54 0.02

which means that the steady-state mean square input C,_ will be infinite
unless the entries of X, (w) decrease fast enough with w. _

In order to find suitable values for the gains k, and k,, we now apply
Design Objective 2.2B and determine k; and k, so that the frequency bands
of the two links of the system contain the frequency bands of the components
of the reference variable. This is a complicated problem, however, and there-
fore we prefer to use a trial-and-error approach that is quite typical of the
way multivariable control problems are commonly solved. This approach is
as follows. To determine %; we assume that the second feedback link has not
yet been connected. Similarly, in order to determine k., we assume that the
first feedback link is disconnected. Thus we obtain two single-input single-
output problems which are much easier to solve. Finally, the control system
with both feedback links connected is analyzed and if necessary the
design is revised.

When the second feedback link is disconnected, the transfer function
from the first input to the first controlled variable is

0.01
s 4001

Proportional feedback according to 2-106 results in the following closed-
loop transfer function from p,(#) to {,(#):

Hy(s) =

2-114

0.01/,
s + 0.01k, + 0.01°

We immediately observe that the zero-frequency transmission is different
from 1; this can be remedied by inserting an extra gain f; into the connection
from the first component of the reference variable as follows:

() = k[hp() — (0] 2-116

2-115
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With this 2-115 is modified to
0.01/, 1
s + 0.01k;, + 0.01

2-117

For each value of &, it is possible to choose f; so that the zero-frequency
transmission is 1. Now the value of %, depends upon the cutoff frequency
desired. For &; = 10 the 10 % cutoff frequency is 0.011 rad/s (see Table 2.1).
Let us assume that this is sufficient for the purpose of the control system.
The corresponding value that should be chosen for f; is 1.1,

When studying the second link in a similar manner, it can be found that
the feedback scheme

pa(t) = Iep[ fapa(?) — Lo(1)] 2-118

results in the following closed-loop transfer function from pa(f) to Zu.(¢)
(assuming that the first feedback link is disconnected):

0.75ky fa
5+ 0.75k, + 0.02°

2-119

For ky = 0.1 and f, = 1.267, the zero-frequency transmission is 1 and the
10 %; cutoff frequency 0.0095 rad/s. '
Let us now investigate how the multivariable control system with

by O 10 0 S
G(s)=( )=( ) 2120

0 ky 0 0.1
and
\ k 0 11 0
P(s) = ok ) = 2-121
0 kofs 0 0.1267
performs. It can be found that the control system transmission is given by
) 1 ( 0.11s + 0.0132  0.001267s + 0.00002534)
S)l= o ~ 3
§°+0.2055 +0.01295\ 2,755 — 0.0275  0.09502s5 + 0.01362
2-122
hence that
1
T(s)— I =

s* + 0.205s + 0.01295
(_sﬂ — 0.095s +0.00025 0.001267s + 0.00002534

. ) 2123
—2.75s —0.0275  —s*—0.1100s + 0,00067
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Now in order to determine the frequency bands of the two links of the control
system, we must first choose the weighting matrix #,. The two controlled
variables are the outgoing flow and the outgoing concentration. The flow
has the constant nominal value 0.02 m3/s, while the concentration has the
constant nominal value 1.25 kmol/m®. A 10% change in the flow therefore
corresponds to 0.002 m?fs, while a 109 change in the concentration is about
0.1 kmol{m®. Now let us suppose that we make the weighting matrix ¥,
diagonal, with diagonal entries W, ; and W, ,. Let us also assume that 10%
changes in either the flow or the concentration make equal contributions
to the mean square tracking error. Then we have

(0.00.'J.)EW,J_I = (0.1)'“'W_2, 2-124
. or W,
= 2500. 2.125
W
Let us therefore choose W, = diag (50, 0.02). 2126

Since W, is diagonal, we can use 2-101 to determine the frequency band of
the i-th link. The frequency band of the first link (the flow link) thus follows
from considering the inequality

50| )" + 0.095(j) — 0.0002
|(jw)® + 0.205(jw) + 0.01295 |

002 | 2750e) + 00275 P
|Gl + 0.205(w) + 0.01295

< 506 2-127
Dividing by 50 and rearraug‘mg, we obtain

|(jew)® + 0.095(jw) — 0.00025* + 0.0004 |2.75(jw) + 0.0275] < 2 123'
|(je)® + 0.205( jw) + 0.01295(° ’

Figure 2.21 shows a Bode plot of the left-hand side of this inequality, which
is precisely the difference function of the first link. It is seen that & cannot be

i o0.om [t} a1 1
1 T

11}
difference trad/s)

function

6001

Fig. 2.21, Difference [‘unctioﬁs of the first and the second link of the stirred-tank control
system.
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chosen arbitrarily small since the lefi-hand side of 2-128 is bounded from
below. For £ = 0.1 the cutoff frequency is about 0.01 rad/s. The horizontal
part of the curve at low frequencies is mainly attributable to the second term
in the numerator of 2-128, which originates from the off-diagonal entry in
the first column of T{jw) — I. This entry represents part of the interaction
present in the system.

We now consider the second link (the concentration link). Its frequency
band follows from the inequality

50 | 0.001267(jew) + 0.00002534 (jea)* + 0.1100( je)
|Cjw)* + 0.205(jw) + 0.01295 | Tl (ew)® + 0.205(jw) + 0.01295 I
< 0.02¢% 2-129
By dividing by 0.02 and rearranging, it follows for this inequality,

[(w)® + 0.1100(jew) — 0.00067[* + 2500{0.001267(jew) + 0.00002534f" _
[(je)® + 0.205(jw) + 0.01295(

__5.

2-130

The Bode plot of the left-hand side of this inequality, which is the difference
function of the second link, is also shown in Fig. 2.21. In this case as well,
the horizontal part of the curve at low frequencies is caused by the interaction
in the system. If the requirements on ¢ are not too severe, the cutoff frequency
of the second link is somewhere near 0.0l rad/s.

The cutoff frequencies obtained are reasonably close to the 10%] cutoff
frequencies of 0.011 rad/s and 0.0095 radfs of the single-loop designs.
Moreover, the interaction in the system seems to be limited. In conclusion,
Fip. 2.22 pictures the step response matrix of the control system. The plots
confirm that the control system exhibits moderate interaction (both dynamic
and static). Each link has the step response of a first-order system with a
time constant of approximately 10 s.

A rough idea of the resulting input amplitudes can be obtained as follows.
From 2-116 we see that a step of 0.002 m%/s in the flow (assuming that this is
a typical value) results in an initial flow change in feed 1 of k,f,0.002 =
0.022 m%s. Similarly, a step of 0.1 kmol/m? in the concéntration results in
an initial flow change in feed 2 of &, 20.1 = 0.01267 m3/s. Compared to the
nominal values of the incoming flows (0.015 m%fs and 0.005 m?fs, respec-
tively), these values are far too large, which means that cither smaller step
input amplitudes must be chosen or the desired transition must be made
more pradually. The latter can be achieved by redesigning the control system
with smaller bandwidths.

In Problem 2.2 a more sophisticated design of a controller for the stirred
tank is considered.
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Fig.2.22. Step response matrix of the stirred-tank control system. Left column: Responses
of the outgoing flow and concentration to a step of 0.002 m?fs in the set point of the Mow.
Right column: Responses of the outgoing flow and concentration to a step of 0.1 kmol/m?®
in the set point of the concentration.

2.6 THE TRANSIENT ANALYSIS OF THE
TRACKING PROPERTIES

In the previous section we quite extensively discussed the steady-state
properties of tracking systems. This section is devoted to the fransient
behavior of tracking systems, in particular that of the mean square tracking
error and the mean square input. We define the sertling time of a certain
quantity (be it the mean square tracking error, the mean square input, or any
other variable) as the time it takes the variable to reach its steady-state value
to within a specified accuracy. When this accuracy is, say, 1 % of the maximal
deviation from the steady-state value, we speak of the 17 seftling time. For
other percentages similar terminology is used.

Usually, when a control system is started the initial tracking error, and as
a result the initial input also, is large. Obviously, it is desirable that the mean
square tracking error settles down to its steady-state value as quickly as
possible after starting up or after upsets. We thus formulate the following
directive.
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Design Objective 2.4, A control system should be so designed that the settling
time of the mean square iracking error is as short as possible.

As we have seen in Section 2,5.1, the mean square tracking error attributable
to the reference variable consists of two contributions. One originates from
the constant part of the reference variable and the other from the variable
part. The transient behavior of the contribution of the variable part must be
found by solving the matrix differential equation for the variance matrix of
the state of the control system, which is fairly laborious. The transient
behavior of the contribution of the constant part of the reference variable to
the mean square tracking error is much simpler to find; this can be domne
simply by evaluating the response of the control system to nonzero initial con-
ditions and to steps in the reference variable. As a rule, computing these
responses gives a very good impression of the transient behavior of the
control system, and this is what we usually do.

For asymptotically stable time-invariant linear control systems, some
information concerning settling times can often be derived from the locations
ofthe closed-loop poles. This follows by noting that @/f responses are exponen-
tially damped motions with time constants that are the negative reciprocals
of the real parts of the closed-loop characteristic values of the system. Since
the 1%, settling time of

e 1 >0, 2131
is 4.60, a bound for the 1% settling time 7, of any variable is
f, < 4.6 max { }, 2-132
i+ \|Re(4))|

where 4, i=1,2,-++,n, are the closed-loop characteristic values. Note
that for squared variables such as the mean square tracking error and the
mean square input, the settling time is half that of the variable itself.

The bound 2-132 sometimes gives misleading results, since it may easily
happen that the response of a given variable does not depend upon certain
characteristic values. Later (Section 3.B) we meet instances, for example,
where the settling time of the rms tracking error is determined by the closed-
Ioop poles furthest from the origin and not by the nearby poles, while the
settling time of the rms input derives from the nearby closed-loop poles.

Example 2.9. The settling time of the tracking error of the position servo
Let us consider Design I of Example 2.4 (Section 2.3) for the position servo,
From the steady-state analysis in Example 2.7 (Section 2.5.2), we learned
that as the gain A increases the rms steady-siate tracking error keeps de-
creasing, although beyond a certain value (15-23 V/rad) very little improve-
ment in the rms tracking error is obtained, while the rms input voltage
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becomes larger and larger. We now consider the settling time of the tracking
error. To this end, in Fig. 2.23 the response of the controlled variable to a
step in the reference yariable is plotted for various values of 1, from zero
initial conditions. As can be seen, the seftling time of the step response
(hence also that of the tracking error) first decreases rapidly as 1 increases,
but beyond a value of 4 of about 15 V/rad the settling time fails to improve
because of the increasingly oscillatory behavior of the response. In this case

01F
angulor
paositlan
aft}
TA=5V/rod
{rod) : . .
Fig. 2.23. Response of Design I of the
posidion servo to a step of 0.1 rad in the
DU ; "? é reference varfable for various values of

¢ (s) the pain 4.

as well, the most favorable value of % seems to he about 15 V/rad, which
corresponds to a relative damping £ (see Example 2.7) of about 0.7. From the
plots of [T{jw)| of Fig. 2.18, we see that for this value of the gain the largest
bandwidth is achieved without undesirable peaking of the transmission.

2.7 THE EFFECTS OF DISTURBANCES IN THE
SINGLE-INPUT SINGLE-OUTPUT CASE

In Section 2.3 we saw that very often disturbances act upon a control system,
adversely affecting its tracking or regulating performance. In this section we
derive expressions for the increases in the steady-state mean square tracking
error and the steady-state mean square input attributable to disturbances,
and formulate design objectives which may serve as a guide in designing
control systems capable of counteracting disturbances.

'I"hroughout this section the following assumptions are made.

1. The disturbance variable v,(t) is a stochastic process that is wicorrelated
with the reference variable r(t) and the observation noise v,,(f).
As a result, we can obtain the increase in the mean square tracking error and
the mean square input simply by setting »(#) and v,,(#) identical to zero.

2. The controlled variable is also the observed variable, that is, C = D,
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This means that we can write
() = 2() + v,,(t), 2-133
and that in the time-invariant case
H(s) = K(s). 2-134

The assumption that the controlled variable is also the observed variable is
quite reasonable, since it is intuitively clear that feedback is most effective
when the controlled variable itself is directly fed back,

3. The control system is asymptotically stable and time-invariant.

4. The input variable and the controlled variable, hence also the reference
variable, are scalars. W, and W, are both 1,
The analysis of this section can be extended to multivariable systems but
doing so adds very little to the conclusions of this and the following sections.

3. The disturbance variable v,(t) can be written as

v, (1) = v + 05, (1), 2-135

where the constant part vy, of the disturbance variable is a stochastic vector
with given second-order moment matrix, and where the variable part v, (1) of
the disturbance variable is a wide-sense stationary zero mean stochastic process
with power spectral density matrix X (w), uncorrelated with vy,.

The transfer matrix from the disturbance variable v {t) to the controlled
variable z(¢) can be found from the relation (see Fig. 2.24)

Z(s) = —H(GEZ(s) + D(sf — A7V, (5), 2-136

where Z(s) and V,(s) denote the Laplace transforms of z(#) and »,(t),

—{ Pl4)

G(s}

Fig. 2.24. Transfer matrix block diagram of a closed-loop control system with plant
disturbance ;.
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respectively, so that

R S
) = e C

Here we have used the fact that the controlled variable is a scalar so that
1 + H(s)G({s) is also a scalar function. We now introduce the function

(sI — AYV,(s). 2-137

1
1 + H()G(s)

which we call the sensitivity function of the control system for reasons to be
explained later.

We compute the contribution of the disturbance variable to the steady-
state mean square tracking error as the sum of two terms, one originating
from the constant part and one from the variable part of the disturbance.
Since

S(s) = 2-138

Z(s) = S()DT — A1V, (s), 2-139

the steady-state response of the controlled variable to the constant part of
the disturbance is given by

lim 2(1) = S(0)D{— A) v, = S(0)yq- 2-140
it m
Here we have assumed that the matrix A is nonsingular—the case where 4
is singular is treated in Problem 2.4. Furthermore, we have abbreviated
Vyg = D (= A)1v,. 2-141

As a result of 2-140, the contribution of the constant part of the disturbance
to the steady-state mean square tracking error is

E{|S0)ogl*} = |SQ)* Vs 2-142

where ¥, is the second-order moment of vy, that is, ¥, = E{vg,}. Further-
more it follows from 2-132 with the methods of Sections 1.10.4 and 1.10.3
that the contribution of the variable part of the disturbance to the steady-
state mean square tracking error can be expressed as

| 18t DGjat ~ A7S () —jol — 47707 af

=| ISUw)*Zw) df. 2-143
Here we have abbreviated o
Too(w) = D(jowI — A)'E, (w)(—jwl — ATy D7, 2-144

Consequently, the increase in the steady-state mean square tracking error
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attributable to the disturbance is given by

Cow (with disturbance) — C,,, (without disturbance)
= 1SOF Vot [ 15U Be) . 2145

Before discussing how to make this expression small, we give an interpreta-
tion. Consider the situation of Fig. 2.25 where a variable v,(f) acts upon the
closed-loop system. This variable is added to the controlled variable. It is

Yo
+
-r_... P(E) + u HfE) - _Z,.._
- plont
G{s}

Fig, 2.25. Transfer matrix block diagram of a closed-loop control system with the
equivalent disturbance v; at the controlled variabie.

easily found that in terms of Laplace transforms with the reference variable
and the initial conditions identical to zero the contrelled variable is given by

Z(s) = S(s)Vy(s), 2-146

where Vy{s) denotes the Laplace transform of »y(t). We immediately see that
if vy(t) is a stochastic process with as constant part a stochastic variable
with second-order moment ¥, and as variable part a zero-mean wide-sense
stationary stochastic process with power spectral density X ,(w), the increase
in the steady-state mean square tracking error is exactly given by 2-145. We
therefore call the process v,(¢) with these properties the equivalent disturbance
at the controlled variable.
An examination of 2-145 leads to the following design rule.

" Design Objective 2.5. I order to reduce the increase of the steady-state mean
square traclking error attributable to disturbances in an asymptotically stable
linear time-invariant control system with a scalar controlled variable, which is
also the ohserved variable, the absolute value of the sensitivity function S(jw)
should be made small over the frequency band of the equivalent disturbance at
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the controlled variable. If constant errors are of special concern, S(0) shauld
be made small, preferably zero.

The last sentence of this design rule is not valid without further qualification
for control systems where the matrix 4 of the plant is singular; this case is
discussed in Problem 2.4. Tt is noted that since S(jw) is given by

1
o) = ) 2-147
SUw) = T H ()60

a small S(jw) generally must be achieved by making the loop gain H(jw)G{jew)

of the control system larpe over a suitable frequency range. This easily
conflicts with Design Objective 2:1 (Section 2.4) concerning the stability of

the control system (see Example 2.5, Section 2.4), and-with Objective—2.3
(Seetion-2-5-2)coneerningthe-mean square input. A compromise must be

found.

Reduction of constant errors is of special importance for regulator and
tracking systems where the set point of the controlled variable must be
maintained with great precision. Constant disturbances occur very easily in
control systems, especially because of errors made in establishing the nominal
input. Constant errors can often be completely eliminated by making S(0) =
0, which is usually achieved by introducing integrating action, that is, by
letting the controller transfer function G(s) have a pole at the origin (see
Problem 2.3).

Let us now turn to a consideration of the steady-state mean square input.
It is easily found that in terms of Laplace transforms we can write (see
Fig. 2.24)

—G(s)
1+ H(5)G(s)
where U{(s) is the Laplace transform of u(¢). It follows for the increase in the

steady-state mean square input, using the notation introduced earlier in this
section,

U(s) = DT — AY 'V (s), 2-148

C,o (with disturbance) — C,, (without disturbance)
__GU®) _ Ps ) 2-149

GE e =
— T
y > +L 1 + H(jw)G(jo)

1 4 H(0)G(0)
This expression results in the following directive.

Design Objective 2.6. In order to obtain a small increase in the steady-state
mean square input attributable to the disturbance in an asymptotically stable
linear time-invariant control system with a scalar controlled variable that is
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also the observed variable and a scalar input,
G(jw)
1 + H{jw)G( w)

should be made small over the frequency band of the equivalent disturbance at
the controlled variable.

2.150

In this directive no attcntion is paid to the constant part of the input since,
as assumed in the discussion of Objective 2.3, the plant must be able to
sustain these constant deviations.

Design Objective 2.6 conflicts with Objective 2.5. Making the loop gain
H(jw)G(jw) large, as required by Obijective 2.5, usually does not result in
small values of 2-150. Apain a compromise must be found.

Example 2.10. The effect of disturbances on the pasition servo

In this example we study the effect of disturbances on Design I of the
position servo of Example 2.4 (Section 2.3). It is easily found that the sen-
sitivity function of the control system as proposed is given by

5(s 4+ o)

- . 2-151
5 o5 4 &d

5(s) =

In Fig. 2,26 Bode plots of |{S(jw)}| are piven for several values of the gain A.
It is seen that by choosing 4 larger the frequency band over which disturbance
suppression is obtained also becomes larger. If the equivalent disturbance at
the controlled variable, however, has much power near the frequency where
|S(jew)) has its peak, then perhaps a smaller pain is advisable.

10
IS(]m)l

I é; - —
+ (rad/'s}
! A 100 U/s

01F

0.1

0.001

Fig. 2.26. Bode plots of the sensitivity function of the position control system, Design I, as
a function of the gain 4.



2.7 Effects of Disturbances 173

Tu Example 2.4 we assumed that the disturbance enters as a disturbing
torque 7,(t} acting on the shaft of the motor. If the variable part of this
disturbing torque has the power spectral density function X, ,(w), the variable
part of the equivalent disturbance at the controlled variable has the power
spectral density function

_—r
Jjo(jw + <)
The power spectral density of the contribution of the disturbing torque to the

controlled variable is found by multiplying 2-152 by [S(jw)|* and thus is
given by

'3 (). 2152

?J
(o) + o jo) + 1A
Let us suppose that the variable part of the disturbing torque can be repre-

sented as exponentially correlated noise with rms value o, and time constant
T4 50 that

% (w). 2153

_200Ta_
1+ o'Thy
The increase in the steady-state mean square tracking error attributable
to the disturbing torque can be computed by integrating 2-153, or by modeling

the disturbance, augmenting the state differential equation, and solving for
the steady-state variance matrix of the augmented state. Either way we find

3, (o) = 2-154

C,. (with disturbing torque) — C,, (without disturbing torque)

1 +al, Tt _a
1+ aT,; + «ATsy axld m

From this we see that the addition to C,, monotonically decreases to zero
with increasing 4. Thus the larger 2 the less the disturbing torque afects the
tracking properties.

In the absence of the reference variable, we have u(t) = —2#(1) so that
the increase in the mean square input voltage attributable to the disturbing
torque is A? times the increase in the mean square tracking error:

2-155

C, o (with disturbing torque) — C,, (without disturbing torque)
(1 + T )4 7‘2Trriga

= ~ T 2-156
14 aT 4+ «dTry ou
For 2 — w, C,, monotonically increases to
1+ o) o
M J;d' 2-157

P
T e
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It is easily found from 2-25 that a constant disturbing torque =, results in a
steady-state displacement of the controlled variable of

Yo, 2-158
Py
Clearly, this displacement can also be made arbitrarily small by making
the gain 1 sufficiently large,

2.8 THE EFFECTS OF OBSERVATION NOISE IN THE
SINGLE-INPUT SINGLE-OUTPUT CASE

In any clesed-loop scheme, the effect of observation noise is to some extent
felt, In this section the contribution of the observation noise to the mean
square tracking error and the mean square input is analyzed. To this end,
the following assumptions are made.

1. The observation noise v,,(t) is a stochastic process which is uncorrelated
with the reference variable r(t) and the plant disturbance v,(f).
As a result, the increase in the mean square tracking error and the mean
square input attributable to the observation noise may be computed simply
by setting r(¢) and v,(?) identical to zero.

2. The cantroller variable is also the abserved variable, that is, C = D,
so that

y(f) = =(t} + v,(1), 2-159

and, in the time-invariant case,
H(s) = K(s). 2-160

3. The control system is asympiotically stable and time-invariant.

4. The input variable and the controfled variable, hence dlso the reference
variable, are scalars. W, and W, are both 1.
Here also the analysis can be extended to multivariable systems but again
very little additional insight is gained.,

5. The observation noise is a zero-mean wide-sense stationary stochastic
process with power speciral density function X ().

Figure 2.27 gives a transfer function block diagram of the situation that
results from these assumptions. It is seen that in terms of Laplace transforms

Z(s) = —H(s)G(S}V.(s) + Z(5)], 2-161
so that
H(s)G(s)

V,(5). 2-162
1 + H(5)G()

Z(5) = —
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— = Ps) H(s) z
plant
+
T vm
Y
G{s}

Fip.2.27. ‘Transfer matrix block diagram of a closed-loop control system with observation
noise,

Comnsequently, the increase in the steady-state mean square tracking error
attributable to the observation noise can be written as

C,., (with observation noise) — C,,, (without observation noise)
H{jw)G(jm) |

=L., 1 + H{jo)G(jw)

Our next design objective can thus be formulated as follows.

3, ) df. 2163

Design Objective 2.7. Jn order to reduce the increase in the steady-state mean
square tracking error attributable to observation noise in an asympiotically
stoble lineor time-invariant control system with a scolar controlled variable
that is also the abserved voriable, the system should be designed so that

H{jw)G(jw)
1 + H{jw)G(jw)

is small over the frequency band of the observation naise.

2164

Obviously, this objective is in conflict with Objective 2.5, since making the
loop gain H{jw)G(jw}) large, as required by Objective 2.5, results in a value
of 2-164 that is near 1, which means that the observation noise appears
unattenuated in the tracking error. This is a result of the fact that if a large
loop gain H{jw)G(jw) is used the system is so controlled that z(¢) + v,,(¢)
instead of =(f) tracks the reference variable.

A simple computation shows that the transfer function from the observa-
tion noise to the plant input is given by

__ G
1 + G(s)H(s)

which results in the following increase in the steady-state mean square input

Uis) = V,.(s), 2-165
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attributable to observation noise:

C.» (with observation noise) — C,, (without observation noise)
G(jw)

=L 1 + G(jw)H(jw)

This yields the design rule that to make the increase in the steady-state mean
square input attributable to the observation noise small,

G(jw)
1 + G(ja)H(jw)

should be made small over the frequency band of the observation noise.
Clearly, this rule is also in conflict with Objective 2.5.

Sy (@) df. 2166

2-167

Example 2.11. The position servo with position feedback only

Let us once again consider the position servo of Example 2.4 (Section 2.3)
with the three different designs proposed. In Examples 2.7 (Section 2.5.2) and
2.9 (Section 2.6}, we analyzed Design I and chose 4 = 15 V/rad as the best
value of the gain. In Example 2.7 it was found that Design IT gives better
performance because of the additional feedback link from the angular
velocity, Let us now suppose, however, that for some reason (financial or
technical) a tachometer cannot be installed. We then resort to Design III,
which attempts to approximate Design II by using an approximate differenti-
ator with time constant T,. If no cbservation noise were present, we could
choose T; = 0 and Design III would reduce to Design IT. Let us suppose that
observation noise is present, however, and that is can be represented as
exponentially correlated noise with time constant

T.,=002s 2-168
and rms value
o,, = 0.001 rad, 2-169

The presence of the observation noise forces us to choose T; > 0. In order
to determine a suijtable value of T, we first assume that T, will turn out to be
small enough so that the gains p and 2 can be chosen as in Design II. Then
we see how large T, can be made without spoiling the performance of Design
II, while at the same time sufficiently reducing the effect of the observation
noise.

It is easily found that the transmission of the control system accerding to
Design III is given by

«XTys + 1)

= z . 2-170
Ts* + (2T 4 105" 4 (o + «AT 4 ple)s + 2«

T(s)
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To determine a suitably small value of T, we argue as follows. The closed-
loop system according to Design II, with the numerical values obtained in
Example 2.7 for 4 and p, has an undamped natural frequency w, of about
20 rad/s with a relative damping of 0.707. Now in order not to impede the
behavior of the system, the time constant T, of the differentiator should be
chosen small with respect to the inverse natural frequency, that is, small with
respect to 0.05s. In Fig. 2.28 we have plotted the transmission 2-170 for

w—w={rod/5)
1 10 100 1000
T

[T(iw)|

0

0.0

Fig. 2.28. The effect of T3 on the transmission of Design III of the position servo.

various values of T, It is seen that for T; = 0.01 s the transmission is hardly
affected by the approximate derivative operation, but that for 7, = 0.1s
discrepancies occur.

Let us now consider the effect of the observation noise. Modeling v,,(f)
in the usual way, the additions to the steady-state mean square tracking error
and input attributable to the observation noise can be computed [rom the
variance matrix of the augmented state. The numerical results are plotted in
Fig. 2.29, These plots show that for small T; the steady-state mean square
input is greatly increased. An acceptable value of T, seems to be about 0.01 5.
For this value the square root of the increase in the steady-state mean square
input is only about 2 V, the square root of the increase in the steady-state
mean square tracking error of about 0.0008 rad is very small, and the trans-
mission of the control system is hardly affected.
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Fig. 2.29. The square roots of the additions to the steady-state mean square tracking error
and input voltage due to observation noise as a function of T for Design III of the position
SErvo.

2.9 THE EFFECT OF PLANT PARAMETER
UNCERTAINTY IN THE SINGLE-INPUT
SINGLE-OUTPUT CASE

Quite often a control system must be designed for a plant whose parameters
are not exactly known to the designer. Also, it may happen in practice that
changes of plant parameters frequently occur and that it is too laborious to
measure the plant parameters each time and adjust the controller.

We shall see that closed-loop controllers can be designed so that the per-
formance of the control system deteriorates very little even though there may
be quite a large discrepancy between the actual plant parameters and the
nominal plant parameters, that is, the parameter vaiues that have been used
while designing the controller. To this end we investigate the addition to the
steady-state mean square tracking error attributable to parameter deviations.

In this section we work with the following assumptions.

1. The control system is time-invariant and asymptotically stable.

2. The controlled variable is also the observed variable, that is, C = D,
hence K(s) = H{s).

3. The input variable and the controlled variable, hence also the reference
variable, are scalar. W, and W, are both 1.
Extension to the multivariable case is possible, but does not give much
additional insight.

4. Only the effect of parameter changes on the tracking properties is con-
sidered and not that on the disturbance suppression or noise reduction properties.

5. The reference variable has a constant part ry, which is a stochastie vector,
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with second-arder moment Ry and as variable part a zero-mean wide-sense
stationary stochastic process with power spectral density funetion X (w).

We denote by Hu(.rj the nominal transfer function of the plant, and by
H,(s) the actual transfer function. Similarly, we write Ty(s) for the trans-
mission of the control system with the nominal plant transfer function and
T,(s) for the transmission with the actual plant transfer function. We assume
that the transfer function G(s) in the feedback link and the transfer function
P(s) in the link from the reference variable (see the block diagram of Fig.
2.14, Section 2.5.1) are precisely known and not subject to change.

Using 2-63, we obtain for the nominal transmission

H(s)P
Tols) = Al 2171
1+ G(s)H(s)
and for the actual transmission
15y — —FHEOPE) 2172

1+ G)Hq(s)

For the actual control system, the steady-state mean square tracking error
is given by

o

Cow = |TH(0) — 1* Ry + | | Tu(jw) — 1]* Z{w) df. 2173

We now make an estimate of the increase in the mean square tracking error
attributable to a change in the transmission. Let us denote )

AT(s) = T,(s) — Ty(s). 2-174
Inserting Ti(s) = Ty(s) + AT(s) into 2-173, we obtain

Coo =IT0) — 11 Ry + | ITiCje) ~ 11 3 (w) df
+ 2T ~ NATOR, + 2Re| [ [70) — 11AT(~jo)2(0)

+IAT@P Ry + [ IATU S o) a7 2175

We now proceed by assuming that the nominal control system is well-
designed so that the transmission T,{jw) is very close to 1 over the frequency
band of the reference variable. In this case we can neglect the first four terms
of 2-175 and we approximate

Co = |AT(O)|? R, +F AT(w)E 2 (o) df. 2-176
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This approximation amounts to the assumption that

[Ty jw) — 1] K [AT(jw)) 2-177

for all e in the fre\quency band of the reference variable.
Our next step is to express AT(s) in terms of A H(s), where

AH(s) = H\(s) — Hy(s). 2-178
‘We obtain:

ATy = P H9MO)
1 4+ G(s)H(s) 14+ G(S)Hu(s)
AH(s)P(s)
T L+ H®)GOI + GEOHG)]
= 8.(s) AH{5)N(5), 2-179

where
1

1+ Hi(5)GE)
is the sensitivity function of the actual control system, and where

54(s) 2-180

_ P(s)
T 1+ GG)H,(5)

is the transfer function of the nominal control system from the reference
variable r to the input variable «. Now with the further approximation

No(s) 2-181

S1(jw) == Sy juw), 2-182
where
=1
"1+ Hy()G(s)
is the sensitivity function of the nominal control system (which is known),
we write for the steady-state mean square tracking error

Sufs) 2-183

Cow = |S((OF [AH(O)N,(0))* R, +f_m |Su(j)[* |AH(je)No(je)* B, (w) df.

2-184
We immediately conclude the following design objective.

Design Objective 2.8. Consider a time-invariant asymptatically stable linear
closed-laop contral system with a scalar contralled variable that is also the
abserved variable. Then in order ta reduce the steady-siate mean square
tracking error attributable to a variation AH(s) in the plant transfer function
H(s), the cantrol system sensitivity function Sy( jw) should be made small aver
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the frequency band of [AH{(jw)Ny(jo)|* Z,(w). If constant errors are of special
concern, Sy(0) should be made small, preferably zero, when AH(Q)Ny(0) is
different from zero.

This objective should be understood as follows. Usually the plant trans-
mission Ty(s) is determined by finding a compromise between the require-
ments upon the mean square tracking error and the mean square input.
Once Ty(s) has been chosen, the transfer function Ny(s) from the reference
variable to the plant input is fixed. The given To(s) and Ny(s) can be realized
in many different ways, for example, by first choosing the transfer function
G(s) in the feedback link and then adjusting the transfer function P(s) in the
link from the reference variable so that the desired T,(s) is achieved. Now
Design Objective 2.8 states that this realization should be chosen so that

Sy(jw) = L 2-185

1 + Hy(je)G(fw)

is small over the frequency band of |[AH(jw)Ny(jw)[®Z,(w). The latter
function is known when some idea about AH(jw) is available and Ty(jw)
has been decided upon. We note that making the sensitivity function Sy(jw)
small {s a requirement that is also necessary to reduce the effect of disturbances
in the control system, as we found in Section 2.7. As noted in Section 2.7,
Su(0) can be made zerc by introducing integrating action (Problem 2.3).

We conclude this section with an interpretation of the function Sy(s).
From 2-179 and 2-171 it follows that

AT(s) AH(s)
Tos) Hys)

Thus S;(s) relates the relative change in the plant transfer function H(s)
to the resulting relative change in the control system transmission 7(s).
When the chanpes in the plant transfer function are restricted in magnitude,
we can approximate S;(jw) =~ S,(jw). This interpretation of the function
Su(s) is 2 classical concept due to Bode (see, e.g.. Horowitz, 1963). Sy(s) is
called the sensitivity function of the closed-loop system, since it gives infor-
mation about the sensitivity of the control system transmission to changes
in the plant transfer function.

S,(5) 2-186

Example 2.12.  The effect of parameter variations on the position servo
Let us analyze the sensitivity to parameter chanpes in Design I of the
position servo (Example 2.4, Section 2.3). The sensitivity function for this
design is given by
s(s + =)

" . 2-187
55+ o5 + «d

Sols) =
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Plots of |S{jw)| for various values of the gain A have been given in Fig. 2.26.
It is seen that for A = 15 V/rad, which is the most favorable value of the
gain, protection against the effect of parameter variations is achieved up to
about 3 rad/s. To be more specific, let us assume that the parameter varjations
are caused by variations in the moment of inertia J. Since the plant parameters
« and « are given by (Example 2.4)

B

==, K=E, 2-188
J J

it is easily found that for small variations AJ in J we can write

AH(s) - 5 AJ

-, 2-189
H(s) s+a J
where
H(s) = 2-190
s(s + o)
is the plant transfer function. We note the following,
1. For zero frequency we have
AH
AHO) _ o, 2191
H®

no matter what value AJ has. Since 7(0) = 1, and consequently AT(0) = 0,
this means that the response to changes in the set point of the tracking system
is always correct, independent of the inertial load of the servo.

2. We see from 2-189 that as a function of w the effect of a variation in
the moment of inertia upon the plant transfer function increases up to
the break frequency w = 4.6 rad/s and stays constant from there onward.
From the behavior of the sensitivity function, it follows that for low fre-
quencies (up to about 3 rad/s) the effect of a variation in the moment of
inertia upon the transmission is attenuated and that especially for low fre-
quencies a great reduction results,

To illustrate the control system sensitivity, in Fig. 2.30 the response of the
closed-loop system to a step in the reference variable is given for the cases

ATJ =0, ~0.3, and 4+0.3. 2-192

Taking into account that a step does not have a particularly small frequency

band, the control system compensates the parameter variation quite satis-
factorily.
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angulor o)
pasition ggi-
B
{b)
{rod}
Fig. 2.30. The effect of parameter variations
on the response of the position servo, Design T,
to a step of 0.1 rad in the reference variable:
DD ; ; ! (@) Nominal inertial load; (&) inertial Ioad 1.3
t—=(sg} 3 of nominal; (¢) inertial Ioad 0.7 of nominal.

2,10* THE OPEN-LOOP STEADY-STATE
EQUIVALENT CONTROL SCHEME

The potential advantapes of closed-loop control may be very clearly brought
to light by comparing closed-loop control systems to their so-called open-
loop steady-state equivalents. This section is devoted to a discussion of such
open-loop equivalent control systems, where we limit ourselves to the time-
invariant case.

Consider a time-invariant closed-loop comntrol system and denote the
transfer matrix from the reference variable r to the plant input z by N(s).
Then we can always construct an open-loop control system (see Fig. 2.31)
that has the same transfer matrix N(s) from the reference variable r to the
plant input #. As a result, the transmission of both the closed-loop system
and the newly constructed open-loop control system is given by

T(s) = K(s)N(s), 2-193

where K(s) is the transfer matrix of the plant from the plant input 1 to the
controlled variable z. For reasons explained below, we call the open-loop
system steady-state equivalent to the given closed-loop system.

In most respects the open-loop steady-state equivalent proves to be in-
ferior to the closed-loop control system. Often, however, it is illuminating to

open-tloop controlier plont
—L—= N3 £ Kis) |—E=

Fig. 231, ‘The open-loop steady-state equivalent control system.,
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study the open-loop equivalent of a given closed-loop system since it provides
a reference situation with a performance that should be improved upon. We
sucecessively compare closed-loop control systems and their open-loop
equivalents according to the following aspects of control system performance:
stability; steady-state tracking properties; transient belavior; effect of plant
disturbances; effect of observation noise; sensitivity to plant variations.

We first consider stability. We immediately see that the characteristic
values of the equivalent open-loop control system consist of the characteristic
values of the plant, together with those of the controller (compare Section
1.5.4). This means, among other things, that an unstable plant cannot be
stabilized by an open-loop contraller. Since stability is a basic design objective,
there is little point in considering open-loop equivalents when the plant is not
asymptotically stable.

Let us assume that the plant and the open-loop equivalent are asymp-
totically stable. We now consider the steady-state tracking properties of both
control systems. Since the systems have equal transmissions and equal
transfer matrices from the reference variable to the plant input, their steady-
state mean square tracking errors and mean square input are also equal.
This explains the name steady-state equivalent. This also means that from
the point of view of tracking performance there is no need to resort to closed-
loap control,

We proceed to the transient properties. Since among the clhiaracteristic
values of the open-loop equivalent control system the characteristic values
of the plant appear unchanged, obviously no improvement in the transient
properties can be obtained by open-foop confrof, in contrast to closed-loop
control. By transient properties we mean the response of the control system
to nonzero initial conditions of the plant.

Next we consider the effect of disturbances. As in Section 2.7, we assume
that the disturbance variable can be written as the sum of a constant and a
* variable part. Since in the muitivariable case we can write for the contri-
bution of the disturbance variable to the controlled variable in the closed-loop
system

Z(s) = [I + H(5)GEDI — A)Y1V,(5), 2-194

it follows that the contribution of the disturbance variable to the mean
square tracking error of the closed-loop system can be expressed as

C,., {with disturbance) — C,_ (without disturbance)

= tr {ST(OMS(O)W, + mS(jfﬂ)Euu(w)ST(—jw)Wa df},  2-195
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where we have used the results of Sections 1.10.3 and 1.10.4, and where

§() = [I + HOHGEWT™,
Deo(w) = D(jool — AY 'y (w)(—jwl — ATy D7, 2-196
Vo = D(~A) " E{v,q0 0 (—AT) DT,

In analogy with the single-input single-output case, S(s) is called the
sensitivity matrix of the system. The matrix 4 is assumed to be nonsingular.

Let us now consider the equivalent open-loop system. Here the contri-
bution of the disturbance to the controlled variable is given by

Z(s) = D(sI — AV, (s). 2-197

Assuming that the open-loop equivalent control system is asymptotically
stable, it is easily seen that the increase in the steady-state mean square
tracking error due to the disturbance in the open-Ioop system can be expressed
as

C,, (with disturbance} — C,_, (without disturbance)

—tr [W,,Vu + f "8 ()W, df}. 2-198

We see from 2-198 that the increase in the mean square tracking error is
completely independent of the controller, hence is not affected by the open-
loop control system design. Clearly, in an open-loop conirol system disturbance
reduction is impuossible.

Since the power spectral density matrix X ;(w) may be ill-known, it is of
some interest to establish whether or not there exists a condition that
guarantees that in a closed-loop control system the disturbance is reduced as
compared to the open-loop equivalent irrespective of T ;. Let us rewrite the
increase 2-195 in the mean square tracking error of a closed-loop system as
follows:

C,» {with disturbance) — C,, (without disturbance)

= tr [ST(O)MS(O)K, + f " ST jw)W,S(j0) S () df}, 2-199

where S(5) is the sensitivity matrix of the system. A comparison with 2-198
leads to the following statement.

Theorem 2.1. Consider a time-invariant asymptotically stable closed-loop
control system where the controlled variable is also the observed variable and
where the plant is asymptotically stable. Then the increase in the steady-state
mean square tracking error due to the plant disturbance is less than or
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at least equal to that for the open-loop steady-state equivalent, regardless of
the properties of the plant disturbance, if and only if

ST(—jw)W,S(jw) < W,  for all real w. 2-200

The proof of this theorem follows from the fact that, given any two non-
negative-definite Hermitian matrices M; and M., then M; > M, implies
and is implied by tr (M,N) > tr (M;N) for any nonnegative-definite Her-
mitian matrix N.

The condition 2-200 is especially convenient for single-input single-cutput
systems, where S(s) is a scalar function so that 2-200 reduces to

SQw)| <1 for all real w. 2-201

Usually, it is simpler to verify this condition in terms of the return difference
function

J(s) = —— = 1 + H(s)G(s). 2202
S(s)
With this we can rewrite 2-201 as
W(jw)| =1 for all real w. 2-203

Also, for multiinput multioutput systems it is often more convenient to
verify 2-200 in terms of the return difference matrix

J(s) = 87(s) = I + H(5)G(s). 2-204
In this connection the foltowing result is useful.

Theorem 2.2. Let J{s) = S-Xs). Then the three following statements are
equivalent:

(@) ST(—j)W,S(jw) < W,
() JH—jo)WJ(jw) > W, 2-205
(©) )W (—jw) > W,

The proof is left as an exercise.

Thus we have seen that open-loop systems are inferior to closed-loop
control systems from the point of view of disturbance reduction. In all
fairness it should be pointed out, however, that in open-loop control systems
the plant disturbance causes no increase in the mean square input.

The next item of consideration is the effect of observation noise. Obviously,
in open-loop control systems observation noise does not affect either the
mean square tracking error or the mean square input, since there is no feed-
back link that introduces the observation noise into the system. In this
respect the open-loop equivalent is superior to the closed-loop system.
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Our final point of consideration is the sensitivity to plant variations. Let
us first consider the single-input single-output case, and let us derive the
mean square tracking error attributable to a plant variation for an open-loop
control system. Since' an open-loop control system has a unity sensitivity
function, it follows from 2-184 that under the assumptions of Section 2.9
the mean square tracking error resulting from a plant variation is given by

C,e (open-loop) = [AH(O)N(O)* Ry + f_ ® AHGw)No )" (@) df
2-206

Granting that Ny(s) is decided upon from considerations involving the
nominal mean square tracking error and input, we conclude from this
expression that the sensitivity to a plant transfer function variation of an
open-loop contral system is not influenced by the control system design.
Apparently, protection against plant variations cannot be achieved through
apen-loop control.

For the closed-loop case, the mean square tracking error attributable to
plant variations is given by 2-184:

C,, (closed-loop} =~ |S,{(0)|* |JAH(Q)NL(O)I* R,
+ L ® |Ss ) AH(w)Nj)|* S(w) df. 2-207

A comparison of 2-206 and 2-207 shows that the closed-loop system is
always less sensitive to plant variations than the equivalent open-loap system,
no matter what the nature of the plant variations and the properties of the
reference variable are, if the sensitivity function satisfies the inequality

[Sqjw) <1 for all w. 2-208

Thus we see that the condition that guarantees that the closed-loop system is
less sensitive than the open-loop system to disturbances also makes the
systemn less sensitive to plant variations.

In the case of disturbance attenuation, the condition 2-208 generalizes to

ST (—je)W,Sy(jw) < W,,  for all w, 2-209

for the muitivariable case. It can be proved (Cruz and Perkins, 1964;
Kreindler, 1368a) that the condition 2-209 guarantees that the increase in the
steady-state mean square tracking error due to (small) plant variations
in a closed-loop system is always less than or equal to that for the open-loop
steady-state equivalent, regardless of the nature of the plant variation and the
properties of the reference variable.
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We conclude this section with Table 2.2, which summarizes the points of
agreement and difference between closed-loop control schemes and their

open-loop steady-state equivalents.

Table 2.2 Comparison of Closed-Loop and Open-Loop Designs

Feature Closed-ioop design

Open-loop steady-state
equivalent

Stability Unstable plant can be

stabilized

Steady-state mean square
tracking error and
input attributable to
reference variable

Transient behavior Great improvement in
response to initial

conditions is possible

Effect of disturbances Effect on mean square
tracking error can be
greatly reduced; mean
square input is
increased

Effect of observation Both mean square

noise tracking error and
mean square input are
increased
Effect of plant Effect on mean square
variations tracking error can be

greatly reduced

Unstable plant cannot

be stabilized

Identical performance if the
plant is asymptotically stable,

No improvement in
response to initial
conditions is possible

Full cffect on mean
square tracking error;
mean square input is
not affected

No effect on mean square
tracking error or mean
square input

Full effect on mean
square tracking error

2,11 CONCLUSIONS

In this chapter we have given a description of control problems and of the
various aspects of the performance of a control system. It has been shown
that closed-loop control schemes can give very attractive performances.
Various rules have been developed which can be applied when designing
a control system.

Very little advice has been offered, however, on the question how to
select the precise form of the controller. This problem is considered in the
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following chapters. We formulate the problem of finding a suitable com-
promise for the requirement of a small mean square tracking error without
an overly large mean square input as a mathematical optimization problem.
This optimization problem will be developed and solved in stages in Chapters
3-5. Its solution enables us to determine, explicitly and quantitatively, snitable
control schemes,

2.12 PROBLEMS

2,1, The control of the angular velocity of a motor

Consider a dc motor described by the differential equation

de(t)
dt
where ¢(?) is the anpular velocity of the motor, m(?) the torque applied to the

shaft of the motor, J the moment of inertia, and B the friction coefficient.
Suppaose that

J + Be(t) = m(d), 2-210

m{t} = ku(1}, 2211

where u(f) is the electric voltage applied to the motor and & the torque
coefficient. Imserting 2-211 into 2-210, we write the system differential
equation as
de(t)
dt
The following numerical values are used:
w=055"  «=150rad/{(Vs?), J=00lkgm®  2-213

It is assumed that the angular velocity is both the observed and the controlled
variable. We study the simple proportional contral scheme where the input
voltage is given by

+ ac(t) = xufl). 2.212

u(t) = —ae(t) + pr(s). 2-214

Here (#) is the reference variable and A and p are gains to be determined.
The system is to be made into a tracking system.

(a) Determine the values of the feedback gain A for which the closed-loop
system is asymptoticaliy stable.

(b) For each value of the feedback gain A, determine the gain p such that
the tracking system exhibits a zero steady-state error response to a step in
the reference variable. In the remainder of the problem, the gain p is always
chosen so that this condition is satisfied.

(c) Suppose that the reference variable is exponentially correlated noise
with an rms value of 30 rad/s and a break frequency of 1 rad/s. Determine the
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feedback gain such that the rms input voltage to the dc motor is 2 V. What is
the rms tracking error for this gain? Sketch a Bode plot of the transmission
of the control system for this gain. What is the 109 cutoff frequency?
Compare this to the 103 cutoff frequency of the reference variable and
comment on the magnitude of the rms tracking error as compared to the
rms value of the reference variable. What is the 109/ settling time of the
response of the system to a step in the reference variable?

(d) Suppose that the system is disturbed by a stochastically varying torque
on the shaft of the dc motor, which can be described as exponentially
correlated noise with an rms value of 0.1732 N m and a break frequency of
| radfs. Compute the increases in the steady-state mean square tracking
error and mean square input attributable to the disturbance for the values of
A and p selected under (c). Does the disturbance significantly affect the per-
formance of the system?

(e} Suppose that the measurement of the angular velocity is affticted by
additive measurement noise which can be represented as exponentially
correlated noise with an rms value of 0.1 rad/s and a break frequency of
100 rad/s. Does the measurement noise seriously impede the performance of
the system?

(f} Suppose that the dc motor exhibits variations in the form of changes
in the moment of inertia J, attributable to load variations. Consider the offi-
nominal values 0.005 kg m® and 0.02 kg m? for the moment of inertia. How
do these extreme variations affect the response of the system to steps in the
reference variable when the gains 4 and g are chosen as selected under (c)?

2.2. A decoupled control system design for the stirved tank

Consider the stirred tank control problem as described in Examples 2.2
(Section 2.2.2) and 2.8 (Section 2.5.3), The state differential equation of the
plant is given by

) —0.01 0 0 1 1 ) 221
i(t) = z(r) + u(t), ~-215
( ( 0 —0.02 —0.25 0.75 (
and the controlled variable by
0.0l 0
z(f) = x(1). 2216
0 1

(a) Show that the plant can be completely decoupled by choosing
u(r) = Ou'(1), 2-217

where @ is a suitable 2 X 2 matrix and where #'(f) = col [u(?), ua(N] is a
new input to the plant,



2.12 Problems 191

(b) Using (a), design a closed-loop control system, analogous to that
designed in Example 2.8, which is completely decoupled, where T(0) = J,
and where each link has a 107 cutoff frequency of 0.0l rad/s.

2.3. Jntegrating action

Consider a time-invariant single-input single-output plant where the
controlled variable is also the observed variable, that is, C = D, and which
has a nonsingular A-matrix. For the suppression of constant disturbances,
the semsitivity function S(jew) should be made small, preferably zero, at

w = 0. 8(s) is given by 1

S(s) =———"——,
1 4+ H{(5)G(s)
where H(s) is the plant transfer function and G(s) the controller transfer

function (see Fig. 2.25). Suppose that it is possible to find a rational function
({s) such that the controller with transfer function

2-218

G(s) = I?Q(s) 2219

makes the closed-loop system asymptotically stable. We say that this con-
troller introduces integrating action. Show that for this control system
S§(0) = 0, provided H({)Q(0) is nonzero. Consequently, controllers with
integrating action can completely suppress constant disturbances.

2.4%, Constant disturbances in plants with a singular A-matrix

Consider the effect of constant disturbances in a control system satisfying
the assumptions 1 through 5 of Section 2.7, but where the matrix A of the’
plant is singular, that is, the plant contains integratiomn.

() Show that the contribution of the constant part of the disturbance to
the steady-state mean square tracking error can be expressed as

lim E{pI(—sI — AT) 2 DTS(—5)S(5)D(s] — A)"vy0}- 2-220

g0
We distinguish between the two cases (b) and (c).
(b) Assume that the disturbances enter the system in such a way that

lim D(sI — A) v, 2-221

a—+0
is always finite. This means that constant disturbances always result in
finite, constant equivalent errors at the controlled variable despite the
integrating nature of the plant. Show that in this case
(i) Design Objective 2.5 applies without modification, and

i) S(0) = 0, vided
(i) S5(0) = 0. provide lim sH(s)G(s) 2222
1s nonzero. "
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Here H(s)is the plant transfer function and G(s) the transfer function in the
feedback link (see Fig. 2.25). This result shows that in a plant with integration
where constant disturbances always result in finite, constant equivalent errors
at the controlled variable, constant disturbances are completely suppressed
(provided 2-222 is satisfied, which implies that neither the plant nor the
controller transfer function has a zero at the origin).

(¢©) We now consider the case where 2-221 is not finite. Suppose that

lim s*D(sf — A) v, 2-223

a—=0

is finite, where k is the least positive integer for which this is true. Show that
in this case

. S(s

lim 56)

a-+0 Sk

2-224

should be made small, preferably zero, to achieve a small constant errar at
the controlled variable. Show that 2-224 can be made equal to zero by letting

Gs) = S,L_lTH a(s), 2.225

where Q(s) is a rational function of s such that Q(0) # 0 and Q(0) # o,
and where m, is the least integer m such that
lim s™H(s) 2-226
g0

is finite.
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