
1 ELEMENTS O F  LINEAR 
SYSTEM THEORY 

1.1 INTRODUCTION 

This book deals with the analysis and design of linear control systems. A 
prerequisite for studying linear control systems is a knowledge of linear 
system theory. We therefore devote this first chapter to a review of the most 
important ingredients of linear system theory. The introduction of control 
problems is postponed until Chapter 2. 

The main purpose of this chapter is to establish a conceptual framework, 
introduce notational convenlions, and give a survey of the basic facts of 
linear system theory. The starting point is the state space description of linear 
systems. We then proceed to discussions of the solution of linear state 
differential equations, the stability of linear systems, and the transform 
analysis of such systems. The topics next dealt with are of a more advanced 
nature; they concern controllability. reconstructibility, duality, and phase- 
variable canonical forms of linear systems. The chapter concludes with a 
discussion of vector stochastic processes and the response of linear systems 
to white noise. These topics play an imporlant role in the development of 
the theory. 

Since the reader of this chapter is assumed to have had an inlroduclion to 
linear system theory, the proofs of several well-known theorems are omitted. 
References to relevant texlbooks are provided, however. Some topics are 
treated in sections marked with an aslerisk, nolably controllability, recon- 
struclibility, duality and phase-variable canonical forms. The asterisk 
indicates that these notions are of a more advanced nature, and needed only 
in the sections similarly marked in the remainder of the book. 

1.2 STATE DESCRIPTION OF LINEAR SYSTEMS 

1.2.1 State Description of Nonlinear and Linear Differential Systems 

Many systems can be described by a set of simultaneous differential equalions 
of the form 

w = f [ ~ ( f ) ,  u ( t ) ,  fl. 1-1 
1 



2 El~mcnts of Lincnr System Theory 

Here t is the time variable, x(t )  is a real n-dimensional time-varying column 
vector which denotes the state of the system, and tr(t) is a real lc-dimensional 
column vector which indicates the inptrt variable or corttrol variable. The 
function f is real and vector-valued. For many systems the choice of the 
state follows naturally from the physical structure, and 1-1, which will be 
called the state dijererttial equation, usually follows directly from the ele- 
mentary physical laws that govern the system. 

Let y(t)  be a real I-dimensional system variable that can be observed o r  
through which the system influences its environment. Such a variable we call 
an oufpt~t variable of the system. I t  can often be expressed as 

= g[x( t ) ,  d o ,  11. 1-2 

This equation we call the ot~fpltt eqltatiolz of the system. 
We call a system that is described by 1-1 and 1-2 a filtite-di~itensioi~al 

dijerential sjutern or, for short, a di jere~~t ial  system. Equations 1-1 and 1-2 
together are called the system eqrmfio~ts. If the vector-valued function g 
contains u explicitly, we say that the system has a direct liitk. 

In this book we are mainly concerned with the case where f andg  are linear 
functions. We then speak of a (finite-dinze~wional) liltear diferential system 
Its state differential equation has the form 

where A(t)  and B(t)  are time-varying matrices of appropriate dimensions. 
We call the dimension 11 of x the diiiiension of the system. The output equation 
for such a system takes the form 

If the matrices A ,  B ,  C, and D are constant, the system is time-i~marinnt. 

1.2.2 Linearization 
I t  is the purpose of this section to show that if u,(t)  is a given input to a system 
described by the state differential equation 1-1, and x,(t) is a known solution 
of the state differential equation, we can find approximations to neighboring 
solutions, for small deviations in the initial state and in the input, from a 
linear state differential equation. Suppose that x,(t) satisfies 

' f [xd t ) ,  udf),  11 ,  10 5 15 t~ 1-5 

We refer to u, as a norninal input and to x,, as a iiolniltal trajectory. Often we 
can assume that the system is operated close to nominal conditions, which 
means that u and x deviate only slightly from u, and xu. Let us therefore write 
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where C(t) and $(to) are small perturbations. Correspondingly, let us intro- 
duce 5(t) by 

x )  = xu()  + 5 )  to 2 i j t,. 1-7 

Let us now substitute x and u into the state differential equation and make 
a Taylor expansion. I t  follows that 

Here J, and J,, are the Jacobian matrices off with respect to x and u, re- 
spectively, that is, J, is a matrix the (;, j)-th element of which is 

where5  is the i-th component off  and ti the j-th component of x. J,  is 
similarly defined. The term h(t) is an expression that is supposed to he 
"small" with respect to 5 and ti. Neglecting h, we see that 5 and ti approxi- 
mately satisfy the littear equation 

where A(t) = J,[x,(t), lt,(t), t] and B(t) = J,,[z,(t), u,(f), t]. We call 1-10 the 
linearized state d$erentiaI equation. The initial condition of 1-10 is ?'(to). 

The linearization procedure outlined here is very common practice in the 
solution of control problems. Often it is more convenient to linearize the 
system diKerential equations before arranging them in the form of state 
differential equations. This leads to the same results, of course (see the 
examples of Section 1.2.3). 

It can be inferred from texts on differential equations (see, e.g., Roseau, 
1966) that the approximation to x(t) obtained in this manner can be made 
arbitrarily accurate, provided the function f possesses partial derivatives with 

L 
respect to the components of x and u near the nommal values xu, tr,, the 
interval [to, t,] is finite, and the initial deviation E(t,) and the deviation of the 
input ti are chosen sufficiently small. 

In Section 1.4.4 we present further justification of the extensive use of / linearization in control engineering. 

I 
1.2.3 Examples 

In this section several examples are given which serve to show how physical 
equations are converted into state differential equations and how linearization 
is performed. We discuss these examples at some length because later they 
are extensively used to illustrate the theory that is given. 
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Fig. 1.1. An inverted pendulum positioning 
system. ! 

Example 1.1. Inverted pendrrlmn positioning systeril. 
Consider the inverted pendulum of Figure 1.1 (see also, for this example, 

Cannon, 1967; Elgerd, 1967). The pivot of the pendulum is mounted on a 
carriage which can move in a horizontal direction. The carriage is driven by a 
small motor that at time t exerts a force p(t) on the carriage. This force is 
the input variable to the system. 

Figure 1.2 indicates the forces and the displacements. The displacement of 
the pivot at time t is s(t), while the angular rotation at time t of the pendulum 
is $(/). The mass of the pendulum is 111, the distance from the pivot to the 
center of gravity L, and the moment of inertia with respect to the center of 
gravity J. The carriage has mass M. The forces exerted on the pendulum are 

Fig. 1.2. Inverted pendulum: Forces and displacemenlr;, 
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the force nlg in the center of gravity, a horizontal reaction force H(t),  and a 
vertical reaction force I'(t)in thepivot. Hereg is thegravitationalacceleration. 
The following equations hold for the system: 

dZ 
rn - [s(t) + L sin $(! ) I  = H(t),  

dl3 1-11 

d" 
111 , [ L  cos $(t)] = V(1) - lllg, 1-12 

dt 

Friction is accounted for only in the motion of the carriage and not a t  the 
pivot; in 1-14, Frepresents the friction coefficient. Performing the differenti- 
ations indicated in 1-11 and 1-12, we obtain 

1113(t) + ~ i i ~ & t )  cos 40) - I I I L & ~ ( ~ )  sin $(t)  = ~ ( t ) ,  1-15 

- n l ~ & t )  sin $(t) - nlL@(t) cos $(t) = V( t )  - n g ,  1-16 

J&) = LV(t)  sin $(t) - LH(t) cos $(t),  1-17 

MJ(1) = p(t) - N( t )  - Fi(t). 1-18 

To simplify the equations we assume that 111 is small with respect to M and 
therefore neglect the horizontal reaction force H(t) on the motion of the 
carriage. This allows us to replace 1-18 with 

MJ(t) = p(t) - Fi(t). 1-19 

Elimination of H(t) and V( t )  from 1-15, 1-16, and 1-17 yields 

(J + i i ~ ~ ~ ) d ; ( t )  - nigL sin $(t) + ~iiLJ(t) cos $( t )  = 0. 1-20 

Division of this equation by J + 111L3 yields 

where 
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This quantity has the significance of "elTective pendulum length" since a 
mathematical pendulum of length L' would also yield 1-21. 

Let us choose as the nominal solution p(t )  -- 0, s(t) = 0, +(I) = 0. 
Linearization can easily be performed by using Taylor series expansions for 
sin +(I) and cos r)(t) in 1-21 and retaining only the first term of the series. 
This yields the linearized version of 1-21: 

The third component of the state represents a linearized approximation to 
the displacement of a point O F  the pendulum at  a distance L' from the pivot. 
We refer to &(I) as the displacement of the pendulum. With these definitions 
we find from 1-19 and 1-23 the linearized state diflerential equation 

In vector notation we write 
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Later the following numerical values are used: 

Example 1.2. A stirred torrk. 
As a further example we treat a system that is to some extent typical of 

process control systems. Consider the stirred tank of Fig. 1.3. The tank is fed 

prope l lor  

I 

Fig. 1.3. A stirred lank. 
concentrotion c 

with two incoming flows with Lime-varying flow rates F,(t) and F,(t). Both 
feeds contain dissolved material with constant concentrations c, and c,, 
respectively. The outgoing flow has a flow rate F(t). I t  is assumed that the 
lank is slirred well so that the concentration of the outgoing flow equals the 
concentration c( t )  in the tank. 
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The mass balance equations are 

where V ( t )  is the volume of the fluid in the tank. The outgoing flow rate 
F(t)  depends upon the head h( t )  as follows 

where lc is an experimental constant. If the tank has constant cross-sectional 

so that the mass balance equations are 

Let us first consider a steady-state situation where all quantities are constant, 
say F,,, Fz,, and F, for the flow rates, Vo for the volume, and c, for the con- 
centration in the tank. Then the following relations hold: 

0 = F,, + F,, - Fo, 
0 = clFlO + c,F,, - coFo, 

For given Flu and F,,, these equations can be solved for F,, V,, and c,. Let 
us now assume that only small deviations from steady-state conditions occur. 
We write 

F i ( f )  = FIO +  PI(^), 
F d l )  = F,, + p m ,  

1-37 
V( t )  = v, + 4 w ) ,  

c ( 0  = c, + C,(% 
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where we consider pI and h input variables and E,  and E,  state variables. 
By assuming that these four quantities are small, linearization of 1-32 and 
1-33 gives 

Substitution of 1-36 into these equations yields 

We define 

and refer to 0 as the holdlrp tit7re of the tank. Elimination of il from 1-41 
results in the linearized state differential equation 

where x(t)  = col [ f , ( t ) ,  E2(t)] and ti(!) = col [p l ( t ) ,  &(t)]. If we moreover 
define the output variables 

we can complement 1-43 with the linearized output equation 
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where ? / ( I )  = col [ ~ l , ( t ) ,  112(t)]. We use the following numerical values: 

F,, = 0.015 ma/s, 

F:, = 0.005 m3/s, 

F, = 0.02 ms/s, 

c, = 1 kmol/m3, 

c, = 2 kmol/m3, 

c, = 1.25 kmol/m3, 

Vo = 1 m3, 

B = 50 s. 

This results in the linearized system equations 

1.2.4 State Transformations 

As we shall see, it is sometimes useful to employ u transformed representa- 
tion of the state. In this section we briefly review linear state transformations 
for time-invariant linear differential systems. Consider the linear time- 
invariant system 

i ( t )  = Ax([)  + Blr(t), 
1-48 

? / ( I )  = Cx(t). 

Let us define a transformed state variable 

where T is a constant, nousingular transformation matrix. Substitution of 
x ( f )  = Y 1 x ' ( t )  into 1-48 yields 
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These are the state ditrerential equation and the output equation of the system 
in terms of the new state x1(t). I t  is clear that the transformed representation 
is completely equivalent to the original system, since we can always re- 
construct the behavior of the system in terms of the original state by the 
relation x(t) = T4x'(t). This derivation shows that the choice of the state 
is to some extent arbitrary and therecore can be adapted to suit various 
purposes. Many properties of linear, time-invariant systems remain un- 
changed under a state transformation (Problems 1.3, 1.6, 1.7). 

1 .3  S O L U T I O N  O F  T H E  S T A T E  D I B P E R E N T I A L  
E Q U A T I O N  O F  L I N E A R  S Y S T E M S  

1.3.1 The Transition Matrix and the Impulse Response Matrix 

In  this section we discuss the solution of the linear state differential equation 

?(I) = A(t)x(f) + B(t)u(f). 1-52 

We first have the following result (Zadeh and Desoer, 1963; Desoer, 1970). 

Theorem 1.1. Consider the honiogeneoz~s eq~~ation 

x(t) = A(t)x(t). 1-53 

Tl~en i f A ( t )  is co~~tinrto~ts for all t, 1-53 a111'ays has a s0111tio1t 11~1iich can be 
expressed as  

s % 

x(t) = @(I, t,)x(t,), for all t. 1-54 

The t~ansition rna t~ is  @(I, t,) is tlie sol~~tiorz of tlie matrix d~fer.er~tial eqltation 

rl - O(t, t,) = A(t)O(f, t,), for all t, 
d t  

1-55 
[Il(f,, 1,) = I, 

ilhere I is t l~e  iiiiit iiiotrix. 

For a general time-varying system, the transition matrix rarely can be ob- 
tained in terms of standard functions, so that one must resort to numerical 
integration techniques. For time-invariant systems of low dimensions or  of a 
simplestructure, the transition matrix can becomputed by any ofthemethods 
discussed in Sections 1.3.2, 1.3.3, and 1.5.1. For  complicated time-invariant 
problems, one must employ numerical methods such as described in Section 
1.3.2. 

The transition matrix can be shown to possess the following properties 
(Zadeh and Desoer, 1963). 
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Theorem 1.2. The traitsitiort ntotrix @(t,  to) of a lirtear d~~$erenfial systein Itas 
the follo~~~i~tgproperties: 

(a) @(t2, tJ@(tl .  to) = @ ( f 2 .  to) for all to ,  tl, t ~ ;  1-56 
( )  0 ,  to) is nonsiitgrilor for all 1, to; 1-57 

(c) Q-l(t, to) = @ ( f l l .  I )  for all t ,  to; 1-58 

111ltere the sryerscript T dertates the transpose. 

Property (d) shows that the system *(t)  = -AT(t)x(t)  has the transition 
matrix QT(t,,, t) .  This can be proved by differentiating the identity 
q t ,  Q Q ( t o ,  t )  = I. 

Once the transition matrix has been found, it is easy to obtain solutions 
to the state differential equation 1-52. 

Theorem 1.3. Consider the li~tear state dierenfial eq~tation 

Tlten i f A ( t )  is co~tfi~~uolcs and B( t )  and u(t)  ore piecewise corttii~uotts for all.t, 
the soltition of 1-60 is  

1 

x ( f )  = @(t, t&'(tn) +f @(t, T)B(T)u(T) (IT 1-61 

for all t. 
11 

This result is easily verified by direct substitution into the state differential 
equation (Zadeh and Desoer, 1963). 

Consider now a system with the state differential equation 1-60 and the 
output equation 

y( t )  = C(t)x(t). 1-62 

For the output variable we write 

If the system is initially in the zero state, that is, x( tJ  = 0, the response of 
the output variable is given by 

1 

y ( t ) = s K ( t , ~ ) u ( ~ ) d ~ ,  t > t o ,  1-64 
10 

where 
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The matrix K(t, T) is called the ilnpulse response matrix of the system because 
the (i, j)-lh element of this matrix is the response at  time t of the i-th com- 
ponent of the output variable to an impulse applied at  the j-th component of 
the input a t  time T > to while all other components of the input are zero 
and the initial state is zero. The step response matrix S(t, T) is defined as 

The (i, j)-th element of the step response matrix is the response at  time t of 
the i-th component of the output when the j-th component of the input is a 
step function applied at  time T > to while all other components of the input 
are zero and the initial state is the zero state. 

1.3.2 The Transition Matrix of a Time-Invariant System 

For a time-invariant system, the transition matrix can he given in an explicit 
form (Zadeh and Desoer, 1963; Desoer, 1970; Polak and Wong, 1970). 

Theorem 1.4. The time-inuariant sjutem 

t( t )  = Ax(t) 
has the transition matris 

qt f ) - ~ l ~ - f d  n -  

where the expo~~er~tial  of a sq~mre matrix M is defined as  

This series carmerges for aN M. 

For  small dimensions or  simple structures of the matrix A, this result can he 
used to write down the transition matrix explicitly in terms of elementary 
functions (see Example 1.3). For high dimensions of the matrix A, Theorem 
1.4 is quite useful for the computation of the transition matrix by a digital 
computer since the repeated multiplications and additions are easily pro- 
grammed and performed. Such programs must include a stopping rule to 
truncate the infinite series after a finite number of terms. A usual stopping 
rule is to truncate when the addition of a new term changes each of the 
elements of the partial sum by less than a specified fraction. Numerical 
difficulties may occur when M is too large; this means that t - to in 1-68 
cannot be chosen too large (see Kalman, 1966; Knlman and Englar, 1966). 
Having a program for computing matrix exponentials is essential for anyone 
who wishes to simulate linear time-invariant systems. There are numerous 
references on the computation of matrix exponentials and simulating linear 
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systems; some of these are: Everling (1967), Liou (1966a,b, 1967, 1968), 
Whitney (1966a-c), Bickart (1968), Fath (1968), Plant (1969), Wallach 
(1969), Levis (1969), Rohrer (1970), Mastascusa and Simes (1970), and 
Krouse and Ward (1970). Melsa (1970) gives listings of FORTRAN com- 
puter programs. 

By using 1-68 the time-invariant version of 1-63 becomes 

Comparing 1-64 and 1-70 we see that the impulse response matrix of a time- 
invariant linear diRerential system depends on f - T only and can be ex- 
pressed as 

K(t - s) = c~"~-"B , 127. 1-71 

Example 1.3. Stirred tank. 
The homogeneous part of the linearized state diAerential equation of the 

stirred tank of Example 1.2 is given by 

I t  is easily found that its transition matrix is given by 

The impulse response matrix of the system is 
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We find for the step response matrix of the stirred tank: 

In Fig. 1.4 the slep responses are sketched for the numerical data of Example 
1.2. 

s t e p  i n  f e e d  Fi o f  step in f e e d  F2 o f  

incr.mento1 

Fig. 1.4. Response of the stirred tank to a step of 0.002 m3/s in the feed F, (left column) 
and to a slep of 0.002 m3/s in the feed Fz (right column). 

1.3.3 Diagonalization 

An explicit form of the transition matrix of a time-invariant system can be 
obtained by diagonalization of the matrix A. The following result is available 
(Noble, 1969). 

Theorem 1.5. Suppose that /he comtant 11 x I I  ntafriu A 110s rt rlistirlct 
characferistic uolt~es A,, A,, . . . . A,,. Let the corresponding clraracferistic 
uectors be e l ,  e2,  . . . , en. D e f m  the n x n ntafrices 

T = (el ,  e,, . . . , e,,), 1-77a 

A = diag (A,, A,, . . . , A J .  1-77b 
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Tlterz T is noruingr~lar and A can be represented as 

A = TAT-'. 1-78 

Here the notation 1-77a implies that the vectors e,, e,, . . . , e,, are the 
columns of the matrix T ,  and 1-77b means that A is a diagonal matrix with 
A,, A,, . . . , A, as diagonal elements. I t  is said that T diagonalizes A. 

The following fact is easily verified. 

Theorem 1.6. Corlsider the niatris A tltat satisfies the assrwiptions of 
Tlzeorerii 1.5. Then 

1-79 

This result makes it simple to compute exp (A t )  once A is diagonalized. I t  is 
instructive to present the same result in a different form. 

Theorem 1.7. Consider the ti~iie-ittuariant s j ~ t e m  

where A satisfies the asst~rtiptiorzs of Theorem 1.5. Write the ntatrix T-' in the 
for11t 

tltat is, the roi~' uectorsf,,&, . . . , f ,  are the rows of T-l. Tlten the solution of 
1-81 can be written as 

This is easily shown by expanding x(t) = Texp (At)T1x(0) in terms of 
e,,f,, and exp (&t), i = 1 ,  2,  . . . , it. We write 1-83 in the form 

n 
x(t) = 2 p,e"'e,, 1-84 

,=I  

where the p, are the scalarsf,x(O), i = 1,2, . . . , 11. This clearly shows that 
the response of the system 1-81 is a composition of motions along the 
characteristic vectors of the matrix A. We call such a motion a mode of the 
system. A particular mode is excited by choosing the initial state to have a 
component along the corresponding characteristic vector. 



1.3 Solution o f  State Equntion 17 

It is clear that thecharacleristic values ,Il, i = 1.2, . . . , ti, to aconsiderable 
extent determine the dynamic behavior of the system. We often refer to these 
numbers as Lhe poles of the sj~stcni. 

Even ifthematrix A has multiple cliaracteristicvalues, it can bediagonalized 
provided that the number of linearly independent characteristic vectors for 
each characteristic value equals the multiplicity of the characteristic value. 
The more complicaled case, where the matrix A cannot be diagonalized, is 
discussed in Seclion 1.3.4. 

Example 1.4. Iizverlerl pmirl~rl~rni. 
The homogeneous part of the state differential equation of the inverled 

pendulum balancing system of Example 1.1 is 

The characteristic values and characteristic vectors of the matrix A can be 
found to be 

where 
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and where we assume that Lhe denominator of a differs from zero. The matrix 
T and its inverse are 

The modes of the system are 

The first mode represents the indifference of the system with respect to 
horizontal translations, while the third mode exhibits the unstable character 
of the inverled pendulum. 
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1.3.4" The Jordan Form 

In the preceding section we saw thal the represenlation of the transition 
matrix can be facilitated by diagonalizing the matrix A .  This diagonalization 
is not possible if the n x 11 matrix A does not have 11 linearly independent 
characteristic vectors. In this case, however, it is possible to bring A into the 
so-called Jordan normal form which is almost diagonal and from which the 
lransition matrix can easily be obtained. 

We first recall a few facts from linear algebra. If A4 is a matrix, the nd1 
space of A[ is defined as 

dfr(A[) = {x: x E ??'I, hfx = 01, 1-90 

where Y?" is the n-dinlensional complex vector space. Furthermore, if dl, 
and .A2 are two linear subspaces of an 11-dimensional space, a linear subspace 
dl8 is said to be the direct sum of .All and written as 

if any vector a:, E Can be written in one and only one way as a, = xl 4- xZ, 
where x1 E .,dl and x, E .&,. 

We have the following result (Zadeh and Desoer, 1963). 

Theorem 1.8. Stppose that the n x 11 matrix A has A flisti11ct clraracteristic 
valrm l.;, i = 1, 2, . . . , I;. Let the i~lttlfiplicit)~ of each cl~aracteristic va111e J.; 
in the characteristic pol~monlial of A be given b)j nl;. Dejne 

(a) The diriiension of the linear subspace .Ar, is nl,, i = 1 ,  2 ,  . . . , k; 
(b) Tlre ii<hole n-rli,nensional corllplex space 'e" is t11e direct s111n of the null 
spaces dlr,, i = 1, 2,  . . . , k ,  that is, 

9 7 1  = Jrl 0 Arc 0 . . . 0 dlr,. 1-94 

When the matrix A has n dislinct characleristic values, the null spaces dlr, 
reduce to one-dimensional subspaces each of which is spanned by a charac- 
teristic vector of A .  

We have the following fact (Noble, 1969). 

Theorem 1.9. Consider the matrix A il'itll the same itolatiol~ as ill Tl~eore~n 
1.8. T11en i f  is aheays possible f o j n d  a nonsingular transformation mntris T 

* See the Preface lor the significance of the seclions marked with an asterisk 
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ivhich car1 be partitioiled us 
T = (T,, T,, . . . , T d ,  

siiclr that 
A = T J P 1 ,  

where 
J = diag (J,, J,, . . . , JJ .  

Tlie bloclc J,  has dinie~lsiorls 711, X in,, i = 1 ,  2,  . . . , k ,  and thepartitioizirzg of 
T matches fhat of J. Tlte coh~rnns of T, forin a specially cliosert basis for the 
11~11 space .Ar,, i = 1 ,  2, . . . , k. Tlre blocks Ji can be sr,bportitioned as 

11,11ere each si~bbloclc J,, is of the form 

J is called tlie Jordnn noln~al form of A. 

Expression 1-96 suggests the following practical method of computing the 
transformation matrix T (Noble, 1969). From 1-96 it follows 

A T  = TJ. 1-100 

Let us denote the columns of T as q,, g,, . . . , 7,. Then from the form of J ,  it 
follows with 1-100 that 

~ q ,  = aqi + 7'iyj-13 1-101 

where y,  is either 0 or 1, depending on J ,  and where 2 is a characteristic value 
of A. Let us subpartition the block Ti of T corresponding to the subpartition- 
ing 1-98 of J, as T,,, T,,, . . . , T,,,. Then the number yi is zero whenever the 
corresponding column qi of T is the first column of a subblock. Since if 
71, = 0 the vector q, is a characteristic vector of A, we see that we can find 
the first columns of each subblock as the characteristic vectors of A. The 
remaining columns of each subblock then follow from 1-101 with y, = 1. 
Those remaining columns are known as ge~ieralized characteristic vectors of 
the matrix A. We stop this process when 1-101 fails to have a solution. 
Example 1.5 at the end of this section illustrates the procedure. 

Once the matrix A has been brought into Jordan normal form, the ex- 
ponential of A is easily found. 
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Theorem 1.10. Consider the ntalrix A witlr the same rtotatiort as in Tl~eore~its 
1.8 and 1.9. Tl~en 

i ~ h w  no is the di177erlsiorl of JiJ. 

I t  is seen from this theorem that the response of the system 

may contain besides purely exponential terms of the form exp (Aft) also 
terms of the form t exp (Aft), tzexp (A$), and so on. 

Completely in analogy with Section 1.3.3, we have the following fact 
(Zadeh and Desoer, 1963). 

Theorem 1.11. Consider the time-irtvariant linear system 

Express the i~titial state x(0) as 

Write 



~lhere  the partitioning correspunds to that of T ill Tlreoreln 1.9. Tlretz the 
respotlse of the sjuten; cat1 be espressed as 

1; 

~ ( t )  = 2 exp (Jir)Uiu,. 1-110 
/=I 

From this theorem we see that if the initial slate is within one of the null 
spaces the nature of the response of the system to this initial state is 
completely determined by the corresponding characteristic value. In analogy 
with the simple case of Section 1.3.3, we call the response of the system to 
any initial state williin one of the null spaces a mode of the system. 

Example 1.5. hoerted pe~tr l~ t l~~nr .  
Consider the inverted pendulum of Example 1.1, but suppose that we 

neglect the friction of the carriage so that F = 0. The homogeneous part of 
the linearized state difcrential equation is now given by * ( t )  = Ax( t ) ,  where 

1 0 0  

L' L' 
The characteristic values of A can be found to be 

a, = 0, I.? = 0, a3 =&, ah= -&. 1-112 

I t  is easily found that corresponding to the double characteristic value 0 
there is only one characteristic vector, given by 

To 2, and 1, correspond the characteristic vectors 
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Since the characteristic values I ,  and 2, are single, the corresponding null 
spaces have dimension one and are spanned by the corresponding charac- 
teristic vectors. Since zero is a double characteristic value, the corresponding 
null space is two-dimensional. The fact that there do not exist two linearly 
independent characteristic vectors gives rise to one subblock in the Jordan 
form of size 2 x 2. Let the characteristic vector 1-113 be (he first column 7, 
of the transformation matrix T. Then the second column q2 must follow from 

I t  is easily found that the general solution to this equation is 

where is an arbitrary constant. We take B = 0. Since qs and 7, have to be 
the characteristic vectors given by 1-114, we find for the transformation 
matrix T, 

The corresponding Jordan normal form of A is 

The exponential of A can now easily be found from 1-102,l-117, and 1-118. 
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1.4 STABILITY 

1.4.1 Definitions of Stability 

In this section we are interested in the overall time behavior of differential 
systems. Consider the general nonlinear state differential equation 

:2(t) = f [x(t) ,  u ( f ) ,  f ] .  1-119 

An important property of the system is whether or not the solutions of the 
state differential equation tend to grow indefinitely as t - m. In order to 
simplify this question, we assume that we are dealing with an autonomous 
system, that is, a system without an input rr or, equivalently, a system where 
u is a fixed time function. Thus we reduce our attention to the system 

i ( f )  = f [ ~ ( f ) ,  fl. 1-120 

Just as in Section 1.2.2 on linearization, we introduce a r~o~itirralsolttfio~~ xo(t) 
which satisfies the state differential equation: 

A case of special interest occurs when xo(t) is a constant vector x,; in this 
case we say that x, is an eqtiilibrirmir state of the system. 

We now discuss the stability of sol~itions of state differential equations. 
First we have the following definition (for the whole sequence of definitions 
that follows, see also Kalman and Bertram, 1960; Zadeh and Desoer, 1963; 
Brockett, 1970). 

Definition 1.1. Consider the state dr~ererrtial eqrration 

*( t )  = f [ ~ ( f ) ,  f l  1-122 

wit11 the ~ion~inalsol~rfion xo(t). Tlrerr the noniirial sohrtion is stable in the sense 
of Lyaprrnov i f for  anj' to  mrd at~ji E > 0 there exists a a(&, to)  > 0 (clependi~tg 
rrporr E mrd possibl~~ trporr to) strclr that IIx(to) - xo(to)ll l S inqlies 
Ilx(t) - xo(f)ll < E for all t 2 to. 

Here llx[l denotes the norm of a vector x; the Euclidean norm 

where the f i ,  i = 1,2,  . . . , n, are the components of x, can be used. Other 
norms are also possible. 

Stability in the sense of Lyapunov guarantees that the state can be pre- 
vented from departing too far from the nominal solution by choosing the 
initial state close enough to the nominal solution. Stability in the sense of 



1.4 Stability 25 

Lyapunov is a rather weak form of stability. We therefore extend our 
concept of stability. 

Definition 1.2. The nomi11o1 sol~riion x,,(l) of the state d~fere~itial eqt~ation 

is asynlptolically stable if 
(a) It is stable in the sense of L)~ap~rnov; 
(b) For aN to there exists a p(t,) > 0 (possibl~~ depending 1cpon to) such that 
Ilx(t,) - xo(to)ll < p intplies 

Ilx(t) - x,(t)ll -+ 0 as t --t m. 

Thus asymptotic stability implies, in addition to stability in the sense of 
Lyapunov, that the solution always approaches the nominal solution, 
provided the initial deviation is within the region defined by 

Asymptotic stability does not always give information for large initial 
deviations from the nominal solution. The following definition refers to the - 
case of arbitrary initial deviations. 

Definition 1.3. The rromiiml sohltion x,(t) of the state dtfereirtial eqrratioir 

is asymptotically stable in the large if 
(a) It is stable in the sense of L~~apunou; 
@) For ary %(to) arid any to 

Ilx(t) - ~n(t)ll --t 0 
a s t - m .  

A solution that is asymptotically stable in the large has therefore the property 
that all other solutions eventually approach it. 

So far we have discussed only the stability of sol~rtioirs. For nonlinear 
systems this is necessary because of the complex phenomena that may occur. 
In the case of linear systems, however, the situation is simpler, and we find it 
convenient to speak of the stability of sj~stenrs rather than that of solutions. 
To make this point clear, let x,(t) be any nominal solution of the linear 
differential system 

i ( t )  = A(t)x(t), 1-127 

and denote by x(t) any other solution of 1-127. Since both x,(t) and x(t) are 
solutions of the linear state differential equation 1-127 x(t) - x,(t) is also a 
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This shows that in order to study the stahility of the nominal solution x,(t), 
we may as well study the stability of the zero solution, that is, the 
solution x ( t )  = 0. I f  the zero solution is stable in any sense (of 
Lyapunov, asymptotically or asymptotically in the large), any other 
solution will also be stable in that sense. We therefore introduce the following 
terminology. 

Definition 1.4. The linear &@erential sjutei~i 

is stable in a certain sense (of L J ~ ~ I I I I O U ,  osj~iiiptotically or asjt~~lptoticolly in 
the large), i f the  zero sohrtio~i x,(t) = 0 is stable in f l ~ a f  serlse. 

In addition to the fact that all nominal solutions of a linear differential 
system exhibit the same stability properties, for linear systems there is no 
need to make a distinction between asymptotic stability and asymptotic 
stability in the large as stated in the following theorem. 

Theorem 1.12. The liriear dyere~itial sjtste~iz 

is asyrilptotically stable i fand only if it is asj~riiptotically stable in the large. 

This theorem follows from the fact that for linear systems solutions may be 
scaled up or down without changing their behavior. 

We conclude this section by introducing another form of stability, which 
we define only for linear systems (Brockett, 1970). 

Definition 1.5. Tlte linear tinie-varying fliiere~itial sj~sterii 

x( t )  = A(t)x(t)  1-131 

is exponentially stable if there exist positiue cansta~~ts o: arid ,9 slrcl~ tllal 

A system that is exponentially stable has the property that the state converges 
exponentially to the zero state irrespective of the initial state. 

We clarify the concepts introduced in this section by some examples. 

Example 1.6. Iiiuertedpenditliwi. 
The equilibrium position s(t)  = 0, $(t)  = 0 ,  p( t )  = 0 of the inverted 

pendulum of Example 1.1 (Section 1.2.3) obviously is not stable in any sense. 



Example 1.7. Susperldedpeild[rlla~i. 
Consider the pendulum discussed in Example 1.1 (Section 1.2.3). Suppose 

that p(!) =-- 0. From physical considerations it is clear that the solution 
s(t) = 0, $(t) = T (corresponding to a suspended pendulum) is stable in the 
sense of Lyapunov; by choosing sufficiently small initial offsets and velocities, 
the motions of the system can be made to remain arbitrarily small. The system 
is not asyniptotically stable, however, since no friction is assumed for the 
pendulum; once it is in motion, it remains in motion. Moreover, if the 
carriage has an initial displacement, it will not return to the zero position 
without an external force. 

Example 1.8. Stirred to~llc. 
Consider the stirred tank of Example 1.2 (Section 1.2.3). For ~r(t) = 0 the 

linearized system is described by 

Obviously tl(t) and tz(t) always approach the value zero as t increases 
since 0 > 0. As a result, the linearized system is asymptotically stable. 
Moreover, since the convergence to the equilibrium slate is exponential, the 
system is exponentially stable. 

In Section 1.4.4 it is seen that if a linearized system is asymptotically 
stable then the equilibrium state about which the linearization is performed 
is asymptotically stable but not necessarily asymptotically stable in the large. 
Physical considerations, however, lead us to expect that in the present case 
the system is also asymptotically stable in the large. 

1.4.2 Stability of Time-Invariant Linear Systems 

In this section we establish under what conditions time-invariant linear 
systems possess any of the forms of stability we have discussed. Consider the 
system 

i ( t )  = Ax((), 1-135 

where A is a constant 11 x 11 matrix. In Section 1.3.3 we have seen that if A 
has rt distinct characteristic values rZ, ,  A?, . . . . A ,  and corresponding charac- 
teristic vectors e,, e,, . . . , e,,, the response of the system to any initial state 



28 Elements of Linenr System Theory 

can be represented as ,I 

x(t) = 2 piek'"ei, 
i=l 

where the scalars pi, i = 1,2, . . . , ] I  follow from the initial state x(0). For 
systems with nondiagonizable A, this expression contains additional terms 
of the form t" exp (Lit) (Section 1.3.4). Clearly, the stability of the system in 
both cases is determined by the characteristic values A+ We have the following 
result. 

Theorem 1.13. Tlze tirne-illvariant linear sj~steii~ 

d(t) = Ax(t) 

is stable in tlre seiwe of Lj~ap~rnou ifarid aiily if 

(a) all of tlre cl~aracteristic ualties of A haue i~orlpositive realparts, and 
(h) to arg~ clraracteristic value a11 the iiiiagiiiarj~ axis with ~rrriltiplicity 111 tlrere 
correspond exactly n1 characferistic uectors of the matrix A. 

Condition (b) is necessary to prevent terms that grow as t L  (see Section 1.3.4). 
This condition is always satisfied if A has no multiple characteristic values 
on the imaginary axis. For asymptotic stability we need slightly stronger 
conditions. 

Theorem 1.14. The time-iizvariar~t system 

is asj~niptotically stable ifaird oirly i fa l l  of the cl~aracteristic ua11res of A have 
strictly negative realparts. 

This result is also easily recognized to be valid. We furthermore see that if a 
time-invariant linear system is asymptotically stable the convergence of the 
state to the zero state is exponential. This results in the following theorem. 

Theorem 1.15. The time-invariant sj~stein 

~ ( t )  = Ax(t) 1-139 

is expairentially stable i f  arid silly i f  it is asynrptotically stable. 

Since it is really the matrix A that determines whether a time-invariant 
system is asymptotically stable, it is convenient to use the following ter- 
minology. 

Definition 1.6. Tlre 11 x n canstairt inatrix A is  asj~itiptotically stable ifaN its 
characteristic ualrres haue strictly rregatiue realparts. 

The characteristic values of A are the roots of the characteristic polynomial 
det (AI - A). Through the well-known Routh-Hurwitz criterion (see, e.g., 
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Schwarz and Friedland, 1965) the stability of A can be tested directly from 
the coefficients of the characteristic polynomial without explicitly evaluating 
the roots. With systems that are not asymptotically stable, we find it con- 
venient to refer to those characteristic values of A that have strictly negative 
real parts as the stablepoles of the system, and to the remaining ones as the 
trnsfablepoles. 

We conclude this section with a simple example. An additional example is 
given in Section 1.5.1. 
Example 1.9. Stirred tmik. 

The matrix A of the linearized state differential equation of the stirred tank 
of Example 1.2 has the characteristic values -(1/28) and -(I/@). As we 
concluded before (Example 1.8), the linearized system is asymptotically 
stable since 0 > 0. 

1.4.3* Stable and Unstable Subspaces for Time-Invariant Linear 
Systems 

In this section we show how the state space of a linear time-invariant 
differential system can be decomposed into two subspaces, such that the 
response of the system from an initial state in the first subspace always con- 
verges to the zero state while the response from a nonzero initial state in the 
other subspace never converges. 

Let us consider the time-invariant system 

i( t )  = As(t) 1-140 

and assume that the matrix A has distinct characteristic values (the more 
general case is discussed later in this section). Then we know from Section 
1.3.3 that the response of this system can he written as 

74 

x(t) = 1 p@'"e,, 1-141 
.=I 

where A,, A,, . . . , A, are the characteristic values of A,  and el, . . . , en are 
the corresponding characteristic vectors. The numbers p,, p,, . . . , p, are 
the coefficients that express how the initial state x(0) is decomposed along the 
vectors el, e,, . . . , en. 

Let us now suppose that the system is not asymptotically stable, which 
means that some of the characteristic values Ai have nonnegative real parts. 
Then it is clear that the state will converge to the zero state only if the initial 
state has components only along those characteristic vectors that correspond 
to stable poles. 

If the initial state has components only along the characteristic vectors that 
correspond to unstable poles, the response of the state will be composed of 
nondecreasing exponentials. This leads to the following decomposition of the 
state space. 
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Definition 1.7. Consider the ti-n'iniertsiortol systetn x( t )  = Ax(t) with A a 
coltstarit tiiatrix. Suppose that A lras n distirrct characteristic valrres. Then we 
dejirte t l ~ e  stahlc strhspace for tltis s~tstertt as the real linear slrbspace spaniter1 
bj7 tlrose clraracteristic uectors of A that correspond to clraracteristic uahres 
ivitlt strictly liegafiue realparts. The t~nstable srrbspace for this systerit is the 
real sobspace sparzried bj, those characteristic uectors of A that correspond to 
clraracteristic valfres rvith nonnegative realparts. 

We now extend this concept to more general time-invariant systems. In 
Section 1.3.4 we saw that the response of the system can be written as 

72 

.(I) = 2 T. exp (Jit)Uivi, 
: - 3  

1-142 
,-A 

where the ui are in the null spaces .Ar,, i = 1 ,  2 ,  . . . , li. The behavior of 
the factor exp ( J J )  is determined by the characteristic value A,; only if Ai has 
a strictly negative real part does the corresponding component of the state 
approach the zero state. This leads us in analogy with the simple case of 
Definition 1.7 to the following decomposition: 

Definition 1.8. Consider the 0-r/irtlensiona/ /irtear time-itluariar~t s ~ ~ s t n n  
x( t )  = Az(t) .  Tlteri we dejirie tlte stable sltbspace for this s)~tetl i  as tlte real 
sltbspace of the direct slim of rltose rirrll spaces .A'", that correspond to cltarac- 
teristic val~res of A with strictly ttegatiue realparts. Sirt~ilarly, we de@ie the 
urwtablc strbspace of A as the real srrbspace of the direct smii of tlrose null 
spaces dYi that correspot~d to characteristic uallres of A with rtottriegafiue real 
parts. 

As a result of this definition the whole real n-dimensional space 3%"' is the 
direct sum of the stable and the unstable subspace. 

Example 1.10. I,tvertedpenrlrrllori. 
In Example 1.4 (Section 1.3.3), we saw that the matrix A of the linearized 

state differential equation of the inverted pendulum has the characteristic 
values and vectors: 
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Apparently, the stable subspace of this system is spanned by the vectors e, 
and e,,, while the unstable subspace is spanned by e, and e,. 

Example 1.11. ~1ver . t~dpen~1111111~~ 11~itl101ftfr.ictior1. 
In Example 1.5 (Section 1.3.4), we discussed the Jordan normal form of 

the A matrix of the inverted pendulum with negligible friction. There we 
found a double characteristic value 0 and the single characteristic values Jm and -m. The null space corresponding to the characteristic 
value 0 is spanned by the first two columns of the transformation matrix T, 
that is, by 

These two column vectors, together with the characteristic vector corre- 
sponding to that is, 

span the unstable subspace of the system. The stable subspace is spanned by 
the remaining characteristic vector 

1.4.4" Investigation of the Stability of Nonlinear Systems through 
Linearization 

Most of the material o r  this book is concerned with the design of linear 
control systems. One major goal in the design of suc11 systems is stability. In 
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later chapters very powerful techniques for finding stable linear feedback 
control systems are developed. As we have seen, however, actual systems 
are never linear, and the linear models used are obtained by linearization. 

This means that we design systems whose linearized models possess good 
properties. The question now is: What remains of these properties when the 
actual nonlinear system is implemented? Here the following result is helpful. 

Theorem 1.16. Consirler the time-inuoriant sj~stern 111ith state differential 
egttation 

q t )  = f [x(t)]. 1-148 

Suppose tltat the systenz has an equilibri~nn state x, and that the j'is~ction f 
possessespartial deriuatiues with respect to the conlponents of s at xa. Suppose 
that the linearized state d~rerential equation about x, is 

w11ere the constant rnatrix A is the Jacobiarl o f f  at s,. T11etr if A is asy~ttp- 
totically stable, tlre solutiotl x(t) = z, is an as)~npoticallJJ stable soh~tion of 
1-148. 

For a proof we refer the reader to Roseau (1966). Note that of course we 
cannot conclude anything about stability in the large from the linearized 
state differential equation. 

This theorem leads to a reassuring conclusion. Suppose that we are con- 
fronted with an initially unstable system, and that we use linearized equations 
to find a controller that makes the linearized system stable. Then it can he 
shown from the theorem that the actual nonlinear system with this controller 
will at least be asymptotically stable for small deviations from the equi- 
librium state. 

Note, however, that the theorem is reassuring only when the system con- 
tains "smooth" nonlinearities. If discontinuous elements occur (dead zones, 
stiction) this theory is of no help. 

We conclude by noting that if some of the characteristic values of A have 
zero real parts while all the other characteristic values have strictly negative 
real parts no conclusions about the stability of x, can be drawn from the 
linearized analysis. If A has some characteristic values with positive real 
parts, however, x, is not stable in any sense (Roseau, 1966). 

An example of the application of this theorem is given in Chapter 2 
(Example 2.6, Section 2.4). 
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1 .5  T R A N S F O R M  ANALYSIS  O F  TIME- INVARIANT 
S Y S T E M S  

1.5.1 Solution of the State Differential Equation through Laplace 
Transformation 

Often it  is helpful t o  analyze time-invariant linear systems through Laplace 
transformation. We define the Laplace transform of a time-varying vector 
z(t) as follows 

where s is a complex variable. A boldface capital indicates the Laplace 
transform of the corresponding lowercase time function. The Laplace 
transform is defined for those values of s for which 1-150 converges. We see 
that the Laplace transform of a time-varying vector z(t) is simply a vector 
whose components are the Laplace transforms of the components of z(t). 

Let us first consider the homogeneous state differential equation 

where A is a constant matrix. Laplace transformation yields 

since all the usual rules of Laplace tiansformations for scalar expressions 
carry over to the vector case (Polak and Wong, 1970). Solution for X(s) 
yields 

X(s) = (s l  - A)-'~(0). 1-153 

This is the equivalent of the time domain expression 

x(t) = eA'x(0). 
We conclude the following. 

Theorem 1.17. Let A be a constall1 11 x n niotrix. Tllen ( s l -  A)-' = 
9[eA'], or, egziivale~~rly, e"' = 3- ' [ ( s l  - A)-']. 

The Laplace transform of a time-varying matrix is obtained by transforming 
each of its elements. Theorem 1.17 is particularly convenient for obtaining 
the explicit form of the transition matrix as long as n is not too large, 
irrespective of whether or  not A is diagonalizable. 

The matrix function ( s l -  A)-' is called the resolue~~t of A. The following 
result is useful (Zadeh and Desoer, 1963; Bass and Gura, 1965). 
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Theorem 1.18. Consider tlte constant n x 11 nlotrix A with characteristic 
p o ~ ~ ~ o r n i a l  

det (sI - A) = s'l + n.,-lsrL-l + . . . + u1s + za.,. 1-155 

Tlleri the resolvent o / A  can be nvilten as 

1 
(sl - A)-' = 2 s'-lR ,, 

det (sJ - A)M 

ivitlz a, = 1. The coejicie~tts a, aid tlie matrices R', i = 1, 2 ,  . . . , n can be 
obtained throlrgl~ the follol~~ing algoritltni. Set 

a,=l, R, ,= I .  1-158 
Tltni 

Here we have employed the notation 

t r  (M) = 2 M,,, 1-162 
,=I 

if M is an n x n matrix with diagonal elements Mi:, i = 1, 2, . . . , ? I .  We 
refer to the algorithm of the theorem as Leuerrier's algorithni (Bass and 
Gura, 1965). I t  is also known as Sourialr's rtzethod or Foddeeua's nietlmd 
(Zadeh and Desoer, 1963). The fact that R, = 0 can he used as a numerical 
check. The algorithm is very convenient for a digital computer. It  must be 
pointed out, however, that the algorithm is relatively sensitive to round-off 
errors (Forsythe and Strauss, 1955), and double precision is usually employed 
in the computations. Melsa (1970) gives a listing of a FORTRAN computer 
program. 

Let us now consider the inhomogeneous equation 

where A and B are constant. Laplace transformation yields 
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which can he solved for X(s). We find 

X(s) = (sI - A)-lz(0) + (sI - A)-'BU(s). 1-165 

Let the output equation of the system be given by 

l /(t) = cX(t), 1-166 
where C i s  constant. Laplace transformation and substitution of 1-165 yields 

Y ( s )  = CX(s) = C(sI - A)-'~(0) + C(sI - A)-'BU(s), 1-167 

which is the equivalent in the Laplace transform domain of the time domain 
expression 1-70 with to  = 0 :  

~ ( t )  = Ce"'s(0) + CJ "e""-"Btf(s) dr .  1-168 
0 

For x(0) = 0 the expression 1-167 reduces to 

where 

The matrix H(s) is called the transfer matrix of the system. If H(s) and U(s )  
are known, the zero initial state response of the system can he found by 
inverse Laplace transformation of 1-169. 

By Theorem 1.17 it follows immediately from 1-170 that the transfer matrix 
H(s) is the Laplace transform of the matrix function K(t) = Cexp (At)B, 
t 2 0. I t  is seen from 1-168 that K(t - .r), t 2 T, is precisely the impulse 
response matrix of the system. 

From Theorem 1.18 we note that the transfer matrix can be written in the 
form 

H(s)  = 
1 

det (sI - A) 
m, 

where P(s) is a matrix whose elements are polynomials in s. The elements of 
the transfer matrix H(s) are therefore rational functions of s. The common 
denominator of the elements of H(s) is det (sI - A) ,  onless cancellation occurs 
of factors of the form s - A,, where ', is a characteristic value of A,  in all 
the elements of H(s). 

We call the roots of the common denominator of H(s) the poles of the 
trmwfer iva tr i  H(s). I f  no cancellation occurs, the poles of the transfer 
matrix are precisely the poles of the system, that is, the characteristic values 
of A. 

If the input rr(t) and the output variable ~ ( t )  are both one-dimensional, 
the transfer matrix reduces to a scalar transfer j'ifirnction. For multiinput 
multioutput systems, each element H,,(s) of the transfer matrix H(s) is the 
transfer function from the j-th component of the input to the i-th component 
of the output. 
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Example 1.12. A ~lot~rliogonizable sj~steni. 
Consider the svstem 

It is easily verified that this system has a double characteristic value 0 but 
only a single characteristic vector, so that it is not diagonizable. We compute 
its transition matrix by Laplace transformation. The resolvent of the system 
can be found to be 

Inverse Laplace transformation yields 

Note that this system is not stable in the sense of Lyapunov. 

Example 1.13. Stirred tank. 
The stirred tank of Example 1.2 is described by the linearized state differen- 

tial equation 

and the output equation 

The resolvent of the matrix A is 

(sI - A)-' = 1-177 
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The system has the transfer matrix 

The impulse response matrix 1-75 of the system follows immediately by 
inverse Laplace transformation of 1-178. 

1.5.2 Frequency Response 

In this section we study the frequency response of time-invariant systems, 
that is, the response to an input of the form 

where I, , ,  is a constant vector. We express the solution of the state differential 
equation 

? ( I )  = Ax( / )  + Elf ( / )  1-180 

in terms of the solution of the homogeneous equation plus a particular 
solution. Let us first try to find a particular solution of the form 

where x,,, is a constant vector to be determined. I t  is easily found that this 
particular solution is given by 

xJt) = ( j w l  - A)-'Bu,,,eiLU1, t f 0. 1-182 

The general solution of the homogeneous equation ? ( I )  = Ax([)  can be 
written as 

xf,(t) = #ao, 1-183 

where a is an arbitrary constant vector. The general solution of the inhomo- 
geneous equation 1-180 is therefore 

The constant vector a can be determined from the initial conditions. If  the 
system 1-180 is asy~i~ptoticallj~ stable, the first term of the solution will 
eventually vanish as t increases, and the second term represents the steady- 
state response of the state to the input 1-179. The corresponding steady-state 
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response of the output 

y(t)  = Cx(t)  1-185 
is given by 

y(t) = C(jw1  - A)-'BII,,,~'"' 
= ~(jw)u,, ,e""'.  1-186 

We note that in this expression the transfer matrix H(s) appears with s 
replaced by jw. We call H(jw) thefieqttencj~ response iiiatris of the system. 

Once we have obtained the response to complex periodic inputs of the 
type 1-179, the steady-state response to real, sinusoidal inputs is easily found. 
Suppose that the ic-th component p,(t) of the input u ( f )  is given as follows 

ph.(f)  = Pk sin (wt + $3. t  2 0.  1-187 

Assume that all other components of the input are identically zero. Then the 
steady-state response of the i-th component ili(t) of the output y(t)  is given by 

77i(t) = IH;r,(jw)l Pr sin (wt + & + y i J .  1-188 

where Hi,(jw) is the (i, k)-th element of H(jw)  and 

?pik = arg 1Hdjw) l .  1-189 

A convenient manner of representing scalar frequency response functions is 
through asymptotic Bode plots (D'Auo and Houpis, 1966). Melsa (1970) 
gives a FORTRAN computer program for plotting the modulus and the 

. argument of a scalar frequency response function. 
In conclusion, we remark that it follows from the results of this section that 

the steady-state response of an asymptotically stable system with frequency 
response matrix H ( j o )  to a constant input 

~ ( t )  = I!,,, 1-190 
is given by 

~ ( t )  = H(o)~t,,,. 1-191 

Example 1.14. Stirred tank. 
The stirred tank of Example 1.2 has the transfer matrix (Example 1.13) 
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The system is asymptotically stable so that it makes sense to consider the 
frequency response matrix. With the numerical data of Example 1.2, we have 

1.5.3 Zeroes of Transfer Matrices 

Let us consider the single-input single-output system 

where p(t)  and q( t )  are the scalar input and output variable, respectively, b is 
a column vector, and c a row vector. The transfer matrix of this system 
reduces to a transfer function which is given by 

Denote the characteristic polynomial of A as 

det ( s l -  A) = $(s). 1-196 

Then H(s) can be written as 

where, if A is an 11 x n matrix, then $(s) is a polynomial of degree n and v ( s )  
apolynomial of degree 11 - 1 or  less. The roots of y(s )  we call the zeroes of 
the sJUten1 1-194. Note that we determine the zeroes before cancelling any 
common factors of y(s)  and $(s). The zeroes of H(s) that remain after 
cancellation we call the zer'oes of the transfer f~mcfiol~.  

In  the case of a multiinput multioutput system, H(s) is a matrix. Each 
entry of H(s) is a transfer function which has its own zeroes. I t  is not obvious 
how to define "the zeroes of H(s)" in this case. In  the remainder of this 
section we give a definition that is motivated by the results of Section 3.8. 
Only square transfer matrices are considered. 

First we have the following result (Haley, 1967). 

Theorem 1.19. Consider the sj~stenl 
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wilere the state x has dbiiensior~ rl and both the irtplrt 11 arid the otrprt uariable 
?j have dimension rn. Let H(s) = C(sI - A)-'B be the tra~isfe~~~natrix  of the 
sjvteii~. Tllen 

$(s) = det ( s l -  A) ,  

and ~ ( s )  is apol~~~~oni ia l  in s of degree n - I I I  or Irss. 

Since this result is not generally known we shall prove it. We first state the 
following fact from matrix theory. 

Lemma 1.1. Let M and N be matrices of diniensia~~s 111 x 11 arld 11 x 111, 

respectively, and let I,,, and I,, denote lrrlit matrices of dii~ie~isions ni. x 111 and 
11 x 11. Tllen 

( 4  det (I,,, + MN) = det ( I ,  + NM). 1-201 

(b) ~ l y p o s e  det (I,, + M N )  # 0; then I 

(I , ,  + A4N)-l = I,,, - M ( I ,  + NA4)-IN. 1-202 

The proof of (a) follows from considerations involving the characteristic 
values of I,,, + MN (Plotkin, 1964; Sain, 1966). Part (b) is easily verified. 
I t  is not needed until later. 

To prove Theorem 1.19 consider the expression 

det [AI,, + C(sI,, - A)-lB], 1-203 

where A is a nonzero arbitrary scalar which later we let approach zero. 
Using part (a) of the lemma, we have 

det [AI,, + C(sI, - A)-'B] = det (AI,,,) det I 

- - 1-204 
det (sI,, - A)  

We see that the left-hand and the right-hand side of 1-204 are polynomials 
in A that are equal for all nonzero A ;  hence by letting A - 0 we obtain 

v@) det [C(sl - A)-'B] = - , 
+(s) 
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where 

y(s) = lim A"' det 
A-0 A 

This immediately shows that y(s) is a polynomial in s. We now consider the 
degree of this polynomial. For Is1 + w we see from Theorem 1.18 that 

lim s(sI - A)-' = I. 1-207 
Id ld-  

Consequently, 
s7"y(s) 

- lim s"' det [C(sI - A)-'B] lim - - 
I s I~I-- 

= lim det [Cs(sI - A)-'B] = det (CB). 1-208 
Ill+- 

This shows that the degree of &) is greater than that of y(s) by at least 111, 
hence y(s) has degree rl - 111 or less. If det (CB) # 0, the degree of y(s) is 
exactly 11 - 111. This terminates the proof of Theorem 1.19. 

We now introduce the following definition. 

Definition 1.9. The .woes ofthe sjrste~il 

11,lrere the state a lras diii~ension n and both the irlplrt it aitd the output y haw 
ili~iieilsioil in, are the zeroes of the pol~uloiilial ~ ( s ) ,  wliere 

Here H(s) = C(sI - A)-lB is the trailsfer ii1ah.i~ aird $(s) = det (sI - A )  
the cliaracter.istic pol~m~iiiial of the sj,stern. 

An 11-dimensional system with rn-dimensional input and output thus has at 
most 11 - lit zeroes. Note that for single-input single-output systems our 
definition of the zeroes of the system reduces to the conventional definition 
as described in the beginning of this section. In this case the system has at 
most it - 1 zeroes. 

The numerical computation of the numerator polynomial for a system of 
some complexity presents problems. One possible way of going about this 
is to write the numerator polynomial as 

where dls) is the characteristic polynomial of the system. The coeflicienls of 
?y(s) canthen be found by subsiitukng rr  - in + I-suitable values for s into 
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the right-hand side of 1-211 and solving the resulting linear equations. 
Another, probably more practical, approach results from using the fact that 
from 1-206 we have 

~ J ( s )  = lim y(s, A), 1-212 
i - U  

where 

y(s, A) = A"' d e t  1-213 

Inspection shows that we can write 

where w&), i = 0,  1, .  . . , 1 1 1 ,  are polynomials in .r. These polynomials can 
be computed by calculating y(s, 2.) for in different values of A. The desired 
polynomial yr(s) is precisely uu(s). 

We illustrate the results of this section by the following example. 

Example 1.15. Sirred ta~ ik .  
The stirred tank of Example 1.2 (Section 1.2.3) has the transfer matrix 

The characteristic polynomial of the system is 

We find for the delerminant of the transfer matrix 

-- 
28 V,, 

det [H(s)] = 

(s  + 9 ( 8  + 8) 
Apparently, the transfer matrix has no zeroes. This is according to expectation, 
since in this case rl - 111 = 0 so that the degree o r  y(s) is zero. 
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1.5.4 Interconnections o f  Linear Systems 

In this section we discuss interconnections of linear systems. Two important 
examples of interconnected systems that we frequently encounter are the 
series conilecrion of Fig. 1.5 and the feedbacli conjigfrguration or closed-loop 
sjwteni of Fig. 1.6. 

Fig. 1.5. Series connection. 

Y2It) s y s t e m  Ct 
Fig. 1.6. Feedback connection. 

We often describe interconneclions of systems by the state a~ig~nentatioi~ 
teclrniq~ie. In the series connection of Fig. 1.5, let the individual systems be 
described by the state differential and output equations 

&(t) = Al(t)xl(t)  + Bl( t )~i l ( t )  I system 1, 
yl(t)  = c, ( t )+, (o  + ~ , ( t ) u , ( t )  1-218 

Defining the a~rgiiieiited state 
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the interconnected system is described by the state differential equation 

where we have used the relation u,(t) = yl(t) .  Taking yz( t )  as the output of 
the interconnected system, we obtain for the output equation 

In the case of time-invariant systems, it is sometimes convenient to describe 
an interconnection in terms of transfer matrices. Suppose that the individual 
transfer matrices of the systems 1 and 2 are given by H,(s) and H,(s), respec- 
tively. Then the overall transfer matrix is H,(s)Ifl(s), as can be seen from 

Note that the order of H, and Ifl generally cannot be interchanged. 
In the feedback configuration of Fig. 1.6, r ( t )  is the input to the overall 

system. Suppose that the individual systems are described by the state 
diKerential and output equations 

Note that we have taken system 1 without a direct link. This is to avoid 
implicit algebraic equations. In terms of the augmented state x(t)  = 
col [%,(I), x,( t)] ,  the feedback connection can be described by the state 
differential equation 

where we have used the relations u,(t) = ~ ~ ( 1 )  and u,(t) = i f f )  - y,(t). If 
y,(t) is the overall output of the system, we have for the output equation 

?ll(t) = [ c l ( t ) ,  o lz ( t ) .  1-225 

Consider now the time-invariant case. Then we can write in terms of transfer 
matrices 

Y I ( s )  = H,(s)[R(s)  - H,(s)Ylb) l ,  1-226 



where H,(s) and H,(s) are the transfer matrices of the individual systems. 
Solving for Y, (s ) ,  we find 

Y1(s )  = [I  + H,(S)H,(S)]-~H~(S)R(S).  1-227 

I t  is convenient to give the expression I + H,(s)H,(s) a special name: 

Definition 1.10. Co~uider the feedback corflguratio~~ of Fig. 1.6. and let the 
systems I and 2 be time-inuariant sj~ste~tts with transfer litatrices H,(s) and 
H,(s), respectively. Then the ~natrixfimctian 

J(s) = I + H,(s)H,(s) 1-228 

is called the retrirn dz%fevence ntoirix. The r~~atrixfirr~ctio~t 

L(s) = H ~ ( s ) H d s )  1-229 

is called the loop gain ntahix. 

The term "return difference" can be clarified by Fig. 1.7. Here the loop is cut 
at  the point indicated, and an external input variable n,(t)  is connected. 

H215 l  r- 
Fig. 1.7. Illustration of return difference. 

This yields (putting r(t)  = 0) 

Y l ( s )  = -Hl(s)H,(s)U,(s). 

The difference between the "returned variable" y,(t) and the "injected 
variable" u d l )  is 

Note that the loop can also be cut elsewhere, which will result in a different 
return difference matrix. We strictly adhere to the definition given above, 
however. The term "loop gain matrix" is seif-explanatory. 
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A matter of great interest in control engineering is the stability of inter- 
connections of systems. For series connections we have the following result, 
which immediately follows from a consideration of the characteristic poly- 
nomial of the augmented state differential equation 1-220. 

Theorem 1.20. Co~isider the series coiitiectioit of Fig. 1.5, wliere tlie sjrstents 
I a d  2 are time-iiiuariniit sjwteiiis with chnracteristic polytio~tiials $,(s) and 
$,(s), respectively. Tlieiz the iiiterco~iiiectioii has tlie characteristic polyrtoiiiial 
$,(s)$,(s). Hence the iittercoiittected sj~steiii is asjmtptoticalb stable if arid 
a i t / ~ ~  if both sjutent I atrd system 2 are asj~riiptotically stnblr. 

In terms of transfer matrices, the stability of the feedback configuration of 
Fig. 1.6 can be investigated through the following result (Chen, 1968a; Hsu 
and Chen, 1968). 

Theorem 1.21. Consider the feedback coi2figirratioii of Fig. 1.6 ;it 11,1iich the 
sysfeiils I and 2 are tiiiie-invarinilt liriear sjisteiits with trn!isfer inatrices 
Hl(s) and H&) arid characteristic polyiioiitials $,(s) arid +,(s), respectiuely, 
and i~~lzere sj~teii t  I does riot have a direct liiik. Tlieii the characteristic pa@- 
itoiitial of the iiiterconitected sj~~teli7 is 

Herice the interconnected sj~stern is stable if and only if the polyuo~izial 1-232 
has zeroes witli stricf/y negative real parts oitly. 

Before proving this result we remark the following. The expression 
det [I + Hl(s)Hz(s)] is a rational function in s. Unless cancellations take 
place, the denominator of this function is $,(s)$?(s) so that the numerator of 
det [I  + H,(s)H,(s)] is the characteristic polynomial of the interconnected 
system. We often refer to 1-232 as tlie closed-loop cl~aracter.isticpolyiiaiitial. 

Theorem 1.21 can be proved as follows. In the time-invariant case, it 
follows from 1-224 for the state dserential equation of the interconnected 
system 

We show that the characteristic polynomial of this system is precisely 1-232. 
For this we need the following result from matrix theory. 

Lemma 1.2. Let M be a square, partitiorled iimtris of the foriit 
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Then ifdet ( M J  # 0, 

det ( M )  = det (MI )  det (M,, - M,M;'II.I,). 1-235 

Ifdet (M,)  # 0, 

det ( M )  = det (MJ det (MI  - MM,M,1M3). 1-236 

Tlie lemma is easily proved by elementary row and column operations on 
M. With the aid of Lemmas 1.2 and 1.1 (Section 1.5.3), the characteristic 
polynomial of 1-233 can be written as follows. 

s1-  A, + B,D,C, B,C, 
det ( 

-B,C, s l -  A? 1 
= det ( s l -  A 3  det [sl - A, + B,D,C, + B,C,(sl- A,)-lB,Cl] 
= det (sI - AJ det (sl  - A 3  

det { I  + B,[D, + C&l- A&lB,]CI(sl - AJ"} 
= det (sI - AJ det ( s l  - A,) 

det { I  + C,(d - Al)-lB,[C,(sl - A;)-'BE + D,]}. 1-237 
Since 

det (sI - A 3  = +l(s), 
det (s l  - A,) = +,(s), 1-238 

C,(sl - A,)-lB, = H,(s), 
C&l - A3-lB, + D, = H,(s), 

1-237 can be rewritten as 

This shows that 1-232 is the characteristic polynomial of the interconnected 
system; thus the stability immediately follows from the roots of 1-232. 

This method for checking the stability of feedback systems is usually more 
convenient for single-input single-output systems than for multivariable 
systems. In  the case or single-input single-output systems, we write 

where yl,(s) and y~&) are the numerator polynomials of the systems. By 
Theorem 1.21 stability now fnllows from the roots of the polynomial 

I t  often happens in designing linear feedback control systems that either 
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in the feedback path o r  in the feedforward path a gain factor is left undeter- 
mined until a late stage in the design. Suppose by way of example that 

where p is the undetermined gain factor. The characteristic values of the 
interconnected system are now the roots of 

An interesting problem is to construct the loci of the roots of this poly- 
nomial as a function of the scalar parameter p. This is a special case of the 
more general problem of finding in the complex plane the loci of the roots of 

as the parameter p varies, where $( s )  and yr(s)are arbitrary givenpolynomials. 
The rules for constructing such loci are reviewed in the next section. 

Example 1.16. Inuerted pend~rlmn 
Consider the inverted pendulum of Example 1.1 (Section 1.2.3) and suppose 

that we wish to stabilize it. I t  is clear that if the pendulum starts 
falling to the right the carriage musl also move to the right. We therefore 
attempt a method of control whereby we apply a force p( t )  to the carriage 
which is proportional to the angle +( t ) .  This angle can be measured by a 
potentiometer a t  the pivot; the force p ( t )  is exerted through a small servo- 
motor. Thus we have 

~ ( f )  = k $ ( f ) ,  1-245 

where k is a constant. I t  is easily found that the transfer function from p ( t )  
to $ ( t )  is given by 

- 1 - s  
L'M 

H h )  = 

( s  + 9 (sz - ;) 
The transfer function of the feedback part of the system follows from 1-245: 

The characteristic polynomial of the pendulum positioning system is 

while the characteristic polynomial of the feedback part is 
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I t  follows from 1-246 and 1-247 that in this case 

while from 1-248 and 1-249 we obtain 

We note that in this case the denominator of 1 + Hl(s)H3(s) is not the 
product of the characteristic polynomials 1-251, but that a factor s has been 
canceled. Therefore, the numerator of 1-250 is not the closed-loop char- 
acteristic polynomial. By multiplication of 1-250 and 1-251, it follows that 
the characteristic polynomial of the feedback system is 

We see that one of the closed-loop characteristic values is zero. Moreover, 
since the remaining factor contains a term with a negative coefficient, 
according to the well-known Routh-Hurwitz criterion (Schwarz and 
Friedland, 1965) there is a t  least one root with a positive real part. This 

'means that the system cannot be stabilized in this manner. Example 2.6 
(Section 2.4) presents a more sophisticated control scheme which succeeds 
in stabilizing the system. 

Example 1.17. Stirred fork 
Consider the stirred tank of Example 1.2 (Section 1.2.3). Suppose that it 

is desired to operate the system such that a constant flow F(t) and a 
constant concentration c(t) are maintained. One way of doing this is to use 
the main flow Fl to regulate the flow F, and the minor flow F', to regulate the 
concentration c. Let us therefore choose pl and b according to 

This means that the system in the feedback loop has the transfer matrix 

I t  is easily found with the numerical data of Example 1.2 that the transfer 
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matrix of the system in the forward loop is given by 

With this the return difference matrix is 

For the characteristic polynomials of the Lwo systems, we have 

It follows from 1-256 that 

(S + O.O1kl + 0.01)(s + 0.751~~ + 0.02) + 0.00251~,k~ 
det [J(s)] = . 1-258 

(S + O.Ol)(s + 0.02) 

Since the denominator of this expression is the product $,(s)$,(s), its 
numerator is the closed-loop characteristic polynomial. Further evaluation 
yields for Lhe closed-loop characteristic polynomial 

This expression shows that for positive lc, and k, the feedback system is 
stable. Let us choose for the gain coefficients li, = 10 and k, = 0.1. This 
gives for the characteristic polynomial 

The characteristic values are 

The effectiveness of such a control scheme 1-253 is investigated in Example 
2.8 (Section 2.5.3). 
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1.5.5" Root Loci 

In  the preceding section we saw that sometin~es it is of interest Lo find in the 
complex plane the loci of the roots of an expression of the form 

where +(s) and y~(s)  are polynomials in s, as the scalar parameler p varies. 
In this section we give some rules pertaining to these loci, so as to allow us 
to determine some special points of the loci and, in particular, to determine 
the asymptotic behavior. These rules male  it possible lo sketch root loci 
quite easily for simple problems; for more complicated problems the assist- 

ives a ance of a digital computer is usually indispensable. Melsa (1970) g' 
FORTRAN computer program for computing root loci. 

We shall assume the following forms for the polynomials $(s) and yr(s): 

We refer to the n,, i = 1 , , 7 . . . , n ,  as the opedoop poles, and to the 
11, = 1, 2 ,  . . . , in, as the open-loop zeroes. The roots of 1-262 will he called 
the closecl-loop poles. This terminology stems from the significance that the 
polynomials +(s) and y(s) have in Section 1.5.4. We assume that 111 < 11; 

this is no restriction since if 111 > 11 the roles of +(s) and rp(s) can he reversed 
by choosing l /p  as the parameler. 

The most important properties of the roolloci are the following. 

(a) Nwrbcl. of roots: Tlre nranber of roots of 1-262 is 11. Each of the roots 
traces a cor~tir~uotrs locus as p uar'iesfi.om -a to m. 

(h) Origirr of loci: Tile loci origillate for p = 0 at rlre poles vi, i = 1,2, 
. . . , n. This is obvious, since for p = 0 the roots of 1-262 are the roots of 
+b) .  

(c) Bchouior of loci as p -> f m: As p -+ f m, rn of the loci approaclr !Ire 
zeroes vi ,  i = 1, 2, . . . , In. The renlainillg 11 - nl loci go to iltfinifj~. This 
follows from the fact that the roots of 1-262 are also the roots of 

(d) hjmpto tcs  of loci: Tllose 11 - 111 loci that go to in fin it^^ approac/l 
asy~~~ptotical/y n - nz straigl~t lines 11~11icl1 ~ilake angles 
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with the positive real axis as p + + m, and arigles 

as p - - m. The n - 111 asj~~~rptotes irltersecf ill one point on the real axis 

<=I i=l 
1-267 

11 - 111 
These properties can he derived as follows. For large s we approximate 
1-262 by 

s" + psn'. 1-268 
The roots of this polynomial are 

111"-,,,I ( -PI  3 1-269 
which gives a first approximation for the faraway roots. A more refined 
analysis shows that a better approximation for the roots is given by 

This proves that the asymptotic behavior is as claimed. 
(e) Portions of root loci on real axis: I f  p assumes orily positive valnes, 

any portion of the real axis to the right of 11~11ich an odd rnmlber of poles and 
zeroes lies 011 the real axis is part of a root locus. I f p  assimes a+ negatiue 
ualues, aqr portiori of the real axis to the right of ithich an euen nlnilber of 
pales and zeroes lies on the real axis ispart of a root locus. This can be seen as 
follows. The roots of 1-262 can be found by solving 

If we assume p to be positive, 1-271 is equivalent to the real equations 

m arg - = v + 2nk, 1-273 
Y J ( ~ )  

where k is any integer. If s is real, there always exists a p for which 1-272 
is satisfied. To satisfy 1-273 as well, there must be an odd number of zeroes 
and poles to the right of s. For negative p a similar argument holds. 

Several other properties of root loci can be established (D'Azzo and 
Houpis, 1966) which are helpful in sketching root locus plots, but the rules 
listed above are sufficient for our purpose. 
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Fig. 1.8. Root locus for inverted pendulum. X ,  open-loop poles; 0, open-loop zero. 

Example 1.18. I n v e r t e d p e ~ ~ d ~ ~ l ~ ~ m  
Consider the proposed proportional feedback scheme of Example 1.16 

where we found for the closed-loop characteristic polynomial 

Here k is varied from 0 to m. The poles are a t  0, -F/M, &z and 
-JglL', while there is a double zero at 0. The asymptotes make angles of 
4 2  and -n/2 with the real axis a s k  + m since 11 - m = 2. The asymptotes - 
intersect a t  --&(F/M). The portions of the real axis between J g / ~ '  and 0, 
and between -F/M and -m belong to a locus. The pole at 0 coincides 
with a zero; this means that 0 is always one of the closed-loop poles. The loci 
of the remaining roots are sketched in Fig. 1.8 for the numerical values given 
in Example 1.1. I t  is seen that the closed-loop system is not stable for any lc, 
as already concluded in Example 1.16. 

1.6* C O N T R O L L A B I L I T Y  

1.6.1* Definition of Controllability 

For the solution of control problems, it is important to know whether or  not 
a given system has the property that it may be steered from any given state 
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to any other given state. This leads to the concept of controllability (Kalman, 
1960), which is discussed in this section. We give the following definition. 

Definition 1.11. Tlie Iiiiear system ~vitlr state differential eqzfatiorz 

is said fa be cor~pletely controllable i f  the state of the sjwtem cart be trarzsferred 
fro111 the zero state at anj~ initia/ time 1, to anjr termina/ state x ( t3  = rz, 
lvithin afiriite time t ,  - to. 

Here, when we say that the system can he transferred from one state to 
another, we mean that there exists a piecewise continuous input z,(t), t, < 
t < tl, which brings the system from one state to the other. 

Definition 1.11 seems somewhat limited, since the only requirement is 
that the system can he transferred from the zero state to any other state. We 
shall see, however, that the definition implies more. The response from an 
arbitrary initial state is by 1-61 given by 

This shows that transferring the system from the state 2:(t,) = a, to the state 
x(tJ = x, is achieved by the same input that transfers x(t,) = 0 to the state 
x(tJ = x, - cD(tl, t,)x,. This implies the following fact. 

Theorem 1.22. The linear rli~erential system 

is col~~pletely co~itrolloble i faud only if it can be tro~isferrr.rdf,.om arty initial 
state x,  at any ir~itial firlie t, to arty teriiii~lalstate x( tJ  = x, 11Wzirz afirzite tirite 
t, - 1". 

Example 1.19. Stirred tarik 
Suppose that the feeds Fl and F, of the stirred tank of Example 1.2 (Section 

1.2.3) have equal concentrations c, = c? = F. Then the steady-state concen- 
tration c, in the tank is also 2, and we find for the linearized state differential 
equation 

I .  
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I t  is clear from this equatlon that the second component of the state, which is 
the incremental concentration, cannot be controlled by manipulating the 
input, whose components are the incremental incoming flows. This is also 
clear physically, since the incoming feeds are assumed to have equal con- 
centrations. 

Therefore, the system obviously is not completely controllable if c, = c,. 
If c, # c2, the system is completely controllable, as we shall see in Example 
1.21. 

1.62' Controllability of Linear Time-Invariant Systems 

In this section the controllability of linear time-invariant systems is studied. 
We first state the main result. 

Theorem 1.23. Tlte n-rlit~ierisional linear tittle-itiuariant system 

is completelJJ controllable ifattd onlJJ iftlte colrrti~r~ vectors of the cont~ollnbility 
n1ad'i.x 

P = (B, AB, X B , .  . . , A"-lB) 1-281 

span tltc n-di~i~ensional space. 

This result can be proved formally as follows. We write for the state at t,, 
when at time t ,  the'system is in the zero state, 

I 
8 ,  

x(tJ = & ' l - r ' ~ ~ ~ ( ~ )  d ~ .  6' 1-282 

The exponential may be represented in terms of its Taylor series; doing this 
we find 

We see that the terminal state is in the linear subspace spanned by the column 
vectors of the infinite sequence of matrices B ,  AB, AzB, . . . . In  this sequence 
there must eventually be a matrix, say A", the column vectors of which are 
all linearly dependent upon the combined column vectors of the preceding 
matrices B ,  AB,  . . . , A'-'B. There must be such a matrix since there cannot 
be more than i t  linearly independent vectors in 11-dimensional space. This 
also implies that 15 n. 
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Let us now consider AL+'B = A(AIB). Since the column vectors of A'B 
depend linearly upon the combined column vectors of B, AB, . . . , A'-lB, 
we can write 

ALB = BA, + ABAl + . . . + A~-'BA,,, 1-284 

where the A,, i = 0, 1, . . . , 1 - 1 are matrices which provide the correct 
coefficients to express each of the column vectors of ALB in terms of the 
column vectors of B, AB, . . . , A'-lB. Consequently, we write 

A"~B = ABA + A?B& + . . . $- A'BA~-,, 1-285 

which very clearly shows that the columns of A'tlB also depend linearly 
upon the column vectors of B, AB, . . . , ALIB. Similarly, it follows that the 
column vectors of all matrices AkB for k 2 [depend linearly upon the column 
vectors of B, AB, . . . , ALIB. 

Returning now lo 1-283, we see that the terminal state z(tJ is in the linear 
subspace spanned by the column vectors of B, AB, . . . , A'-lB. Since 
12 11 we can just as well say that z(tJ is in the subspace spanned by the 
column vectors of B, AB, . . . , A"-lB. Now if these column vectors do not 
span the n-dimensional space, clearly only states in a linear subspace that is 
of smaller dimension than the entire n-dimensional space can be reached, 
hence the system is not completely controllable. This proves that if the system 
is completely controllable the column vectors of the controllability matrix P 
span the 11-dimensional space. 

To prove the other direction of the theorem, assume that the columns o f P  
' 

span the n-dimensional space. Then by a suitable choice of the input u(T), 
to I T 1 tl (e.g., involving orlhogonal polynomials), the coefficient vectors 

1; (Qc.3 LI(T) d~ 1-286 
i! 

in 1-283 can always be chosen so that the right-hand side of 1-283 equals any 
given vector in the space spanned by the columns of P. Since by assumption 
the columns of P span the entire n-dimensional space, this means that any 
terminal state can be reached, hence that the system is completely control- 
lable. This terminates the proof of Theorem 1.23. 

The controllability of the system 1-280 is of course completely determined 
by the matrices A and B. I t  is therefore convenient to introduce the following 
terminology. 

Definition 1.12. Let A be an 12 x rt andB an 12 x k rrratris. Tlren we saji that 
the pair {A, B) is co~npletely cor~trollable if the sj,stenz 

x(t) = Ax(!) + B~r(t) 1-287 
is corr2plefel~~ contr.ollable. 
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Example 1.20. Imerted pendiduni 
The inverted pendulum of Example 1.1 (Section 1.23) is a single-input 

system which is described by the state differential equation 

The controllabiiity matrix of the system is 

I t  is easily seen that P has rank four for all values of the parameters, hence 
that the system is completely controllable. 

1.6.3" The Controllable Subspace 

In  this section we analyze in some detail the structure of linear Lime-invariant 
systems that are not completely conlrollahle. If a system is not completely 
controllable, clearly it is of interest to know what part of the state space can 
be reached. This motivates the following definition. 

Definition 1.13. Tlre cont~ollnble snbspm? of the linear ti~rre-imariant s~wtenl 

is the linear subspace consisti~rg of the states that cart be reaclredf,orri the 
zero stale isitl~in afirtite lhte.  

In view of the role that the controllability matrix P plays, the following result 
is not surprising. 
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Theorem 1.24. The confrollable subspoce of the 12-rlirt~erzsional linear time- 
irruariant sj~ster~t 

x ( f )  = Ax([)  + Bu(t) 1-291 

is the linear subspace spanned b j ~  the col~rritns of the contro/labilitji matrix 

P = (B,  AB, . . . , A"-lB). 1-292 

This theorem immediately follows from the proof of Theorem 1.23 where we 
showed that any state that can be reached from the zero state is spanned by 
the columns of P, and any state not spanned by the columns of P cannot be 
reached. The controllable suhspace possesses the following property. 

Lemma 1.3. The controllable s~rbspoce of the sjute~n ?(t) = Ax(t) + Bu(t) 
is irtuoriant ~ d e r  A ,  that is, i f a  vector x is in the controllable subspace, Ax 
is also ill this subspace. 

The proof of this lemma follows along the lines of the proof of Theorem 1.23. 
The controllable suhspace is spanned by the column vectors of B, AB, . . . , 
A"-'B. Thus the vector Ax, where x is in the controllable subspace, is in the 
linear suhspace spanned by the column vectors of AB, A3B, . . . , A"B. The 
column vectors of A"B, however, depend linearly upon the column vectors of 
B, AB, . . . , A"-lB; therefore Ax is in the suhspace spanned by the column 
vectors of B, AB, . . . , A"-lB, which means that Ax is in the controllable 
subspace. The controllable subspace is therefore invariant under A. 

The concept of a controllable subspace can be further clarified by the 
following fact. 

Theorem 1.25. Co~wider the lillear ti~lie-i~tuario~~t system x ( t )  = Ax(t) + 
Blr(t). Tllen 011)' initial state z ,  in the controllable subspace call be transferred 
to ~ I I J I  terminal state x, in the co~ttrollable slrbspace withilt afiltite time. 

We prove this result by writing for the state of the system at time 1,: 

Now if xu is in the controllable subspace, exp [A(t, - t,)]x, is also in the 
controllable subspace, since the controllable subspace is invariant under A 
and exp [A([, - I,)] = I + A(t, - 1,) + fii13(t, - I,) + . . . . Therefore, if 
x, is in the controllable subspace, x, - exp [A(t, - t,)]x, is also in the con- 
trollable subspace. Expression 1-293 shows that any input that transfers the 
zero state to the state x, - exp [A(t, - t,)]x, also transfers xu to x,. Since 
5, - exp [A([, - l,)]x, is in the controllable subspace, such an input exists; 
Theorem 1.25 is thus proved. 



We now find a state transformation that represents the system in a canoni- 
cal form, which very clearly exhibits the controllability properties of the 
system. Let us suppose that P has rank in 11, that is, P possesses 111 linearly 
independent column vectors. This means that the controllable subspace of the 
system 1-290 has dimension 111. Let us choose a basis el, e,, . . . , e,, for the 
controllable subspace. Furthermore, let e,,,,,, e,,,,,, . . . , en be n - 111 
linearly independent vectors which together with el, e,, . . . , e,,, span the 
whole n-dimensional space. We now form the nonsingular transformation 
matrix 

T =  (Ti, T?), 1-294 
where 

Tl = (el, e2, . . . , e,,,), 1-295 
and 

T, = (e,,,A1, e,,,-,, . . . , e,,). 1-296 

Finally, we introduce a transformed state variable xl(t) defined by 

Substituting this into the state differential equation 1-290, we obtain 

We partition T1 as follows 

where the partitioning corresponds to that of T in the sense that Ul has 111 
rows and U, has n - 111 rows. With this partitioning it follows 

From this we conclude that 
U,Tl = 0. 1-302 

Tl is composed of the vectors el, e,, . . . , e,,, which span the controllable 
subspace. This means that 1-302 implies that 

for any vector x in the controllable subspace. 
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With the partitionings 1-294 and 1-300, we write 

All the columns of T I  are in the controllable subspace. This means that 
aU the columns of AT, are also in the controllable suhspace, since ihe con- 
trollable subspace is invariant under A (Lemma 1.3). However, then 1-303 
implies that 

U,ATl = 0. 1-306 

The columns of B are obviously all in the controllable subspace, since B is 
part of the controllability matrix. Therefore, we also have 

Our findings can be summarized as follows. 

Theorem 1.26. Consider the 11-din~ensional time-invariant system 

x ( f )  = Ax@) f Bir(f). 1-308 

Faun a nonsingillor transformation matrix T = (T I ,  T,) ishere the colannzs of 
T I  form a basis far tlre 111-dilnensional (111 < 11) confroNable subspace of 
1-308 and the cohann vectors of T ,  together ildtlz those of Tl form a basis for the 
ic~hole n-diniensional space. Dejne the traiisforiiied state 

x'(t) = P1x( t ) .  1-309 

Then the state differential equation 1-308 is tra~isforinerl into tlre controllabili?y 
cnnonical form 

Here A;, is a11 111 x 111 inatrix, and thepair {A;,, B;} is conlplete[y controllable. 

Partitioning 

where xi has dimension m andx; dimension 11 - 111, we see fromTheorem 1.26 
that the transformed system can be represented as in Fig. 1.9. We note that 



Fig. 1.9. The controllability canonical ram of a linear time-invariant difTerentia1 system. 

xi behaves complelely independently, while xi is influenced both by xi and 
the input u. The fact that {A;,, B;} is completely controllable follows from 
the fact that any state of the form col (xk, 0) is in the controllable subspace 
of the system 1-310. The proof is left as an exercise. 

I t  should be noted that the controllability canonical form is not at all 
unique, since both TI and T, can to some extent be freely chosen. I t  is easily 
verified, however, that no matter how the transformation T is chosen the 
characteristic values of both A L  and A;? are always the same (Problem 1.5). 

. Quite naturally, this leads us to refer to the characteristic values of A;, as the 
co~itrollablepoles of the system, and to the characteristic values of A;, as the 
u~tco~ttrollablepoles. Let us now assume that all the characteristic values of 
the system 1-310 are distinct (this is not an essential restriction). Then it is 
not difficult to recognize (Problem 1.5) that the controllable subspace of the 
sj~ste~ii 1-310 is spanned by the characteristic vectors corresponding to the 
co~ttrollable poles of the system This statement is also true for the original 
representation 1-308 of the system. Then a natural definition for the 
trnco~itrollable sl~bspace of the system, which we have so far avoided, is tlre 
strbspnce spanned by the cl~aracteristic vectors corresportding to the ~oico~i- 
trollable poles of the sj~steni. 

Example 1.21. Stirred taltlc 
The stirred tank of Example 1.2 (Section 1.2.3) is described by the state 

differential equation 
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The controllability matrix is 

P has rank two provided c, # c,. The system is therefore completely con- 
trollable if e, # e,. 

~f c, = c2 = 2, then c" = 2 also and the controllability matrix takes the 
form 

The controllable subspace is therefore spanned by the vector col(l, 0). This 
means, as we saw in Example 1.19, that only the volume of fluid in the tank 
can be controlled but not the concentration. 

We finally remark that if c, = c, = c, = 2 the state differential equation 
1-312 takes the form 1-279, which is already in controllability canonical 
form. The controllable pole of the system is -1/(20); the uncontrollable 
pole is -1/0. 

1.6.4'' Stabiliznbility 

In this section we develop the notion of stabilizability (Galperin and Krasov- 
ski, 1963; Wonham 1968a). The terminology will be motivated in Section 3.2. 
In Section 1.4.3 we defined the stable and unstable subspaces for a time- 
invariant system. Any initial state x(0) can be uniquely written as 

where xJ0) is in the stable subspace and z,,(O) in the unstable subspace. 
Clearly, in order to control the system properly, we must require that the 
unstable component can be completely controlled. This is the case if the un- 
stable component x,,(O) is in the controllable subspace. We thus state. 

Definition 1.14. The lir~ear time-irluariant sjjstem 

is smhiliinhle if its trr~stable subspace is cor~tairled in its controllable slrbspace, 
that is, any vector x i11 the 1111stab1e subspace is also irr the cor~trollable s~rbspace. 

I t  is sometimes convenient to employ the Tollowing abbreviated terminology. 



Definition 1.15. TIE pair {A, B) is stabilizable if the sj,steln 

Obviously, we have the following result. 

Tl~eorem 1.27. Anj, asjmlptofica/l~~ stable time-iwariant sJfsfelll isstabi/izab/e. 
Art), cornpleteIy co~rtrollable sjufenl is stabilizable. 

The stabilizability of a system can conveniently be checked when the state 
differential equation is in controllability canonical form. This follows from 
the following fact. 

Theorem 1.28. Consider the time-irruarinnt lh~ear sjtste~n 

x(t) = Ax([) + Bu(f). 1-318 

Srrppose tlraf it is trairsformed according to Tlreorern 1-26 into tlre cor~trollability 
car~o~rical form 

11~1rere the pair {A;,, B;} is coinplefely co~~trollable. Tlren !Ire system 1-318 is 
stabilizable ifarrd o~rlj, iffhe matrix A;, is asj~rrrptotically stable. 

This theorem can he summarized by stating that a system is stabilizable if 
and only if its uncontrollable poles are stable. We prove the theorem as 
follows. 

(a) Stabi/izabilitjt implies A;, asj~rnptotically stable. Suppose that the system 
1-318 is stabilizable. Then the transformed system 1-319 is also stabilizable 
(Problem 1.6). Let us partition 

-. . 
where the dimension 111 of x;(t) is the dimension of the controllable subspace 
of the original system 1-318. Suppose that A;? is not stable. Choose an 
(11 - rn)-dimensional vector xi in the unstable subspace of A;,. Then 
obviously, the 11-dimensional columnn vector col (0,~;) is in the unstable 
subspace of 1-319. This vector, however, is clearly not in the controllable 
subspace of 1-319. This means that there is a vector that is in the un- 
stable suhspace of 1-319 hut not in the controllable subspace. This contradicts 
the assumption of stabilizahility. This proves that if the system 1-318 is 
stabilizable A;, must be stable. 

(b) A;, stable irrlplies stabilizabilit~i: Assume that Ahz is stable. Then any 
vector that is in the unstable subspace of 1-319 must be of the form 



64 Elcn~ents of Linenr System Theory 

col (xi, 0). However, since thepair {A;,, B;} is completely controllable, this vec- 
tor is also in the controllable subspace of 1319. This shows that any vector in 
the unstable subspace of 1-319 is also in the controllable subspace, hence 
that 1-319 is stabilizable. Consequently (Problem 1.6), the original system 
1-318 is also stabilizable. 

Example 1.22. Stirred tank 
The stirred tank of Example 1.2 (Section 1.2.3) is described by the state 

differential equation 

if we assume that c, = c, = c, = E. As we have seen before, this system is 
not completely controllable. The state differential equation is already in 
the decomposed form for controllability. We see that the matrix A;, bas the 
characteristic value -1/R, which implies that the system is stabilizable. This 
means that even if the incremental concentration initially has an in- 
correct value it will eventually approach zero. 

1.6Sh Controllability of Time-Vnrying Linear Systems 

The simple test Tor controllability of Theorem 1.24 does not apply to time- 
varying linear systems. For such systems we have the following, result, which 
we shall not prove. 

Theorem 1.29. Consider the lirrea~' tirile-uurj,ing sjvtenl iiitlr state rliffere~rtial 
equatioi~ 

"(t) = A(t)x(t) + B(t)rr(f). 1-322 

Defiiie the riorirregatiue-defi~rife synrnetric i i iatrixfi~nctio~~ 

I I ~ Y ~  @ ( t ,  1,) is the transition matrix of the sjutem. Tlreii the system is coni- 
plefell, co~itrolluble if arid orily if there exists for uN t ,  a t ,  wit11 to < t ,  < m 
strch that Cl'(t,, 13 is norisirtgtdar. 

For a proof of this theorem, the reader is referred to Kalman, Falb, and 
Arhib (1969). 

The matrix iV1(f,, f,) is related to the minimal "control energy" needed 
to transfer the system from one state to another when the "control energy" 
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is measured as 
1-324 

A stronger form o f  controllability results if certain additional conditions 
are imposed upon the matrix W(t,, t )  (Kalmau, 1960): 

Definition 1.16. The tili~e-uarj~i~ig system 1-322 is  uniformly corrpletely 
controllable ifthere existpositiue coristmlts G ,  a,, a,, Po, and PI sz~ch tltat 

where W(t,, t )  is the matrix 1-323 and O( t ,  t,) is tlte transition matrix of the 
systen1. 

Uniform controllability implies not only that the syslem can be brought from 
any state to any other state but also that the control energy involved in this 
transfer and the transfer time are roughly independent of the initial time. 
In view of this remark, the following result for time-invariant systems is not 
surprising. 

Theorem 1.30. The tiwe-i~iuariarzt linear sjwtenl 

is ~wifornlly conlplefely co~itrollable ifand only i f i t  is conipletely co~~trollable. 

1.74 R E C O N S T R U C T I B I L I T Y  

1.7.1' Definition of Reconstructibility 

In Chapter 4 we discuss the problem of reconstructing the behavior of the 
state of the system from incomplete and possibly inaccurate observations. 
Before studying such problems it is important to know whether or not a given 
syslem has the property that it is at allpossible to determine from thebehavior 
of the output what the behavior of the state is. This leads to the concept of - 
recotistr~rctibi/itj~ (Kalman, Falb, and Arbib, 1969), which is the subject of 
this section. 

We first consider the following definition. 

Definition 1.17. Let y(t;  to, xo, 11) denote ilte response of t l ~ e  ol~tpz~t variable 
y(t)  of the linear d ~ e r o i t i a l  sjwtem 
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to the initial state x(t,,) = x,. Tlren the systenl is called completely recon- 
strrrctible i f for  all t, there exists a to  with - m < t ,  < t, srdr that 

( 1 ;  to, x ,  I = t ;  to, x ,  I ,  t, 5 t 5 t , ,  1-329 

for all u(t) ,  to 2 t I,, i~nplies x, = xh. 

The definition implies that if a system is completely reconstructible, and the 
output variable is observed up to any time t,, there always exists a time 
to < t, a t  which the stale of the system can be uniquely determined. If x(to) 
is known, of course x( tJ  can also be determined. 

The following result shows that in order to study the reconstructibility of 
the system 1-328 we can confine ourselves to considering a simpler situation. 

Theorem 1.31. Tlle sjirtenl 1-328 is conlpletely reconstrrrctible i f  and on@ if 
for all I ,  there exists a t ,  11dt1r - m < t, < t, such that 

y(t; t,, X O ,  0 )  = 0, to 5 t 5 113 1-330 
i~ilplies that x, = 0. 

This result is not difficult toprove. Of course if the system 1-328 is completely 
reconstruclible, it follows immediately from the definition that if 1-330 
holds then x, = 0. This proves one direction of the theorem. However, 
since 

( t ;  t o  x I )  = ( t )  ( t ,  ) ( ) I ( )  d , 1-331 

the fact that 
I 

( t ;  to, x I )  = I ;  to, x I for t, 5 f 5 1, 1-332 

implies and is implied by 

C(t)@(t, tn)x, = C(t)@(t, t , ) ~ ;  for t, ( t < 1,. 1-333 
This in turn is equivalent to 

C(t)@(t, t,)(x, - 5;) = 0 for to 5 t I 1,. 1-334 

Evidently if 1-334 implies that x, - x; = 0, that is, x, = x;, the system is 
completely reconstructible. This finishes the proof of the other direction of 

- Theorem 1.31. 

The definition of reconslructibility is due to Kalman (Kalman, Falb, and 
Arbib, 1969). It  should be pointed outthatreconstruclibility iscomplementary 
to observabilitj~. A system of the form 1-328 is said to be completely observ- 
able if for all t ,  there exists a t, < m such that 

~ ( f ;  to, ZO, [ I )  = ~ ( f ;  to, xi, o), 10 5 t < L 1-335 

for all ~ ( t ) ,  1, < t 5 t,, implies that x, = xh. We note that observability 



means that is it possible to determine the state at time t, from the$mre 
output. In control and filtering problems, however, usually only past output 
values are available. I t  is therefore much more natural to consider recon- 
structibility, which regards the problem of determining the present state from 
past observations. It is easy to recognize that for time-invariant systems com- 
plete reconstructibility implies and is implied by complete obsenability. 

Example 1.23. fizuerterlper~d~lr~~n 
Consider the inverted pendulum of Example 1.1 (section 1.2.3) and take 

as the output variable the angle +(t) .  Let us compare the states 

The second state differs from the zero state in that both carriage and 
pendulum are displaced over a distance do; otherwise, the system is at rest. 
If an input identical to zero is applied, the system stays in these positions, 
and +(t)  I 0 in both cases. I t  is clear that if only the angle +( t )  is observedit 
is impossible to decide at a given time whether the system is in  one state or 
the other; as a result, the system is not completely reconstructible. 

1.7.2" Reconstructihility of Linear Time-Invariant Systems 

In this section the reconstructibility of linear time-invariant systems is dis- 
cussed. The main result is the following. 

Theorem 1.32. The n-clitne~~sional linear tilne-inuariant sj~Ste!n 

?( t )  = Az(t)  + Bo(t), 1-337 
~ ( t )  = Cz( t ) ,  

is completeb reconstrlrctible i f m d  O I ~ J I  if the roll' vectors of the reconstrrrcti- 
bility matrix 

Q = 

span the 11-diniensio~~al space. 
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This can he proved as follows. Let us first assume that the system 1-337 is 
completely reconstructible. Then it follows from Theorem 1.31 that for all 
t ,  there exists a t ,  such that 

implies that x, = 0. Expanding exp [A([  - t , )]  in terms of its Taylor series, 
1-339 is equivalent to 

to 5 f < t,. 1-340 

Now if the reconstructihility matrix Q does not have full rank, there exists 
a nonzero x, snch that 

CxQ = 0 ,  CAx, = 0 ,  . . . , CA"-lx, = 0. 1-341 

By using the Cayley-Hamilton theorem, it  is not difficult to see also that 
CA", = 0 for 12 11. Thus if Q does not have full rank there exists a nonzero 
x, snch that 1-340'holds. Clearly, in this case 1-339 does not imply x, = 0, 
and the system is not completely reconstructible. This contradicts our 
assumption, which proves that Q must have full rank. 
We now prove the other direction of Theorem 1.32. Asume that Q has full 
rank. Suppose that 

~ ( t )  = Ce""-'"'a o - - 0 for t,  5 t < t l .  1-342 

I t  follows by repeated differentiation of ~ ( t )  that 

y(t,) = Cx, = 0 ,  
f ( t , )  = CAx, = 0 ,  
~ " ( t , )  = CAzx, = 0 ,  

Vi8&-ll(f ) - CAn-1 - 0, 0 - 0 - 

Qx, = 0. 1-344 

Since Q has full rank, 1-344 implies that x, = 0. Hence by Theorem 1.31 the 
system is completely reconstructible. This terminates the proof of Theorem 
1.32. 

Since the reconstructihility of the system 1-337 depends only on the matrices 
A and C ,  it is convenient to employ the following terminology. 
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Definition 1.18. Let A be an 11 x 11 and C an 1 x n inarrix. Tl~en ilte call 
t l ~ e  pair { A ,  C} conlpletel?, recorisfr~rctible if the sj~sle171 

Example 1.24. f i ~ v e r t e d p o ~ ~ l ~ r l i ~ ~ l ~  
The inverted pendulum of Example 1.1 (Section 1.2.3) is described by the 

state differential equation 

If we take as the output variable ?l(f )  the angle $ ( I ) ,  we have 

The reconstructibility matrix is 

0  
1 

Q =  . 1-349 
--- F 1 

L! L' M L !  

L' L' 
This matrix bas rank three; the system is therefore not completely recon- 
structible. This confirms the conclusion of Example 1.23. If we add as a 
second component of the output variable the displacement s ( f )  of the carriage, 
we have 

- - 
1-350 

0 0 0  
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This yields for the reconstructibility matrix 

With this output the system is completely reconstructible, since Q has rank 
four. 

1.7.3* The UnreconstructibIe Subspace 

In this section we analyze in some detail the structure of systems that are not 
completely reconstructible. If a system is not completely reconstructible, it is 
never possible to establish uniquely from the output what the state of the 
system is. Clearly, it is of interest to know exactly what uncertainty remains. 
This introduces the following definition. 

Definition 1.19. The ~rm.econstr.rrctible srrbspnce of the littear tittle-inuariatrt 
system 

is the linear slrbspace cor~sistitrg of the slates x, for ~vlriclr 

y ( t ; x , , t , , O ) = O ,  [ > t o .  1-353 

The following theorem characterizes the unreconstructible subspace. 

Theorem 1.33. The r~~veconstrrtctible subspace of the n-cli~ne~rsio~~al linear 



is the iruN space of the reconstrrrctibi/itjf niatrix 

The proof of this theorem immediately follows from the proof of Theorem 
1.32 where we showed that any initial state in the null space of Q produces an 
output that is identical to zero in response to a zero input. Any initial state 
not in the null space of Q produces a nonzero response, which proves that 
the null space of Q is the unreconstructible suhspace. The unreconstructible 
snbspace possesses the following property. 

Lemmn 1.4. The ~nrreco~wtrrrctible srrbspace of the sjute~n +(t) = Ax(t),  
y(t) = Cx( t )  is invariant wider A. 

We leave the proof of this lemma as an exercise. 
The concept of unreconstructihle subspace can be clarified by the following 

fact. 

Theorem 1.34. Cor~sider the time-i~rvariant system 

Suppose that the otttput y(t)  arid the input u(t)  are knoilw ouer an iriterual 
to t t,. Then the initial state of the system at time to is determined within 
the addition of an arbitrary uectar in the l~lrecolrstnrctib/e stibspace. As  a 
result, also the terrninal state at time t ,  is determined witlri~i the addition of an 
arbitrary vector in the trrireco~istr~rctible subspace. 

To prove the first part of the theorem, we must show that if two initial states 
=(to) = so and x(t,) = xi produce the same output y(t), t, < t < t,, for any 
input tr(t), t ,  t < t l ,  then x, - x; lies in the unreconstructible subspace. 
This is obviously true since by the linearity of the system, 

?l(t; to, 20, 11) = ~ ( t ;  to, a;, 4, to i t l tl, 1-357 

is equivalent to 

I t o  o - 0 = 0 to i t 2 t ~ ,  1-358 

which shows that x, - xi is in the unreconstructihle subspace. 
The second part of the theorem is proved as follows. The addition of an 

arbitrary vector x: in the unreconstructihle suhspace to x, results in  the 
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addition of exp [A(tl - t,)]x; to the terminal state. Since exp [A(t ,  - t,)] 
can be expanded in powers of A, and the unreconstructible subspace is in- 
variant under A, exp [A(tl - t o ) ] ~ ;  is also in the unreconstructible subspace. 
Moreover, since exp [A(tl - to)] is nonsingular, this proves that also the 
terminal state is determined within the addition of an arbitrary vector in the 
unreconstructible subspace. 

We now discuss a state transformation that represents the system in a 
canonical fo1.111, which clearly exhibits the reconstructibility properties of the 
system. Let us suppose that Q bas rank in I n, that is, Q possesses 111 linearly 
independent row vectors. This means that the null space of Q, hence the nn- 
reconstructible subspace of the system, bas dimension n - in. The row 
vectors of Q span an rn-dimensional linear subspace; let the row vectors 
f,, f,, . . . ,f,,, be a basis for this subspace. An obvious choice for this basis is a 
set of 111 independent row vectors from Q. Furthermore, letf,,,+,,f,,,,,, . . . , 
f, be 11 - nl linearly independent row vectors which together with f,, . . . ,f, 
span the whole n-dimensional space. Now form the nonsingular transforma- 
tion matrix 

where 
L.+l 

Ul = ( 1 and = [ ; ) .  1-360 

f,,, 

Finally, introduce a transformed state variable x'(t) as 

x'(t) = Ux(t). 1-361 

Substitution into 1-356 yields 

U-l$'(t) = AU-lx'(t) + Bu(t), 
1-362 

? / ( I )  = CU-1x1(t), 
or 

$ ' ( l )  = UAU-'x'(t) + UBu(t), 
1-363 

? / ( t )  = CU-'xl(t). 

We partition U-I as follows 
U-I = ( T I ,  T,), 1-364 
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where the partitioning corresponds to that of U so that Tl has m and Tz 
11 - nl columns. We have 

from which we conclude that 
UIT, = 0. 1-366 

The rows of Ul are made up of linear combinations of the linearly independent 
rows of the reconstructibility matrix Q. This means that any vector x that 
satisfies Ulx = 0 also satisfies Qx = 0, hence is in the unreconstructible 
subspace. Since 

U,T2 = 0,  1-367 

all column vectors OFT, must be in the unreconstructible subspace. Because 
T, has n - 171 linearly independent column vectors, and the unreconstrucible 
subspace has dimension a - m, the column vectors of T, form a basis for the 
subspace. With this it follows From 1-367 that U,x = 0 for any x in the sub- 
space. 

With the partitionings 1-359 and 1-364, we have 

and 
CUF = (CT,, CT,). 1-369 

All column vectors of T, are in the unreconslructible subspace; because the 
subspace is invariant under A (Lemma 1.4), the columns of AX2 are also in 
the subspace, and we have from 1-367 

Since the rows of C are rows of the reconstructibility matrix Q, and the 
columns of T, are in the unreconstructible subspace, hence in the null space 
of Q, we must also have 

CT3 = 0. 1-371 

We summarize our results as follows. 

Theorem 1.35. Comider the 11-th order time-it~uariatrt linear system 
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wlrere the 111 rows of U, foriit a basis for the rrr-dir~~eiisioriol (111 n) subspace 
spaiirred bji the rows of the recoristrrrctibility nrafrix of the sjwtenz. The i r  - 111 
rows of U, for111 together wit11 the nr rows of U, a basis for the whole 11-dirile11- 
sioiial space. Defile a transforriied state variable x'(t)  by 

x'(t) = Ux(t). 1-374 

Then in teriils of the transforined state variable tlre system is represented in 
the reconstrrrctibility canonical form 

y(t) = (C;, O)xl(t). 

Here A;, is arr 111 x nz matrix, and the pair {Ak,  C;} is conlplete!~~ recon- 
strrrctible. 

Partitioning 

where xi has dimension in and x; dimension 11 - nt, we see from Theorem 
1.35 that the system can be represented as in Fig. 1.10. We note that nothing 
about xh can be inferred from observing the output y. The fact that the pair 
{AL, C;} is completely reconstructible follows from the fact that if an initial 

Fig. 1.10. Reconstructibility canonical form of a time-invariant linear dfirential system. 



1.7 Reconstructibilily 75 

state x1(t,) produces a zero input response identical to zero, it must be of the 
form x'(t,) = col (0, x&). The complete proof is left as an exercise. 

We finally note that the reconstructibility canonical form is not unique 
because both U, and U, can to some extent be arbitrarily chosen. No matter 
how the transformation is performed, however, the characteristic values of 
A;, and A;, can be shown to  be always the same. This leads us to refer to the 
characteristic values of A;, as the reconstrr~ctiblepoles, and the characteristic 
values of A:, as the rmrecor~strtrctiblepoles of the system 1-372. Let us assume 
for simplicity that all characteristic values of the system are distinct. Then i t  
can he proved that the unrecorzstrrictible subspace of the system is spanned by 
tlzose cl~oracteristic uectors of the system that correspond to the unreconstrrrct- 
iblepoles. This is true both for the transformed version 1-375 and the original 
representation 1-372 of the system. Quite naturally, we now define the 
reconstroctible strbspace of the system 1-372 as the strbspace spanned by the 
characteristic vectors of the sjtstenr corresponding to the reco~rstnictiblepoles. 

Example 1.25. Inuertedpenduhr~~rn 
In  Example 1.24 we saw that the inverted pendulum is not completely 

reconstructible if the angle +( t )  is chosen as the observed variable. We now 
determine the unreconstructible subspace and the reconstructibility canonical 
form. It is easy to see that the rows of the reconstructibility matrix Q as given 
by 1-349 are spanned by the row vectors 

- l , O , l , O ) , ( O , - 1 0 1 ,  and (0,1,0,0). 1-377 

Any vector x = col (f1, &, &, 5J in the null space of Q must therefore 
satisfy 

- E l +  l a  = 0, 

-6: + 54 = 0, 1-378 

This means that the unreconstructible subspace of the system is spanned by 

Any initial state proportional to this vector is indistinguishable from the 
zero state, as shown in Example 1.23. 

To bring the system equations into reconstructibility canonical form, let 
us choose the row vectors 1-377 as the first three rows of the transformation 
matrix U. For the fourth row we select, rather arbibarily, the row vector 



76 Elernenls of Lincnr System Theory 

With this we find for the transformation matrix U and its inverse 

I t  follows for the transformed representation 

The components of the transformed state are, from 1-24, 

In this representation the position and velocity of the pendulum relative to 
the carriage, as well as the velocity of the carriage, can be reconstructed from 
the observed variable, but not the position of the carriage. 

I t  is easily seen that the reconstruclible poles of the system are -F/Mand 
im. The unreconstructible pole is 0. 

1.7.4* Detectablity 

In  the preceding section it was found that if the output variable of a not com- 
pletely reconstructible system is observed there is always an uncertainty about 
the actual state of the system since to any possible state we can always add an 
arbitrary vector in the unreconstructible subspace (Theorem 1.34). The best 
we can hope for in such a situation is that any state in the unreconstructible 
subspace has the property that the zero input response of the system to this 
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state converges to zero. This is the case when any state in the unreconstruct- 
ible subspace is also in the stable subspace of the system. Then, whatever we 
guess for the unreconstructible component of the state, the error will never 
grow indefinitely. A system with this property will be called detectable 
(Wonham, 1968a). We define this property as follows. 

Definition 1.20. The Ilhear time-i~~uariant sjistenz 

is detectable f i t s  ~~~ireco~istr~rctible subspace is corztained irr its stable snbspace. 

It is convenient to employ the following abbreviated terminology. 

Definition 1.21. The pair {A ,  C }  is detectable if the sjrstenz 

x( t )  = Ax([) ,  

!At) = Cx(t) ,  
is detectable. 

The following result is an immediate consequence of the definition: 

Theorem 1.36 Any asjvnptoticalb stable system of the farm 1-384 is de- 
tectable. Any conzplete~ reco~~str~rctible s ju te~ i~  of the form 1-384 is de- 
tectable. 

Detectable systems possess the following property. 

Theorem 1.37. Co~isider the lil~eor film?-i~~uarianl sj~ste111 

i ( t )  = Ax(t),  

y(t)  = Cx(t). 

Suppose that it is trarisfor~iied accordi~ig to Tlreoreni 1.35 it110 t11e for111 

~ ( 1 )  = (C:, O)x'(t), 

nhere the pair {A;,, C a  is cor~~pletely reconstr~rctibie. Tlierl the system is 
detectable farld a n l ~ ~  if tlre matrix Ahl is asj~riiptotical~ stable. 

This theorem can be summarized by stating that a system is detectable if and 
only if its unreconstructible poles are stable. We prove the theorem as 
follows. 
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(a) Detectabilify implies A;? osjrn~ptoticall~~ stable: Let us partition the 
transformed state variable as 

where the dimension nz of s;(t) is equal to the rank 111 of the reconstructibility 
matrix. The fact that the system is detectable implies that any initial state in 
the unreconstructible subspace gives a response that converges to zero. Any 
initial state in the unreconstructihle subspace has in the transformed repre- 
sentation the form 

1-389 

The response of the transformed state to this initial state is given by 

Since this must give a response that converges to zero, A:? must be stable. 
(b) A;: asj~nzptoficall~~ stable i~izplies detectabilit~~: Any initial state s(0) 

in the unreconstructible suhspace must in the transformed representation 
have the form 

The response to this initial state is 

Since A;, is stable, this response converges to zero, which shows that x(O), 
which was assumed to be in the unreconstructihle subspace, is also in the 
stable subspace. This implies that the system is detectable. 

Example 1.26. Inverted pendrlm 
Consider the inverted pendulum in the transformed representation of 

Example 1.25. The matrix A:, has the characteristic value 0, which implies 
that the system is not detectable. This means that if initially there is an un- 
certainty about the position of the carriage, the error made in guessing it will 
remain constant in time. 

1.7.5* Reconstructibility of Time-Varying Linear Systems 

The reconstructihility of time-varying linear systems can be ascertained by 
the following test. 
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Theorem 1.38. Consider the linear tinre-varying sjrstem 

i ( t )  = A(t)x( t )  + B(f)u(t),  
1-393 

?/( t )  = C(t)x(t). 

M(t, t,) = Q T ( ~ ,  t)CT(~)C(7)Q(7, t )  d-r, C' 1-394 

where @(t ,  t,) is the trmrsiti~ti rriatrix of tlre systenr. Then the sjutenz is conr- 
pletely reconstructible if arrd orily if for all t ,  there exists a to with - m < 
t ,  < t ,  such that M(t,, t,) is ~rorisirig~dar. 

For a proof we refer the reader to Bucy and Joseph (1968) and Kalman, 
Falb, and Arbib (1969). A stronger form of reconstructihility results by 
imposing further conditions on the matrix fif (Kalman, 1960): 

Definition 1.22. The tinre-varj~ing system 1-393 is uniformly completely 
reconstrnctible if fhere existpositive constants a, a,, a,, ,To, and P, such tlrat 

( 4  a,I 5 M(t ,  - a ,  t,) o.,I for all t,; 1-395 

Falb, and Arbib, 1969). 

(b) FoI 5 QT(t, - a, tl)M(tl - a, tl)@(fl - u, t 3  5 al l  for all 1,. 

1-396 
ivhere M( t ,  t,) is tlre niotrixfirrrction 1-394. 

Uniform reconstructibilily guarantees that identification of the state is 
always possible within roughly the same time. For time-invariant systems the 
following holds. 

Theorem 1.39. Tlre tinle-irmaria~it linear sj~stenr 

is tnrifornily conlpletely reconstructible if and only if it is cornpletely recon- 
structible. 

1.8" D U A L I T Y  OF L I N E A R  S Y S T E M S  

In the discussion of controllability and reconslructibility, we have seen that 
there is a striking symmetry between these properties. This symmetry can be 
made explicit by introducing the idea of duality (Kalman, 1960; Kalman, 
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Definition 1.23. Consider the li~lear tillle-uorj~ing sj~stenl 

and also the sjisteni 

wlrere I* is on orbitroryfised time. Tlre111-399 is colled the dual of the sj~stem 
1398 with respect to the time ti'. 

The purpose of introducing the dual system becomes apparent in Chapter 4 
when we discuss the duality of linear optimal control problems and linear 
optimal observer problems. The following result is immediate. 

Theorem 1.40. The duo1 of the sj~stem 1-399 ilritlz respect to the time t * is the 
original sjwton 1-398. 

There is a close connection between the reconstructibility and controllability 
of a system and its dual. 

Theorem 1.41. Consider tire systenz 1-398 a11d i f s  dltal 1-399 idrere t * is 
arbitrarj~. 
(a) The system 1398 is (~~n i f o rmb)  coniplete/~~ controllable f o n d  onb  if its 
d ~ m l  is ( t o~ i f o r~ id~~)  conlpletel~~ reconstr~rctible. 
(b) The system 1-398 is (onifordy) conipleteb reco~istructible ifand o n b  i f i ts  
dual is (wdfor111/y) c o n ~ p l e t e ~  controllable. 
(c) Assume tlrat 1-398 is time-inuoriont. Tl~en M 9 8  is stabilizable if and on[y 
i f i t s  d~rol is detectoble. 
( d )  Assume that 1-398 is time-inuariant. Tlzen 1-398 is detectable if and orfly 
if its duo1 is stabi/izoble. 

We give the proof only for time-invariant systems. The reconstructibility 
matrix of the dual system is given by 
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where P is the controllability matrix of the original system. This immediately 
proves (a). 

Part (b) of the theorem follows similarly. The controllability matrix of the 
dual system is given by 

where Q is the reconstructibility matrix of the original system. This implies 
the validity of (b). 

Part (c) can he proved as follows. The original system can be transformed 
by a transformation x' = T 1 x  according to Theorem 1.26 (Section 1.6.3) 
into the controllability canonical form 

If 1-398 is stahilizable, the pair {A;,, B;] is completely controllable and A;% 
is stable. The dual of the transformed system is 

Since {A;,, B;,} is completely controllable, {A;:', B;:] is completely re- 
constructible [part (a)]. Since A;? is stable, A;: is also stable. This implies 
that the system 1-403 is detectable. By the transformation TTx" = x'" 
(see Problem 1 A), the system 1-403 is transformed into the dual of the original 
system. Therefore, since 1-403 is detectable, the dual of the original system is 
also detectable. By reversing the steps of the proof, the converse of Theorem 
1.41(c) can also he proved. Part (d) can be proved completely analogously. 
The proofs of (a) and (b) for the time-varying case are left as an exercise for 
the reader. 

We conclude this section with the following Fact, relating the stability of a 
system and its dual. 

Theorem 1.42. The sj~stetiz 1-398 is e spone~i t ia l~  stable if aiid onljt if its 
dial 1-399 is esponentialb stable. 

This result is easily proved by first verifying that if the system 1-398 has the 
transition matrix (D(t, to) its dual 1-399 has the transition matrix OT(t" - to,  
t" - t), and then verifying Definition 1.5 (Section 1.4.1). 
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1 .9*  PHASE-VARIABLE CANONICAL PORMS 

For single-input time-invariant linear systems, it is sometimes convenient 
to employ the so-called phase-variable canonical form. 

Definition 1.24. A single-input tinze-hvariarit linear sj~ste~ii is in plmse- 
unriable cnnonicnl form if its systeni eqlratioris haue the form 

Note that no special form is imposed upon the matrix C in this definition. 
I t  is not difficult to see that the numbers o.,, i = 0, . . . , rl - 1 are the co- 
efficients of the characteristic polynomial 

of the system, where a ,  = 1. 
I t  is easily verified that the system 1-404 is always completely controllable. 

In fact, any completely controllable single-input system can be transformed 
into phase-variable canonical form. 

Theorem 1.43. Consirler the coiiipletely co~itrollable single-input time - 
illvariant linear sj~steni 

nhere b is a cohrriiri vector. Let P be the controllability matrix of the system, 

P = (b,  Ab, A%, . . . ,Az%), 1-407 
slid let 

n 
det (sl - A )  = 2 1-408 

i d  

ivl~ere a ,  = 1 ,  be the clrarocteristic po@~iomial of the iiiatrin A. Tllen /Ire 
system is trotisformed into phase-variable canonical form bjl a trmisfornmtion 
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x(t) = Tx'(t). T is the no~~singdar tra~~sfor~ilatior~ matrix 

T = PM, 
where 

an ....... 

1-409 

0 .....,I 

0 .......... 0 

If the system 1-406 is 11ot conyletely controllable, no st~clz tra~~sfor~ilation 
exists. 

This result can he proved as follows (Anderson and Luenherger, 1967). 
That the transformation matrix T is nonsingular is easily shown: P is non- 
singular due to the assumption of complete controllability, and det (M) =A(-I) 
because a, = 1. We now prove that T transforms the system into phase- 
variable canonical form. By postmultiplying P by M, it is easily seen that T 
can he written as 

T = (t,, tz, . . . , f,), 1-410 

where the column vectors ti of T a r e  given by 

t, = a,b + a,Ab + a ,Pb  + . . . + a,An-'6, 

t, = a,b + a,Ab + . . . + U,A"-~~,  
. . . 
t,, = a,-,b + a,Ab, 

t, = a,b. 

It  is seen from 1-411 that 

A t  t i  - u i t  i =  2 , 3 , ... , 11, 1-412 
since b = t,. 

Now in terms of the new state variable, the state differential equation of the 
system is given by 

&(t) = TIATx'(t) + P1bp(t). 1-413 

Let us consider the matrix T-IAT. To this end denote the rows of P1 by 
r,, i=1,2; . . , iz .  Then for i = 1 , 2 ; . . , n  and j=2 ,3 ; . . ,11 ,  the 
(i, j)-th entry of T4AT is given by 

1 i f i = j -  1, 

= ri(Ati) = ri(ti-l - ai-,tn) = if i = 11, 1-414 

otherwise. 
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This proves that the last 11 - 1 columns or T-'AT have the form as required 
in the phase-variable canonical form. To determine the first column, we 
observe from 1-411 that 

since according to the Cayley-Hamilton theorem 

a,l+ a,A + a,A3 + . . . + a,,A" = 0. 1-416 

Thus we have for i = 1.2. . . . . n. . . . . 1," i f ; = " ,  
= ri(Atl) = -aOrit,, = 1-417 

otherwise. 

Similarly, we can show that T-'b is in the form required, which terminates the 
proof of the first part of Theorem 1.43. The last statement of Theorem 1.43 is 
easily verified: if the system 1-406 is not completely controllable, no non- 
singular transformation can bring the system into phase-variable canonical 
form, since nonsingular transformations preserve controllability properties 
(see Problem 1.6). An alternate method of finding the phase-variable canoni- 
cal form is given by Ramaswami and Ramar (1968). Computational rules 
are described by Tuel (1966), Rane (1966), and Johnson and Wonham 
(1966). 

For single-input systems represented in phase-variable canonical form, 
certain linear optimal control problems are much easier to solve than if the 
system is given in its general form (see, e.g., Section 3.2). Similarly, certain 
filtering problems involving the reconstruction of the state from observations 
of the output variable are more easily solved when the system is in the dual 
phase-variable canonical form. 

Definition 1.25. A single-o~itpuf linear time-iwaria~it system is hi dnal 
phase-uariablc canonical f o m  if it is represented as follo~~ts: 

I t  is noted that the definition imposes no special form on the matrix B. By 
"dualizing" Theorem 1.43, it is not difficult to establish a transformation to 
transform compleiely reconstructible systems into dual canonical form. 
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Related canonical forms can be derived for multiinpul and multioutput 
systems (Anderson and Luenberger, 1967; Luenberger, 1967; Johnson, 
1971a; Wolovich and Falb, 1969). 

1.10 VECTOR STOCHASTIC PROCESSES 

1.10.1 Definitions 

In later chapters of this book we use stochastic processes as mathematical 
models for disturbances and noise phenomena. Often several disturbances 
and noise phenomena simultaneously influence a given system. This makes it 
necessary to inlroduce vector-valued stochastic processes, which constitute 
the topic of this section. 

A stochastic process can be thought of as a family of time functions. Each 
time fuoclion we call a realization of the process. Suppose that v,(t) ,  v?(t) ,  
. . . , v , ( t )  are 11 scalar stochastic processes which are possibly mutually 
dependent. Then we call 

v(1) = col [v,(t), v2(t) ,  . . . , v,,(t)] 1-419 

a vector stoc/~asticprocess. We always assume that each of the components of 
u(t) takes real values, and that t 2 to, with to given. 

A stochastic process can be characterized by specifying the joint probability 
distributions 

P W l )  5 01, ~ ( f d  5 U ? ,  . . . , ~(t,,,) I %,,} 1-420 

for all real v,, v?, . . . , v ,,,, for all t , ,  t,, . . . , t,,, 2 to and for every natural 
number m. Here the vector inequality v( tJ  5 vi is by definition satisfied if 
the inequalities . . . v,(ti) < vi j ,  j = I ,  2 ,  , 11,  1-421 

are simultaneously satisfied. The v ,  are the components of v j ,  that is, vi = 

c01 (l~,,,  Vi?, . . . , v ~ , , ) .  
A special class of stochastic processes consists of those processes the slatisti- 

cal properties of which do not change with time. We define more precisely. 

Definition 1.26. A sfocl~astic process u(t) is stationary if 
P{v(t,) I 4 ,  . . . , ~ ( f , , , )  l n,,,} 

= P I v ( ~ I  + 0) I u1, . . . , u(t,,, + 0 )  5 u,,,} 1-422 

for all t , ,  t?, . . . , t  ,,,, for all v,, . . . , v ,,,, for euerj, nat~iral nrnnber 111, and for 
aN 0 .  

The joint probability distributions that characterize a stationary stochastic 
process are thus invariant with respect to a shift in the time origin. 
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In many cases we are interested only in the first and second-order properties 
of a stochastic process, namely, in the mean and covariance matrix or, equiva- 
lently, the second-order joint moment matrix. We define these notions as 
follows. 

Definition 1.27. Consider a vector-valued stoclrostic process u(t). Tlren ive 
call 

w ( t )  = E{u(t)} 
the m a n  of the process, 

Rd t l ,  1,) = E{[v(tJ - ~ l i ( t J I [ ~ ( t J  - 1 i i ( t 3 ] ~ }  1-424 
the covariance nzatl.ix, arid 

Cn(t13 t,) = E { ~ ( t ~ ) u ~ ( f J }  1-425 
the second-order joint moment n~atrir of v(t). R,(t, 1) = Q(t)  is termed the 
variance matrix, i~hile C,(t, t )  = Q1(t) is the second-order moment matrix of 
the process. 

Here E is the expectation operator. We shall often assume that the stochastic 
process under consideration has zero mean, that is, m ( t )  = 0 for all t ;  in this 
case the covariance matrix and the second-order joint moment matrix 
coincide. The joint moment matrix written out more explicitly is 

I . . . E{vl(t1)v,,,(f~)} 

1-426 
Each element of C,(t,, t,) is a scalar joint moment function. Similarly, each 
element of R,(tl, t,) is a scalar covariance function. It is not difficult to prove 
the following. 

Theorem 1.44. The couoria~lce rnatrix R,(t,, t,) and the secortd-order joint 
iiloi?ierrt inatrix C,(t,, t,) of a uector-uahred stocl~ostic process v( t )  lraue tlre 
follon~ir~gproperties. 

(a) R,(f,, tl) = RVT(tl, t J  for all t,, t,, and 1-427 

C,(h, 1,) = CUT(t,, td for all t,. t,; 1-428 

(b) Q(t) = Rdt ,  t )  2 0 for all t ,  and 1-429 

P ( t )  = C,(t, t )  2 0 for all t ;  1-430 

(c) c k t l ,  1,) = R,(tl, t,) i- m(t&nT(t,) for all t,, t2, 1-431 
ivl~ere m ( t )  is the mean of tl~eprocess. 
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Here the notation M 2 0, where M is a square symmetric real matrix, means 
that M is nonnegative-definite, that is, 

xTMx 2 0 for all real x. 1-432 

The theorem is easily proved from the definitions of R,(t,, t,) and C,(t,, t J .  
Since the second-order properties of the stochastic process are equally well 
characterized by the covariance matrix as by the joint moment matrix, we 
usually consider only the covariance matrix. 

For stationary processes we have the following result. 

Theorem 1.45. Suppose tlrat u(t) is a statiortory stoclfastic process. Tl~eti 
its illear1 m(t)  is constant arrd its couariance matrix R,(t,, t,) depends on 
t ,  - t ,  only. 

This is easily shown from the definition of stationarity. 

I t  sometimes happens that a stochastic process has a constant mean and a 
covariance matrix that depends on t ,  - t ,  only, while its other statistical 
properties are not those of a stationary process. Since frequently we are 
interested only in the fist-  and second-order properties of a stochastic proc- 
ess, we introduce the following notion. 

Definition 1.28. The stoclrastic process u(t) is  called !vide-sense stationary if 
its second-order moment rmtrix C J t ,  t )  is$nite for all t ,  its mean m ( t )  is 
constant, and its couoriarrce matrix R,(t,, t,) deperids on t, - t ,  orrly. 

Obviously, any stationary process with finite second-order moment matrix is 
also wide-sense stationary. 

Let u,(t) and v,(i) he two vector stochastic processes. Then u, and v, are 
called i~idepertdent processes if {u,(tl), u,(t3, . . . , v,(t,)} and {v,(t;), u,(t;), 
. . . , u,(tk)} are independent sets of stochastic variables for all t,, t,, . . . , t,, 
t;, t;, . . . , t6 2 to and for all natural numbers nl and 1. Furthermore, v, 
and u, are called sncorrelated stochastic processes if v,(t,) and u,(t,) are un- 
correlated vector stochastic variables for all t,, t ,  2 to, that is, 

for all t ,  and t,, where n ~ ,  is the mean of u, and m, that of 0,. 

Example 1.27. Garrssiari stoclrastic process 
A Gaussian stochastic process u is a stochastic process where for each set 

of instants of time t,, t,, . . . , t ,  2 to the n-dimensional vector stochastic 
variables u(tJ,  v(t,), . . . , u(t,) have a Gaussianjnintprobability distribution. 
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If the compound covariance matrix 

R,(f,, f l )  R"(f1, f 3 )  ... M i l ,  t,,,) 

. . .  
R =  ( R,(f,, 23 R,,(f , ,  t 3  R"(f,, 4") 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-433 

R"(f,,,, t l )  R,,(f,, , ,  f4  ... R"(f",,> t,,,) 

is nonsingular, the corresponding probability density function can be written 
as 

The 11 x n matrices A ,  are obtained by partitioning A = R-1 corresponding 
to the partitioning of R as follows: 

Note that this process is completely characterized by its mean and covariance 
matrix; thus a Gaussian process is stationary if and only if it is wide-sense 
stationary. 

Example 1.28. Expone~tfially correiafed noise 
A well-known type of wide-sense stationary stochastic process is the so- 

called exponentially correlated iloise. This is a scalar stochastic process 
v ( t )  with the covariance function 

~ " ( 7 )  = 0' exp (- y) , 1-436 

where u?s the variance of the process and 0 the "time constant." Many 
practical processes possess this covariance function. 

Example 1.29. Processes witlt t~ncorrelared i~~cremenfs 
A process u(r), t 2 to ,  with uncorrelated increments can be defined as 

follows. 

1. The initial value is given by 

u(tJ = 0. 1-437 
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2. For any sequence of instants t,, f,, f,, and f,, with f, I 1, I f, 5 t, I f,, 
the irrcrenients u(fJ - u(fl) and u(t,) - u(fJ have zero means and are un- 
correlated, that is, 

E{u(tA - ~(t,)} = E{u(tJ - u(f3} = 0, 
1-438 

E{[u(tJ - u(ti)l[u(h) - u(f,)lT} = 0. 

The mean of such a process is easily determined: 

m(t) = E{u(f)} = E{u(t) - u(tu)} 

= 0, t 2 fo. 1-439 

Suppose for the moment that t, 2 1,. Then we have for the covariance 
matrix 

Rdt1, t3 = E{u(t3uT(td} 

= E{[u(fJ - u(fo)l[u(fJ - u(fJ + u(fJ - u ( ~ u ) I ~ I  

= E{[u(tJ - u(to)l[u(tJ - u(to)lT} 

= E{4h)uT(fd 

= fa,), 1, 2 tl 2 to, 1-440 
where 

Q(f) = E{u(OuT(t)} 1-441 

is the variance matrix of the process. Similarly, 

R,(fl, f,) = Q(tJ for f, 2 f, 2 1,. 1-442 

Clearly, a process with uncorrelated increments cannot be stationary or wide- 
sense stationary, except in the trivial case in which Q(t) = 0, t > to. 

Let us now consider the variance matrix of the process. We can write for 
t, 2 f l  > to: 

Q(t3 = E{v(t3uT(b)} 

= E{[u(t2) - u ( f J  + u(fJ - ~(hJl[u(fJ - 411) + ~ ( f i )  - ~(fo)l"} 

= E{[u(td - u(fl)l[u(fd - u(h)lT} + N O  1-443 

Obviously, Q(t) is a monotonically nondecreasing matrix function o f t  in the 
sense that 

Q(fJ > Q(tl) for all t, 2 t, 2 t,. 1-444 

Here, if A and B  are two symmetric real matrices, the notation 

A > B  1-445 

implies that the matrix A  - B is nonnegative-definite. Let us now assume that 
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the matrix function Q(t )  is absolutely continuous, that is, we can write 

e o  = J 'W d7, 1-446 
PA. 

where V(t) is a nonnegative-definite symmetric matrix function. It then 
follows from 1-443 that the variance matrix of the increment u(t,) - u(t,) 
is given by 

E{tu(fJ - u ( t J l [ u ( f d  - ~ ( f i ) l ~ }  = Q ( f 2 )  - Q(tJ 

=k(r) dr. 1-447 

Combining 1-440 and 1-442, we see that if 1-446 holds the covariance matrix 
of the process can he expressed as 

m i n l l ~ . f d  

I ,  2 )  = v ( d  dr. 1-448 

One of the best-known processes with uncorrelated increments is the 
Brownia~t motion process, also known as the Wiener process or the Wierter- 
Liuy process. This is a process with uncorrelated increments where each of 
the increments u(tJ - u(tl) is a Gaussian stochastic vector with zero mean 
and variance matrix ( 1 ,  - tl)I, where I is the unit matrix. A generalization of 
this process is obtained when it is assumed that each increment u(t3 - u(fl) 
is a Gaussian stochastic vector with zero mean and variance matrix given in 
the form 1-447. Since in the Brownian motion process the increments are 
uncorrelated and Gaussian, they are independent. Obviously, Brownian 
motion is a Gaussian process. It is an important tool in the theory of sto- 
chastic processes. 

1.10.2 Power Spectral Density Matrices 

For scalar wide-sense stationary stochastic processes, the power spectral 
density function is defined as the Fourier transform of the covariance func- 
tion. Similarly, we define for vector stochastic processes: 

Definition 1.29. The speetrnl density rnntvir X,(o) of a wide-sense 
stationary vector stochastic process is defined as the Fourier trai~sfor~n, if if 
exists, of the couarionce matrix R,(tl - tJ of the process, that is, 

) = r e - ' w r ~ , ( ~ )  dr .  

Note that we have allowed a slight inconsistency in the notation of the co- 
variance matrix by replacing the two variables t ,  and t ,  by the single variable 
t ,  - t*. The power spectral density matrix has the following properties. 
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Theorem 1.46. Suppose that X,(o) is the spectral densitjl riiatrix of a 
wide-sense stationary process u(t). Then X,(w) is a conlplex ntatrix tltot has 
theproperfies: 

( a  X u (  = ( w )  for all w ;  1-450 

(b) X,*(w) = X,(w) for all w ;  1-451 

(c) Xu(w) 2 0 for all w. 1-452 

Here the asterisk denotes the complex conjugate transpose, while M 2 0, 
where M is a complex matrix, indicates that M is a nonnegative-definite 
matrix, that is, z*Mx 2 0 for all complex z. 

The proofs of parts (a) and (b).follow in a straightforward manner from 
the definition of XJw)  and Theorem 1.44. In order to prove part (c), one can 
extend the proof given by Davenport and Root (1958, Chapter 6) to the 
vector case. The reason for the term power spectral density matrix becomes 
apparent in Section 1.10.4. 

Example 1.30. Exponentially correlated noise 
In  Example 1.28 we considered exponentially correlated noise, a scalar 

wide-sense stationary process v( t )  with covariance function 

R,(t, - t,) = u2 exp - - i '"3, 
By Fourier transformation it easily follows that v( t )  has the power spectral 
density function 

provided 0 > 0. 

1.10.3 The Response of Linear Systems to Stochastic Inputs 

In this section we study the statistical properties of the response of a linear 
system if the input is a realization of a stochastic process. We have the follow- 
ing result. 

Theorem 1.47. Cottsirler a h e a r  s y t e m  with impulse response matrix 
K(t,  T )  ivliicli at time to is in the zero state. Suppose that the iriplrt to tlie system 
is a realizatio~i of a stochastic process ir(t) with mean m,(t) arid couoriaitce 
matrix R,,(t,, t,). Tlrerl the oiripirt of flre system is a realizatiori of o stochastic 
process y( t )  ivitli iriean 

t 

lll,(t) = K(t,  T ) ~ , , ( T )  d ~ ,  I. 1-455 
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provided the i~itegrals exist. 

We present a formal proof of these results. The output y, which is a sto- 
chastic process, is given by 

Taking the expectation or both sides of 1-457, interchanging the order of the 
integration and the expectation, one obtains 1-455. 

Similarly, we can write (assuming for simplicity that nt,,(t) = 0) 

For a time-invariant system and a wide-sense stationary input process, 
we have the following result. 

Theorem 1.48. S~rpposetliat the li~iearsj~stern of Tlieorem 1.47 is an asj,!nptot- 
icolb stable firm-invoriaiit, sj~srent with iiilp~llse response iiiatrix K ( f  - T ) ,  

and that the input stoclrastic process u ( t )  is ivide-seme statioriarj~ isith co- 
variance matrix R,,(t, - t?). Tllen i f the  i r p r f  to the s j~ste~n is a realization of 
theprocess n ( f ) ,  i~tliicl~ is oppliedf,.oni tirile - m on, the orrfpllt is a realizofiort 
of a wide-sense stationorj, stochasticprocess y( t )  ivitlr couoriance niatrix 

Note that we have introduced a slight inconsislency in the notation of the 
impulse response matrix K and the covariance matrix R,,. It  is in Section 
1.3.2 that we saw that the impulse response matrix of a time-invariant system 
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depends on t - T only. The result 1-459 can be found from 1-456 by letting 
t, --t - m and making some simple substitutions. 

For wide-sense stationary processes, it is of interest to consider the power 
density matrix. 

Theorem 1.49. Consider an osj~~~lptotically stable time-il~variallt lirzear 
system wit11 tratlsfer matrix H(s). Suppose that the i ~ p t  is a realization of a 
wide-sense stationarj~ stocllastic process u ( t )  wit11 power spectral density 
nlatri.$C,,(w) ivhiclr is applied from time - m on. Tl~en the autptrt is a realiza- 
tion of a ivide-sense stationarji stochastic process y( t )  wit11 power spectral 
density matrix 

Z,(w) = H(jw)C,,(w)HT(-jw). 1-460 

This result follows easily by Fourier transforming 1-459 after replacing 
t ,  - t2 with a variable T ,  using the fact that H(s) is the Laplace transform 
of K(T). 

Example 1.31. Stirred tadc 
Consider the stirred tank of Example 1.2 (Section 1.2.3) and assume that 

fluctuations occur in the concentrations c, and c3 of the feeds. Let us therefore 
write 

c,(t) = c,, + % ( t ) ,  
1-461 

c d t )  = czn + V,(t), 

where c,, and c?, are the average concentrations and v,(t)and ~~,(t)flucluations 
about the average. It  is not difficult to show that the linearized system equa- 
tions must be modified to the following: 

If we take the input ir(t) = 0, the transfer matrix from the disturbances 
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u(t)  = col [v,(t), v2(t)] to the output variable y ( t )  can be found to be 

Obviously, the disturbances affect only the second component of the output 
variable 11,(t) = t 3 ( t ) .  Let us assume that v l ( t )  and v,(t) are two independent 
exponentially correlated noise processes, so that we can write for the co- 
variance matrix of u(t) 

With this we find for the power spectral density matrix of v ( t )  

It follows from 1-460 for the power spectral density matrix of the contribu- 
tion of the disturbances u(t)  to the output variable y( t )  

1.10.4 Quadratic Expressions 

In later chapters of this book it will be convenient to use a measure for the 
mean square value of a stochastic process. For vector stochastic processes 
we introduce to this end quadratic expressions of the form 

E{uT(t)W(t)u(t)h 1-467 
where W ( t )  is a symmetric weighting matrix. If u(t) = col [v,(t),  . . . , v,,(t)] 
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and W has elements Wi,, i, j = 1,2,  . . . , 11, 1-467 can be written as 

which is the expectation of a quadratic expression in the components vi(t) 
of u(t). Usually, W ( t )  is chosen to be nonnegative-definite so that the ex- 
pression assumes nonnegative values only. 

I t  is helpful to develop expressions for quadratic expressions of this type in 
terms of the covariance matrix and power spectral density matrix of u(t). 
We have the following result. 

Theorem 1.50. Let v(t)  be a vector-uohed stochastic process. Then if W ( t )  
is a syrimetric matrix, 

E{uZ'(t)W(t)4t)l = t r  [W(t)Cn(f, f ) l ,  1-469 

~ihere C,(tl, t,) is the secorid-order joint rnonlent matrix of u(t). If u(t) is 
wide-sense stationarj~ with zero iiieotl and covariance matrix R,(fl - t,), 
and W is constant, 

E{uT(t)Wu(t)} = tr [WR,(O)]. 1-470 

I f u ( t )  has zero mean aad thepower spectral density matrix X,(w), 

By tr(A) we mean the trace of the matrix A ,  that is, 

where aii, i = 1 ,  . . . ,,I are the diagonal elements of the matrix. The first 
result of the theorem follows in an elementary manner: 
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where C,,,(t, t )  is the (i, j)-th element of C J t ,  t ) .  The second result, 1-470, 
is immediate since under the assumptions stated C,(t, t )  = R,(O). The third 
result can be shown by recalling that the power spectral density matrix 
&(w) is the Fourier transform of R,(T), and that consequently R,(T) is the 
inverse transform of Z.,(w): 

For T = 0 we immediately obtain 1-471 and 1-473. 

Equation 1-471 gives an interpretation of the term power spectral density 
matrix. Apparently, the total "power" E { u ~ ( ~ ) c T / v ( I ) }  of a zero-mean wide- 
sense stationary process u(t)  is obtained by integrating t r  [WZ,(w)] over all 
frequencies. Thus t r  [CVZ,(w)] can be considered as a measure for thepower 
"density" at the frequency w.  The weighting matrix W determines the con- 
tributions of the various components of u(t) to the power. 

Example 1.32. Stirred toizli 
We continue Example 1.31 where we computed the spectral density matrix 

of the output y ( t )  due to disturbances u(t) in the concenlrations of the feeds 
of the stirred tank. Suppose we want to compute the mean square value of 
the fluctuations ?b( t )  in the concentration of the outgoing flow. This mean 
square value can be written as 

E{?ld(f)}  = E{?lT(f)W?l(t)l, 1-477 
where the weighting matrix W has the simple form 

Thus we find for the mean square error 

Integrals of rational functions of the type appearing in 1-479 frequently occur 
in the computation of quadratic expressions as considered in this section. 
Tables of such integrals can be found in Newton, Gould, and Kaiser (1957, 
Appendix E) and Seifert and Steeg (1960, Appendix). 
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1.11  T H E  R E S P O N S E  O F  LINEAR DIFFERENTIAL 
S Y S T E M S  TO W H I T E  N O I S E  

1.11.1 White Noise 

One frequently encounters in practice zero-mean scalar stochastic processes 
111 with the property that ~ ( t , )  and ~ ( t , )  are uncorrelated even for values of 
It, - t,1 that are quite small, that is, 

( 1 ,  t e 0 for It2 - tl[ > E ,  1-480 

where E is a 'L~mall(' number. The covariance function of such stochastic 
processes can be idealized as follows. 

Here d(1 ,  - tJ is a delta function and V( t )  is referred to as the interlsity of 
the process at time t .  Such processes are called idrite noise processes for 
reasons explained later. We can of course extend the notion of a white noise 
process to vector-valued processes: 

Definition 1.30. Let ~ ( t )  be a zero nlea~t uector-ualt~ed stocl~asticprocess with 
couai'iance rnatris 

R d t z ,  1,) = J'(t3 a(tn - h ) ,  1-482 

i~here V( t )  > 0. The process w(t) is tl~en said to be n ~vlrite noise stocl~astic 
process with i~ t t e~~s i t j ,  V(t) .  

In the case in which the intensity of the white noise process is constant, the 
process is wide-sense stationary and we can introduce its power spectral 
density matrix. Formally, taking the Fourier transform of IG(.r), we see that 
wide-sense stationary white noise has the power spectral density matrix 

This shows that a wide-sense stationary white noise process has equal power 
density at all frequencies. This is why, in analogy with light, such processes 
are called white noise processes. This result also agrees with our physical 
intuition. A process with little correlation between two nearby values 1v(t1) 
and icft,) is very irregular and thus contains power at quite high frequencies. 

Unfortunately, when one computes the total power of a white noise proc- 
ess using Eq. 1-470 or 1-471, one obtains an infinite value, which immediately 
points out that although white noise processes may be convenient to work 
with, they do not exist in the physical world. Also, from a strict mathematical 
viewpoint, white noise processes are not really well-defined. As we shall see 
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in Example 1.33, white noise is the "derivative" of a process with uncor- 
related increments; however, such a process can be shown to have no deriva- 
tive. Once the white noise has passed at least one integration, however, we 
are again on a firm mathematical ground and the following integration rules, 
which are needed extensively, can be proved. 

Theorem 1.51. Let ~ ( t )  be a vector-uolued ithite noise process isit11 i~zfertsity 
V(t) .  Also, let A,(t), A,(t), and A(t)  be given time-varying matrices. Tlren 

(a) [ A ( ) v ( )  d = a; 
t l  I 

id~ere I is the intersectiorl of [t,, t,] and [t,, I,,] and W is any i~aiglrti~zg matrix; 

Al(t) V(t)AoT(t) rlt, 1-486 

i~here I is as defined before. 

Formally, one can prove (a) by using the fact that w(t) is a zero-mean pro- 
cess, while (b) can be made plausible as follows. 

The transition from 1-487c to 1-487d uses 1-482, and the transition from 
1-4876 to 1-487e follows from the properties of the delta function. We have 
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also used the fact that tr(AB) = tr(BA) for any two matrices A and B of 
compatible dimensions. 

The proof of (c) is similar to that of (b). 

Example 1.33. White noise as the derivative of a process with uncorrelated 
iiicrentnlts 

In Example 1.29 (Section 1.10.1) we considered processes u(t), t 2 to, 
with uncorrelated increments, which we showed to he processes with zero 
means and covariance matrices of the form 

I 1 for t, 2 tl 2 to, 
R&, 12) = 1-488 

&(t,) for tl 2 t, 2 to, 

Proceeding completely formally, let us show that the covariance matrix of 
the derivative process 

consists of a delta function. For the mean of the derivative process, we have 

For the covariance matrix of the derivative process we write, completely 
formally, 

R&,, t,) = ~{i i ( t jd~( t , )}  

- a, 
- - E { u ( ~ J u ~ ( ~ ~ ) }  

at, at, 

- a, -- R,,(f1, f2). fl. f z  2 to. 1-491 
at, at, 

Now, successively carrying out the partial differentiations, we obtain 

~ ~ ( t ~ .  t2) = ectl) 60, - t,), tl, t, 2 to, 1-492 
where 

dQ(0 Q ( f )  = - . 1-493 
dt 

This shows that the derivative of a process with uncorrelated increments is a 
white noise process. When each increment u(t,) - u(tJ of the process has a 
variance matrix that may be written in the form 
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the intensity of the white noise process that derives from the process with un- 
correlated increments is V(t), since (see Example 129) 

A special case that is of considerable interest occurs when the process u(t) 
from which the white noise process derives is Brownian motion (see Example 
1.29). The white noise process then obtained is often referred to as Gatissian 
ivltite noise. 

In the rigorous theory of white noise, the white noise process is never 
defined. Instead, the theory is developed in terms of increments of processes 
with uncorrelated increments. In particular, integrals of the type appearing 
in Theorem 1.51 are redefined in terms of suchprocesses. Let us consider the 
integral 

1-496 

This is replaced with 

where v(t) is the process with uncorrelated increments from which the white 
noise process ~ ( t )  derives and where t1 = % < T, < . . . < T, = t,, with 

E = max[~,+, - ~ ~ 1 ,  1-498 
i 

is a partitioning of the interval [t,, tJ. The limit in 1-497 can be so defined 
that it is a proper stochastic variable, satisfying the properties of Theorem 
1.51. For detailed treatments we refer the reader to Doob (1953), Gikhman 
and Skorokhod (1969), Astrom (1970), and Kushner (1971). For an extensive 
and rigorous discussion of white noise, one should consult Hida (1970). 

The material in this example is offered only for background. For our 
purposes, in the context of linear systems, it is sufficient to have Theorem 1.51 
available. 

1.11.2 Linear Differential Systems Driven by White Noise 

It  will turn out that a linear differential system driven by white noise is a very 
convenient model for formulating and solving linear control problems that 
involve disturbances and noise. In this section we obtain some of the 
statistical properties of the state of a linear differential system with a white 
noise process as input. In particular, we compute the mean, the covari- 
ance, joint moment, variance, and moment matrices of the state x. 
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Theorem 1.52. Suppose that x( t )  is the solfrtion of 

where ~ ( t )  is ivlrite 11oise with inte~lsit~, I'(t) and xu is a stochastic uariable 
independent of w(t) ,  with nzean 177,) arrd Q, = E{(xu - mu)(x, - m J T }  as its 
variance matrix. Then x ( t )  has mean 

where @(t ,  to) is the transition matrix of the sjutem 1-499. The couariance 
matrix of a ( t )  is 

The second-order joint mon~ent matris of x ( t )  is 

The nlorne17t matris C J t ,  f )  = Q'(t)  satisfips the matrix dlrerential equation 

These results are easily proved by using the integration rules given in Theorem 
1.51. Since 

( I )  = t o )  + @(~,T)B(T)w(T)  d r ,  1-508 
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it follows by 1-484 that nz,(t) is given by 1-500. To find the covariance and 
joint moment matrices, consider 

Because of the independence of x, and w(f) and the fact that IIT(~) has zero 
mean, the second and third terms of the right-hand side of 1-509 are zero. 
The fourth term is simplified by applying 1-486 so that 1-509 reduces to 
1-504. Similarly, 1-501 can he obtained. The variance Q(t) is obtained by 
setting t, = f, = t i n  1-501: 

The differential equation 1-502 is found by differentiating Q(t) in 1-510 with 
respect to t .  The initial condition 1-502 is obtained by setting t = to. The 
differential equation for CJt, t) = Q'(t) follows similarly. Finally, 1-503 and 
1-507 follow-directly from 1-501 and 1-504, respectively. 

In passing, we remark that if x, is a Gaussian stochastic variable and the 
while noise ~ ( t )  is Gaussian (see Example 1.33), then x(t) is a Gaussian 
stochastic process. We finally note that in the analysis of linear systems it is 
often helpful to have a computer program available for the simulation of a 
linear differential system driven by white noise (see, e.g., Mehra, 1969). 

Example 1.34. AJrst-order d@erentiat s j ~ t e ~ n  driven by ivltife noise 
Consider the first-order stochastic differential equation 

where w(t) is scalar white noise with constant intensity p. Let us suppose 
that E(O) = to, where to is a scalar stochastic variable with mean zero and 
variance E(6,') = u2. I t  is easily found that t ( t )  has the covariance function 
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The variance of the process is 

1.11.3 The Steady-State Variance Matrix for the Time-Invariant Case 

In the preceding section we found an expression [Eq. 1-5101 for the variance 
matrix of the state of a differential linear system driven by white noise. I n  
this section we are interested in the asymptotic behavior of the variance 
matrix in the time-invariant case, that is, when A ,  B, and V are constant 
matrices. In  this case 1-510 can be written as 

I t  is not difficult to see that if, and only if, A is asymptotically stable, Q(t )  
has the following limit for arbitrary Q,:  

lim Q(t) = lim Q ( f )  = Q = e"l~1fB~e""dT. I: 1-515 
t-m to--m 

Since Q ( t )  is the solution of the differential equation 1-502, its limit Q must 
also satisfy that differential equation, so that 

I t  is quite helpful to realize that this algebraic matrix equation in Q bas a 
unique solution, which must then necessarily he given by 1-515. This follows 
from the following result from matrix theory (Frame, 1964). - 
Lemma 1.5. Let MI ,  M,, and M, be real n x n, n1 x m, and n x in matrices. 
Let A,, i = 1 ,2 ,  . . . , n,  and 19, j = 1.2. . . . ,111 denote the clzaracteristic 
vahres of MI and M,, respectively. Theft the nzatrix eqz~atiort 

has a ze~iqzfe rz  X n~ sol~~tion X if and onll, iffor all i, j 

In applying this lemma to 1-516, we let MI = A,  M, = AT. I t  foUows that 
n~ = n and pj = Aj, j = 1,2,. . . , m. Since by assumption A is asymptoti- 
cally stable, all characteristic values have strictly negative real parts, and 
necessarily 

A, + A, # O 1-519 

for all i ,  j. Thus 1-516 has a unique solution. 
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We summarize as folIows. 

Theorem 1.53. Consider the sfocltasfic d~%fereenfia equation 

where A and B are consfanf and 111(t) is i~hi te  r~oise ic~iflt corisfarlt intensity K 
T l m  if A is asynlptoficall~~ stable and to + - m or t -t m, tlre uariarlce 
matrix of x(f) tends to the consfant nonr~egative-defi~~ife matrix 

rn 

Q =I e ' ~ ~ B ~ d " d f ,  1-521 

which is the ranique solrrtio~~ of the mairis eqztafion 

0 = AQ + Q A ~  + B V B ~ .  1-522 

Thematrix Q can thus be found as the limit of the solution of the differential 
equation 1-502, with an arbitrary positive-semidefinite Q, as initial condition, 
from the integral 1-521 or from the algebraic equation 1-522. 

Matrix equations of the form 1-522 are also encountered in stability 
theory and are sometimes known as Lj~apanov cqrrarions. Although the matrix 
equation 1-522 is linear in 0, its solution cannot be directly obtained by 
simple matrix inversion. MacFarlane (1963) and Chen and Shieh (1968a) 
give useful suggestions for setting up linear equations from which Q can be 
solved. Barnett and Storey (1967), Davison and Man (1968), Smith (1968), 
Jameson (1968), Rome (1969), Kleinman (1970a), Miiller (1970), Lu (1971), 
and Smith (1971) give alternative approaches. Hagander (1972) has made a 
comparison of various methods of solution, but his conclusions do not rec- 
ommend one particular method. Also Barnett and Storey (1970) and 
Rothschild and Jameson (1970) review several methods of solution. 

We remark that if A is asymptotically stable and to = - m, the output of 
the differential system 1-499 is a wide-sense stationary process. The power 
spectral density of the state x is 

&(w) = (jwf - A)-lBVBT(-joI - AT)-'. 1-523 

Thus using 1-473 one can obtain yet another expression for Q, 

- 
Q = c ( j w f  - A)-'BVBT(-jwf - AT)-> dJ. 1-524 

The steady-state variance matrix Q has thus far been found in this section 
as the asymptotic solution of the variance differential equation for to -> -m 
or f +  m. Suppose now that we choose the steady-state variance matrix 
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0 as the initial variance a t  time to, that is, we set 

Q,  = 0. 1-525 
By 1-502 this leads to 

Q(r) = 0, 12 to. 1-526 

The process x(t )  thus obtained has all the properties of a wide-sense station- 
ary process. 

Example 135. The sfeadjwtate couariallce olld uariame jn~ctiorrs of a 
first-order sj~stnn 

Consider as in Example 1.34 the scalar first-order differential equation 
driven by white noise, 

where the scalar white noise o ( t )  has intensity ,u and 0 > 0. Denoting by Q 
the limit of Q(t )  as 1 + m, one sees from 1-513 that 

The Lyapunov equation 1-522 reduces to 

which agrees with 1-528. Also, 1-521 yields the same result: 

Finally, one can also check that 1-524 yields: 

Note that the covariance Function Rl(tl, t,) given in 1-512 converges to 

as i, + t, + m with t ,  - t ,  finite. R&t,, t,) equals this limit at finite t, and t ,  
if the variance of the initial state is 

"0 , f - .  1-533 
2 
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Apparently, 1-527 represents exponentially correlated noise, provided E(tJ 
is a zero-mean stochastic variable with variance 1-533. 

1.11.4 Modeling of Stochastic Processes 

In later chapters of this hook we make almost exclusive use of linear differ- 
ential systems driven by white noise to represent stochastic processes. This 
representation of a stochastic process u(t) usually takes the following form. 
Suppose that u(t) is given by 

U(O = c(t)z(t), 1-534 
with 

x(t) = A(t)x(t) + B(t)w(t), 1-535 

where ~ ( t )  is white noise. Choosing such a representation for the stochastic 
process u, we call modeliizg of the stochastic process u. The use of such models 
can be justified as follows. 

(a) Very often practical stochastic phenomena are generated by very fast 
fluctuations which act upon a much slowerdifferential system. In this case the 
model of white noise acting upon a differential system is very appropriate. 
A typical example of this situation is thermal noise in an electronic circuit. 

(b) As we shall see, in linear control theory almost always only the mean 
and covariance of the stochastic processes matter. Through the use of a linear 
model, it is always possible to approximate any experimentally obtained mean 
and covariance matrix arbitrarily closely. 

(c) Sometimes the stochastic process to he modeled is a stationary process 
with known power spectral density matrix. Again, one can always generate 
a stochastic process by a linear differential equation driven by white noise 
so that its power spectral density matrix approximates arbitrarily closely the 
power spectral density matrix of the original stochastic process. 

Examples 1.36 and 1.37, as well as Problem 1 .I 1, illustrate the technique of 
modeling. 

Example 1.36. First-order. diier.ent;al system 
Suppose that the covariance function of a stochastic scalar process v ,  which 

is known to be stationary, has been measured and turns out to he the ex- 
ponential function 

R (! t ) - 2 -lfl-l~l/~ 
v 1. n - 0 "  1-536 

One can model this process for t 2 to as the state of a first-order differential 
system (see Example 1.35): 
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with w(f) white noise with intensity 2u2/8 and where v(io) is a stochastic 
variable with zero mean and variance un. 

Example 1.37. Stirred tank 
Consider the stirred tank of Example 1.31 (Section 1.10.3) and suppose 

that we wish to compute the variance matrix of the output variable ~ ( t ) .  
In Example 1.31 the fluctuations in the concentrations in the feeds were 
assumed to be exponentially correlated noises and can thus be modeled as the 
solution of a first-order system driven by white noise. We now extend the 
state differential equation of the stirred tank with the models for the sto- 
chastic processes vl(f) and ~ ~ ( t ) .  Let us write 

%(i) = M f ) ,  1-538 
where 

1 
&(t) = - - Mt) 4- 4 ) .  1-539 

0 ,  
Here w,(t) is scalar white noise with intensity p,; to make the variance of 
vl(f) precisely ul" we take p, = 2ulB/8,. For v,(t) = f4(i), we use a similar 
model. Thus we obtain the augmented system equation 

where ~ ( f )  = col [wl(t), w,(f)]. The two-dimensional white noise iv(t) has 
intensitv 
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Solution of 1-522 for the variance matrix 0 yields, assuming that u ( f )  = 0 
in 1-540, 

where 

The variance of i b ( t )  = c z ( t )  is g??, which is in agreement with the result of 
Example 1.32 (Section 1.10.4). 

1.11.5 Quadratic Integral Expressions 

Consider the linear differential system 

?( t )  = A ( l ) x ( t )  + B( t ) i v ( t ) ,  

where ~ ( t )  is white noise with intensity V ( t )  and where the initial state x( t , )  is 
assumed to be a stochastic variable with second-order moment matrix 

E { ~ ( f n ) ~ ~ ( t o ) }  = go. 1-547 

In later chapters of this hook we extensively employ quadratic integral 
expressions of the form 

~ [ ~ ~ ~ ( t ) ~ ( t ) x ( i )  d t  + X T ( ~ J P ~ X ( ~ J ] ~  1-548 

where R ( f )  is a symmetric nonnegative-definite weighting matrix for all 
r ,  5 t  5 t ,  and where PI is symmetric and nonnegative-definite. In this 
section formulas for such expressions are derived. These formulas of course 
are also applicable to the deterministic case, where ~ ( t )  = 0, t 2 f , ,  x ( t , )  is 
a deterministic variable, and the expectation sign does not apply. 

For the solution of the linear differential equation 1-546, we write 

( t  = t  t ) ( )  + cIl(t, ~ ) B ( ' r ) l v ( ~ )  d ~ ,  1: 1-549 
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so that 

+ ~ ~ ( T ) B T ( T ) V ( ~ ~ ,  T ) P ~ @ ( ~ ~ ,  T)B(T) h I . 1-551 

Now if M and N are arbitrary matrices of compatible dimensions, it 
is easily shown that tr (MN) = tr (NM).  Application of this fact to the last 
two terms of 1-551 and an interchange of the order of integration in the third 
term yields 
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Substitution of this into 1-551 shows that we can write 

where the symmetric matrix P( t )  is given by 

By using Theorem 1.2 (Section 1.3.1), it is easily shown by differentiation 
that P( t )  satisfies the matrix differential equation 

-P(t) = ~ ~ ( t ) ~ ( t )  + ~ ( t ) ~ ( t )  + ~ ( t ) .  1-555 

Setting t = t, in 1-554 yields the terminal condition 

P(tl) = P p  1-556 

We summarize these results as follows. 

Theorem 1.54. Consider the linear diflerential sj~stenl 

*( t )  = A(t)x( t )  + B(t)iv(t), 

w11ere ~ ( t )  is white noise with intensity V ( t )  and  here x(to) = xu is a stochastic 
uariable isit11 E { X , X ~ ~ }  = Q,. Let R( t )  be syrnnzetric and f~omzegatiue-defi~lite 
for to t 2 tl, and Pl constant, synnnetric, and nonnegative-defi~zite. Then 

= t r  (P(to)Qo + L ) ( t ) ~ ( t ) B ~ ( t ) P ( t )  d t ] ,  1-558 

where P(t )  is the synmzetric nonnegative-definite matrix 

Q( t ,  r,) is the transition matrix of the system 1-557. P( t )  satisfies the r~zatrix 
di~Jerentia1 eqitatior~ 

with t l ~ e  terminal condition 
P(tJ = PI. 
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Inparticalar, ifthe dlrerential system 1-557 reduces to an arrtonomot~s difer- 
ential system: 

x( t )  = A(t)x(t) ,  1-562 

that is, V ( t )  = 0 and x(to) is deternlirtistic, t l m  

~ ~ x T ( l ) ~ ( t ) x ( l )  dt + xT(tl)Plx(t> = ~ ~ ( t ~ ) P ( t ~ ) x ( t ~ ) .  1-563 

We conclude this section with a discussion of the asymptotic behavior of 
the matrix P( t )  as the terminal time t ,  goes to infinity. We limit ourselves to  
the time-invariant case where the matrices A, B, V ,  and R are constant, so 
that 1-559 reduces to: 

-. 
If A is asymptotically stable, we obtain in the limit t ,  -. m: 

A change of integration variable shows that P can be written as 

1-566 

which very clearly shows that P is a constant matrix. Since P satisfies the 
matrix differential equation 1-560, we have 

0 = A ~ ' P  + FA + R. 1-567 
Since by assumption A is asymptotically stable, Lemma 1.5 (Section 1.11.3) 
guarantees that this algebraic equation has a unique solution. 

In the time-invariant case, it is not difficult to conjecture from 1-558 that 
for t ,  >> to we can approximate 

~-." 
This shows that as t ,  - m the criterion 1-558 asymptotically increases with 
t ,  at the rate tr(BVBTF). 

Example 1.38. Stirred tadc 
Consider the stirred tank extended with the model for the disturbances of 

Example 1.37. Assume that u(t)  = 0 and suppose that we are interested in the 
integral expression ~[p&)  dt] .  1-569 

This integral gives an indication of the average deviation of the concentra- 
tion t , ( t )  from zero, where the average is taken both statistically and over 
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time. This expression is of the general form 1-548 if we set 

Solution of the algebraic equation 

o = A " P + P A + R  
yields the steady-state solution 

where 
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If we assume for Vthe form 1-541, as we did in Example 1.37, we iind for the 
rate a t  which the internal criterion 1-569 asympto~cally increases with t, 

Not unexpectedly, this is precisely the steady-state value of E{t?(t)} com- 
puted in Example 1.37. 

1.12 PROBLEMS 

1.1. Reuoluirig satellite 

Consider a satellite that revolves about its axis of symmetry (Fig. 1.1 1). 
The angular position of the satellite a t  time t is $(t), while the satellite has a 

Fig. 1.11. A revolving satellite. 

constant moment of inertia J. By means of gas jets, a variable torque p(t) 
can be exerted, which is considered the input variable to the system. The 
satellite experiences no friction. 

(a) Choose as the components of the state the angular position $ ( t )  and 
the angular speed $(t). Let the output variable be ?/(I) = $ ( t ) .  Show that the 
state diKerential equation and the output equation of the system can be repre- 
sented as 

?/ ( t )  = (1 ,  wo, 
where j = 115. 

(b) Compute the transition matrix, the impulse response function, and the 
step response function of the system. Sketch the impulse response and step 
response functions. 

(c) Is the system stable in the sense of Lyapunov? Is i t  asymptotically 
stable? 

(d) Determine the transfer function of the system. 
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torque 

Fig. 1.12. Input torque for satellite 
repositioning. 

(e) Consider the problem of rotating the satellite from one position in 
which it is at rest to another position, where it is at rest. In  terms of the state, 
this means that the system must be transferred from the state x(t,) = 
col (+,, 0) to the state x(t,) = col ($,, 0), where $, and 6, are given angles. 
Suppose that two gas jets are available; they produce torques in opposite 
directions such that the input variable assumes only the values -a, 0, and 
+a, where a is a fixed, given number. Show that the satellite can be rotated 
with an input of the form as sketched in Fig. 1.12. Calculate the switching 
time t ,  and the terminal time t,. Sketch the trajectory of the state in the 
state plane. 

An amplidyne is an electric machine used to control a large dc power 
through a small dc voltage. Figure 1.13 gives a simplified representation 
(D'Auo and Houpis, 1966). The two armatures are rotated at a constant 
speed (in fact they are combined on a single shaft). The output voltage of each 
armature is proportional to the corresponding field current. Let L, and R, 
denote the inductance and resistance of the k s t  field windings and L3 and R, 
those of the first armature windings together with the second field windings. 

Field orrnoture f i e l d  orrnoture 

Pig. 1.13. Schematic representation of an amplidyne. 
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1-576 

The following numerical values are used: 

(a) Take as the components of the state &(t) = i,(t) and f,(t) = i,(t) and 
show that the system equations are 

11(t) = (0, Ic&(t), 

where p(t) = eo(t) and il(t) = e,(t). 
(b) Compute the transition matrix, the impulse response function, and the 

step response function of the system. Sketch for the numerical values given 
the impulse and step response functions. 

(c) IS the system stable in the sense of Lyapunov? Is it asymptotically 
stable? 

(d) Determine the transfer function of the system. For the numerical values 
given, sketch a Bode plot of the frequency response function of the system. 

(e) Compute the modes of the system. 

1.3. Properties of time-i~~uariant syste~ns under state transformatio~~s 

Consider rhe linear time-invariant system 

We consider the effects of the state transformation x' = Tx. 

(a) Show that the transition matrix @(t, to) of the system 1-579 and the 
transition matrix @'(t,, to) of the transformed system are related by 

(b) Show that the impulse response matrix and the step response matrix 
of the system do not change under a state transformation. 
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(c) Show that the characteristic values of the system do not change under a 
state transformation. 

(d) Show that the transformed system is stable in the sense of Lyapunov 
if and only if the original system 1-579 is stable in the sense of Lyapunov. 
Similarly, prove that the transformed system is asymptotically stable if and 
only if the original system 1-579 is asymptotically stable. 

(e) Show that the transfer matrix of the system does not change under a 
state transformation. 

1.4. Stability of an1plirlyne ieitlt feeclbaclc 

In an attempt to improve the performance of the amplidyne of Problem 
1.2, the following simple proportional feedback scheme is considered. 

p(t) = A[%@) - ~l(t)l. 1-581 

Here q,(t) is an external reference voltage and i. a gain constant to be deter- 
mined. 

(a) Compute the transfer matrix of the amplidyne interconnected with the 
feedback scheme 1-581 from the reference voltage ilF(t) to the output voltage 
a@). 

(b) Determine the values of the gain constant 2. for which the feedback 
system is asymptotically stable. 

IS*.  Strucrltre of the controllable subspace 

Consider the controllability canonical form of Theorem 1.26 (Section 
1.6.3). 

(a) Prove that no matter how the transformation matrix T is chosen the 
characteristic values of Ail and Ah3 are always the same. 

(b) Define the characleristic values of Ail as the cotttrollablepoles and the 
characteristic values of A;? as the unco~ttrollable poles of the system. Prove 
that the controllable subspace of the system 1-310 is spanned by the char- 
acteristic vectors and generalized characteristic vectors of the system that 
correspond to the controllable poles. 

(c) Conclude that in the original representation 1-308 of the system 
the controllable subspace is similarly spanned by the characteristic vectors 
and generalized characteristic vectors corresponding to the controllable 
poles. 

1.6". Controllability m d  stabilizability of a time-inuariartt system under n 
state fransfor~natiot~ 

Consider the state transformation x' = Tx for the linear time-invariant 
system 

?(I) = Ax(t) + Blt(t). 1-582 

* See the preface Tor the significance of the problems marked with an asterisk. 
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(a) Prove that the transformed system is completely controllable if and 
only if the original system 1-582 is completely controllabl~. 

(b) Prove directly (without using Theorem 1.26) that the transformed 
system is stabilizable if and only if the original system 1-582 is stabilizable. 

1.7". Reconstrlrctibility m ~ d  detectability of a tinte-irtuaria~~l system talder 
a state transfo~ination 

Consider the state transformation x' = Tx for the time-invariant system 

(a) Prove that the transformed system is completely reconstructible iF and 
only if the original system 1-583 is completely reconstructible. 

(b) Prove directly (without using Theorem 1.35) that the transformed 
system is detectable if and only if the original system 1-583 is detectable. 

1.8'. Dual of a trar~sfor~ned systefn 

Consider the time-invariant system 

Transform this system by defining xl(t) = Tx(t) where T is a nonsiogular 
transformation matrix. Show that the dual of the system 1-584 is transformed 
into the dual of the transformed system by the transformation x"(t) = 
TI'%'* (t) . 

1.9. "Damping" of stirred tank 

Consider the stirred tank with fluctuations in the concentrations c, and c2 
as described in Examples 1.31 and 1.32 (Sections 1.10.3 and 1.10.4). Assume 
that v(t) = 0. The presence of the tank has the effect that the fluctuations in 
the concentrations c, and cl are reduced. Define the "damping factor" of the 
tank as the square root of the ratio of the mean square value of the fluctua- 
tions in the concentrations c(t) of the outgoing flow and the mean square 
value of the fluctuations when the incoming feeds are mixed immediately 
without a tank (V, = 0). Compute the damping factor as a function of V,. 
Assume a, = uc, 8, = 8, = 10 s and use the numerical values of Example 1.2 
(Section 1.2.3). Sketch a graph of the damping factor as a function of V,. 

1.10. State of system driven by Gatmian i1~11ite mise as a Morlcouprocess 

A stochastic process u(t) is a Markov process if 
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for all 17, all t,, t2,  . . . , t ,  with t ,  2 t,-, 2 t.-, 2 . . . 2 t,, and all 0.. Show 
that the state z ( t )  of the system 

where ~ ( t )  is Gaussian white noise and so a given stochastic variable, is a 
Markov process, provided r, is independent of ls(t), t 2 to. 

1.11. Modeling of second-order stochastic processes 

Consider the system 

For convenience we have chosen the system to be in phase canonical form, 
but this is not essential. Let o(i) be white noise with intensity 1. The output 
of the system is given by 

~ ( t )  = ( 7 ' 1 3  7 d x ( t ) .  1-588 

(a) Show that if 1-587 is asymptotically stable the power spectral density 
function of v ( t )  is given by 

(b) Suppose that a stationary stochastic scalar process is given which has 
one of two following types of covariance functions: 

R,(T) = ,31e-D01rI cos ( W ~ T )  + ,3ce-nolrl cos ( W ~ T ) ,  1-591 

where T = tl - t,. Show that 1-587 and 1-588 can be used to model such a 
process. Express the constants occurring in 1-587 and 1-588 in terms of the 
constants occurring in 1-590 or 1-591. 

(c) Atmospheric turbulence manifests itself in the form of stochastically 
varying air speeds. The speed fluctuations in a direction perpendicular to  
the main flow can be represented as a scalar stochastic process with covari- 
ance function 

where T = t ,  - t,. Model this process. 
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