1 ELEMENTS OF LINEAR
SYSTEM THEORY

1.1 INTRODUCTION

This book deals with the analysis and design of linear control systems. A
prerequisite for studying linear control systems is a knowledge of linear
system theory. We therefore devote this first chapter to a review of the most
important ingredients of linear system theory. The introduction of control
problems is postponed until Chapter 2. :

The main purpose of this chapter is to establish a conceptual framework,
introduce notational conventions, and give a survey of the basic facts of
linear system theory. The starting point is the state space description of linear
systems, We then proceed to discussions of the solution of linear state
differential equations, the stability of linear systems, and the transform
analysis of such systems. The topics next dealt with are of a more advanced
nature; they concern controllability, reconstructibility, duality, and phase-
variable canonical forms of linear systems. The chapter concludes with a
discussion of vector stochastic processes and the response of linear systems
to white noise. These topics play an important role in the development of’
the theory.

Since the reader of this chapter is assumed to have had an introduction to
linear system theory, the proofs of several well-known theorems are omitted.
References to relevant textbooks are provided, however. Some topics are
treated in sections marked with an asterisk, notably controllability, recon-
structibility, duality and phase-variable canonical forms. The asterisk
indicates that these notions are of a more advanced nature, and needed only
in the sections similarly marked in the remainder of the book.

1.2 STATE DESCRIPTION OF LINEAR SYSTEMS

1.2.1 State Description of Nonlinear and Linear Differential Systems

Many systems can be described by a set of simultaneous differential equations
of the form

(1) = [ [z(0), u(t), 1]. 1-1
1
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Here ¢ is the time variable, =(r) is a real n-dimensional time-varying column
vector which denotes the srare of the system, and u(t) is a real k-dimensional
column vector which indicates the input wvariable or control variable. The
function f is real and vector-valued. For many systems the choice of the
state follows naturally from the physical structure, and 1-1, which will be
called the state differential equation, usually follows directly from the ele-
mentary physical laws that govern the system.

Let (¢} be a real dimensional system variable that can be observed or
through which the system influences its environment. Such a variable we calI :
an output variable of the system. It can often be expressed as

y(t) = gle(), u(®), t1. 12

This equation we call the output equation of the system.

We call a system that is described by 1-1 and 1-2 a finite-dimensional
differential system or, for short, a differential system. Equations 1-1 and 1-2
together are called the sysiem equations. If the vector-valued function g
contains u explicitly, we say that the system has a direc! link.

In this book we are mainly concerned with the case where fand g are linear
functions. We then speak of a (finite-dimensional) linear differential system.
Its state differential equation has the form

i(t) = A(Nx@) + B(Ou(D), 13

where A(¢) and B(t) are time-varying matrices of appropriate dimensions.
We call the dimension # of = the dimension of the system. The output equation
for such a system takes the form

y(H) = C(Hx(D) + D(Ou(r). 1-4
If the matrices 4, B, C, and D are constant, the system is tinte-invariant.

.1.2.2 Linearization

Tt is the purpose of this section to show that if 1, (f) is a given input to a system
described by the state differential equation 1-1, and =y(f) is a known solution
of the state differential equation, we can find approximations to neighboring
solutions, for small deviations in the initial state and in the input, from a
linear state differential equation. Suppose that x,(¢) satisfies

Go(1) = [ o), w2}, 1], L <t <t 1-5

We refer to 1, as a nominal input and to x, as a nominal trajectory. Often we
can assume that the system is operated close to nominal conditions, which
means that » and = deviate only slightly from u, and z,. Let us therefore write

u(t) = wylt) + (1), h <t

1-6
w(tg) = xy(tp) + E(ty),
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where #i{¢) and #(z,) are small perturbations. Correspondingly, let us intro-
duce #(7) by
; z(t) = my(t) + £(1), <<, 1-7

Letus now substitute = and « into the state differential equation and make
a Taylor expansion. It follows that

(1) 4 E(1) = [ lzg8), un(®), 1] + T [mo{8), up(0), £15()
: + T [ms(t), o0, 4O + b)), H<t<t 18

" Here J, and J, are the Jacobian matrices of f with respect to = and u, re-

spectively, that is, J, is a matrix the (7, j}-th element of which is

af;
J)p =", ' 1-9
. (Fadi.s o,
where f; is the i-th component of f and &; the j-th component of =. J,, is
similarly .defined. The term /(¢) is an expression that is supposed to be
“small” with respect to & and #. Neglecting /i, we see that & and # approxi-
mately satisfy the f/inear equation

() = A + BOEWD, (<t <y, 1-10
where A(t) = J [zp(2), uy(7), ] and B{t) = S [xy(2), 115(t), t]. We call 1-10 the

linearized state differential equation. The initial condition of 1-10 is Z(ty).

The linearization procedure outlined here’is very common practice in the
solution of control problems. Often it is more convenient to linearize the
system differential equations before arranging them in the form of state
differential equations. This leads to the same results, of course (see the
examples of Section 1,2,3). _
It can be inferred from texts on differential equations {see, e.g., Roseau,
1966) that the approximation to ®(t} obtained in this manner can be made
arbitrarily accurate, provided the function f possesses partial derivatives with
respect to the components of  and » near the nominal values =z, u,, the
interval [r,, 7;] is finite, and the initial deviation #(¢,) and the deviation of the
input # are chosen sufficiently small.

In Section 1.4.4 we present further justification of the extensive use of
linearization in control engincering.

1.2.3 Examples

" In this section several examples are given which serve to show how physical

equations are converted into state differential equations and how lincarization
is performed. We discuss these examples at some length because later they
are extensively used to illustrate the theory that is given.
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pendulum

carrioge

Fig. 1.1. An inverted pendulum positioning

N ./ system.

Example 1.1. Tnverted pendulum positioning spstem,

Consider the inverted pendulum of Figure 1.1 (see also, for this example,
Cannon, 1967; Eigerd, 1967). The pivot of the pendulum is mounted on a
carriage which can move in a horizonlal direction, The carriage is driven by a
small motor that at time ¢ exerts a force x(f) on the carriage. This force is
the input variable to the system.

Fipure 1.2 indicates the forces and the displacements. The displacement of
the pivot at time ¢ is 5(t), while the angular rotation at time ¢ of the pendulum
is ¢(#). The mass of the pendnlum is m, the distance from the pivot to the
center of gravity I, and the moment of inertia with respect to the center of
gravity J. The carriage has mass M. The forces exerted on the pendulum are

center of gravity

mg

H
pivot

Fig. 1.2. Inverted pendulum: forces and displacements.
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the force mg in the center of gravity, a horizontal reaction force H{(¢#), and a
vertical reaction force (¢} in the pivot. Here g is the gravitational acceleration,
The following equations hoid for the system:

2

meos [s(t) + L sin ¢(1)] = H(1), _ 1-11

m d:'“' [L cos ¢()] = V(1) — mg, 1-12

J%;gt) = LV(t)sin (1) — LH(t) cos ¢(1), 1-13
ds() . s

M _dz'“’ =u(t) — H{t)y—F P 1-14

Friction is accounted for only in the motion of the carriage and not at the
pivot; in 1-14, F represents the friction coefficient. Performing the differenti-
ations indicated in 1-11 and 1-12, we obtain

mi(t) + mLd(t) cos d(r) — mL$*(t) sin $(t) = H(), 1-15
—mLg(t) sin 56(1‘) — mLg(t) cos p{t) = V(t) — mg, 1-16
Jb(r) = LV(r) sin ¢(t) — LH(t) cos ¢(1), 1-17
ME() = pu(f) — H(t) — F5(0). 118

To simplify the equations we assume that m is small with respect to M and
therefore neglect the horizontal reaction force H(r) on the motion of the
carriage. This allows us to replace 1-18 with

Ms() = u(t) — FS(0). 1-19
Elimination of f#(¢) and V() from 1-15, 1-16, and 1-17 yields
(J + mLDG(t) — mgL sin ¢(t) + mL§(t) cos p(t) = 0. 1-20

Division of this equation by J 4 mL* yields

. 1
B — % sin (1) + 7 (1) cos (1) = 0, 121
where
r
i 122

mL
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This quantity has the significance of “‘effective pendulum length™ since a
mathematical pendulum of fength L' would also yield 1-21.

Let us choose as the nominal solution u{f) =0, s(t)=10, #()=0.
Linearization can‘easily be performed by using Taylor series expansions for
sin &(¢) and cos () in 121 and retaining only the first term of the series.
This yields the Iinearized version of 1-21:

" g 1
) —— olt —§(t) == 0. 1-23
B1) — 40 + 30
We choose the components of the state x(r) as

&(0) = (1),

£u(1) = $(1),

Ea(t) = s() + L'g(1),

Ey(1) = 3() + L'$ ().
The third component of the state represents a linearized approximation to
the displacement of a point of the pendulum at a distance L’ from the pivot.

We refer to £;(¢) as the displacement of the pendulum. With these definitions
we find from 1-19 and 1-23 the linearized state differential equation.

;&](r) = Eﬂ(t)s

1-24

oL F
&A1) = M u(n) Y, &0,
E(1) = &,(1), 1-25

E(D = gd() = z"- [£(1) ~ E(N].

In vector notation we wrile

0 1 o o0 0
o - L o o 1
1) = M o+ 1 M Yun, 126
0 o 0 1 0
_£ 0 g 0 0
r I

where x(r) = col [£,(1), &), &), £,(1)]
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Later the following numerical values are nsed:

F

==1s5"

M

L= 1kg

M 1-27
E — 1165572,

I

I = 0.842 m.

Example 1.2, A stirred rank.
As a Further example we treat a system that is to some extent typical of
process control systems. Consider the stirred tank of Fig. 1.3. The tank is fed

valves

feed Fy . feed F3
concantration cq concentration c

hehud volume V

% —t " concentration c

propellor

1 outgoing flaw F
concentration «c

Fig. 1.3. A stirred tank.

with two incoming flows with time-varying flow rates Fy(r) and Fa(r). Both
feeds contain dissolved material with constant concentrations ¢; and e,
respectively. The outgoing flow has a flow rate F(¢). It is assumed that the
tank is stirred well so that the concentration of the outgoing flow equals the
concentration ¢(t) in the tank.
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The mass balance equations are

dVTEI) = Fy(t) + Fut) — F(1), -
4
f:?[c(r)v(t)] = e Fy(f) + cFo(t) — c(OF(D), 129

where ¥(t) is the velume of the fluid in the tank. The outgoing flow rate
F(t) depends upon the head /(r) as follows

F(t) = k(o). 1-30

where k is an experimental constant. If the tank has constant cross-sectional
area S, we can write :

F(y=k \/K(_f) 131
hy
so that the mass balance equations are
V@ _ i)+ Fuln) — & \/ {03 1-32
dt 5
;—‘t [cV(D)] = erFi(1) + eaFolt) — ()i /1;‘_). 1-33

Let us first consider a steady-state situation where all quantities are constant,
say Fiy, Fuy, and F, for the flow rates, ¥, for the volume, and ¢, for the con-
centration in the tank. Then the following relations hold:

0= Fyp+ Fyp — Foy 1-34
0 = e1F g -+ eaFny — 60Fy, 1-35

Fy=k [T, 1-36
S

For given Fy, and Fy, these equations can be solved for Fy, ¥, and ¢,. Let
us now assume that only smail deviations from steady-state conditions occur.
We write
Fi(t) = Fyo + m(?),
Fo(t) = Fog + (1),
V() = Vo + &),
o(f) = ¢ + &(D),

1-37
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where we consider g, and g, input variables and £, and £, state variables.
By assuming that these four quantities are small, linearization of 1-32 and
1-33 gives :

51(1') = 1”1(‘) + ‘”“(t) - ] \/VO 51( 1), 1-38

A

Tu

EO)Va + cofalt) = () + capalt) — €4 El(r) — k\/ 2 Eff). 1-39

’Vn

Substitution of 1-36 into these equations yields

) 1 F,
E (D = m(t) + uat) — 5 ?; &(1), 1-40
1
£V + cof1(1) = eya(t) + copaal) — e Lo El(t) — Fo&i(1). 141
- D
We define
Loy, 142
Fy

and refer to @ as the ho/dup time of the tank. Elimination of & from 1-41
results in the linearized state differential equation

_7—16 0 1 7
Sl (R ECR PPN OIS
g Va Vo

where z(t) = col [&(f), &(1)] and u(f) = col [u,(8), ua(). If we moreover
define the output variables

: olFopon 1
() = F(t) — Fp= % LD = 20 &(1),

1-44
7a(t) = e(t) — o = &),

we can complement 1-43 with the linearized output equation
Lo
y() = | 28 (1), 1-45
0 1
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where y (1) = col [5,(t), %2(t)]. We use the following numerical values:
Fyp = 0.015 m¥s,
Fay = 0.005 m3s,
F, = 0.02 m?s,

¢, = 1 kmoljm¥,

1-46
c; = 2 kmol/m?,
¢y = 1.23 kmol/m?,
Vg =1 ms,
ff = 50s.
This results in the linearized system equations
~0.01 0 1 1
(1) = x(t) + u(2),
' 0 —0.02 —0.25 0.75
1-47
0 001 O )
yit) = (1),
0 1

1.2.4 State Transformntions

As we shall see, it is sometimes useful to employ a transformed representa-
tion of the state. In this section we briefly review linear state transformations
for time-invariant linear differential systems. Consider the linear time-

invariant system
@(t) = Ax(t) + Bu(t),

1-4
§(O) = Ca(o). 5
Let us define a transformed state variable
z'(t) = Tx(), 1-49

where T is a constant, nonsingular transformation matrix. Substitution of
z() = T’ (¢} into 1-48 yields
T2 (1) == AT 2'(1) + Bu(t), 1-50
y() = CTa'(1), )
or
#(1) = TAT ' (t) + TBu(r),

y(t) = CT=2' (1), 151
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These are the state differential equation and the output equation of the system
in terms of the new state x'(r). It is clear that the transformed representation
is completely equivalent to the original system, since we can always re-
construct the behavior of the system in terms of the original state by the
relation x(#) = T%'(¢). This derivation shows that the choice of the state
is to some extent arbitrary and therefore can be adapted to suit various
purposes. Many properties of linear, time-invariant systems remain un-
changed under a state transformation (Problems 1.3, 1.6, 1.7).

1.3 SOLUTION OF THE STATE DIFFERENTIAL
EQUATION OF LINEAR SYSTEMS

1.3.1 The Transition Matrix and the Impulse Response Matrix
In this section we discuss the solution of the linear state differential equation
| (1) = A()(0) + BOu(D). 1-52
We first have the following result (Zadeh and Desoer, 1963; Desoer, 1570).
Theorem 1.1, Consider the liomageneous equation
£(1) = A{Dx(t). 1-53
Then if At} is contimuous for all t, 1-53 ohvays has a solution which can be

expressed as, -
o z(t) = O, tyx(ty),  for all 1. 1-54

The transition matrix ©(t, ty) is the solution of the matrix differential equation

4 O(t, t) = ADD(t, 1),  for all t,
dt 1-55
(D(fna fu) =1,

where Iis the unit matrix.

For a general lime-varying system, the transition matrix rarely can be ob-
tained in terms of standard functions, so that one must resort to numerical
integration techniques, For time-invariant systems of low dimensions or of a
simple structure, the transition matrix can be computed by any of the methods
discussed in Sections 1.3.2, 1.3.3, and 1.5.1. For complicated time-invariant
problems, one must employ numerical methods such as described in Section
1.3.2.

The transition matrix can be shown to possess the following properties
(Zadeh and Desoer, 1963).
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Theorem 1.2.  The transition matrix ©(t, t;) of a linear differential system has
the following properties:

(a) ©(t., 1)O(ty, 1) = D(ta, £y)  jfor all ty, 1y, ta; 1-56
(b) d, ¢y is nonsingular for all t, ty; 1-57
(c) (IJ"l(t, fg) = Oy, 1}y forallt, tg; 1-58
(d) (D Tty )~—.—AT(t)rI) (t, ) for all 1, 1, 1-59

where the superscript T denotes the transpose.

Property (d) shows that the system #(t) = —AT(1)a(¢) has the transition
matrix ®T(t,,1). This can be proved by differentiating the identity
D, 1)D(ty, 1) = 1.

Once the transition matrix has been found, it is easy to obtain solutions
to the state differential equation 1-52,

Theorem 1.3. Consider the linear state differential equation
#(t) = A=z (8) + B(Ou(r). 1-60

Then if A(t) is continwous and B(t) and u(t) are piecewise continuous for allt,
the solution of 1-60 is

() = Bt, ty)z(ty) -l—ft(D(r, T)B(Mu(7) dr 1-61
Jorall t. °

This result is easily verified by direct substitution into the state differential
equation (Zadeh and Desoer, 1963).

Consider now a system with the state differential equation 1-60 and the
output equation
y(1) = C(t)=(t). 1-62

For the output variable we write
, :
y(1) = COD(, t)x(ty) + C(I)f D(t, 7)B{(m)u(7) dr. 1-63
fu

If the system is initially in the zero state, that is, z(t;) = 0, the response of
the output variable is given by

4
w(t) = f CK( Du(®) d, 1>, - 1-64
ty

where
K(t.7) = C()D(t, 7)B(D), 1> . 1-65
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The matrix K(t, ) is called the impulse response matrix of the system because
the (7, j)-th element of this matrix is the response at time ¢ of the i-th com-
ponent of the output variable to an impulse applied at the j-th component of
the input at time = > #, while all other components of the input are zero
and the initial state is zero. The step response matrix 5(¢, 7) is defined as

t
S(t, 1) =f.K(I, ™y dr', t> T 1-66

The (i, /)-th element of the step response matrix is the response at time ¢ of
the i-th component of the output when the j-th component of the input is a
step function applied at time 7 > 1y while all other components of the input
are zero and the initial state is the zero state.

1.3.2 The Transition Matrix of a Time-Invariant System

For a time-invariant system, the transition matrix can be given in an explicit
form (Zadeh and Desoer, 1963; Desoer, 1970; Polak and Wong, 1970).

Theorem 1.4. The time-invariant system

- &) = Axz(1) 1-67
has the transition matrix
D(t, tg) = ettt 1-68
where the exponential of a square matrix M is defined as
ar 1, o, 1,
e .—:.I—I—M—I—;M —|—3—;'M 4+ 1-69

This series converges for all M.

For small dimensions or simple siructures of the matrix 4, this result can be
used to write down the transition matrix explicitly in terms of elementary
functions (see Example 1.3). For high dimensions of the matrix 4, Theorem
1.4 is quite useful for the computation of the transition matrix by a digital
computer since the repeated multiplications and additions are easily pro-
grammed and performed. Such programs must include a stopping rule to
truncate the infinite series after a finite number of terms. A usual stopping
rule is to truncate when the addition of a new term chanpes each of the
elements of the partial sum by less than a specified fraction. Numerical
difficuities may occur when M is too larpe; this means that + — #; in 1-68
cannot be chosen too large (see Kalman, 1966; Kalman and Englar, 1966).
Having a program for computing matrix exponentials is essential for anyone
who wishes to simulate linear time-invariant systems. There are numerous
references on the computation of matrix exponentials and simulating linear
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systems; some of these are: Everling (1967), Liou (1966a,b, 1967, 19G8),
Whitney (1966a—c), Bickart (1968), Fath (1968), Plant (1969), Wallach
(1969), Levis {1969), Rohrer (1970), Mastascusa and Simes (1970), and
Krouse and Ward (1970). Melsa (1970) gives listings of FORTRAN com-
puter programs.

By using 1-68 the time-invariant version of 1-63 becomes

i
y(1) = Ce!"Mx(ty) + cf e"Bu(r) d. 1-70
o
Comparing 1-64 and 1-70 we sce that the impulse response matrix of a time-
invariant linear differential system depends on ¢ — + only and can be ex-
pressed as
K(t —1)=Cel""B, t>r 1-71

Example 1.3.  Stirred tank.
The homogeneous part of the linearized state differential equation of the
stirred tank of Example 1.2 is given by

#(f) = a(f). . 1-72
1
a —=
0

Tt is easily found that its transition matrix is given by

D(i, 1) = L"), 1-73
where
o1/t 1 ¥
—— 4 === 0

A ! 26+7f(20) 3!(26)+

B 0 1__+L(£‘“'_L A

PRV t\g
E«-—-t}ﬂﬂ 0 '
() 74

The impulse response matrix of the system is

L tirrize L trian
2 28
Kit—-n)=]| . 175

€ — Cp _(_ €n — Lo —(1—r)/0
S 7" B o C2 T Lo —lt-n)

Y Vo
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‘We find for the step response matrix of the stirred tank:

1-76

1 — gflt=rh 1 — g—t-rize
s — Cq

S(l‘. - T) = & — Co (J. _ B—“—r]/ﬂ) 8

1— e—-(fﬁr”ﬂ
F, Fl ( )

In Fig. 1.4 the step responses are sketched for the numerical data of Example
1.2

step in feed Fy of step in feed Fp of
3 | 1
incrementol 0002 m3/s 0.002 m3/s
outgoing l
flow
Mty 0O e — o 0002 — - — — e _
T, lt)
m3 k|
(23 sl
i1 | 1 ] . ¢
0 160 200 f—em(s) ] ] FLT R y—p
incramentol
outgaing Dif —— — = — = -e
concentration
LPLi3, it
kmal kmaol
( m3 ! t e {5} t mJ !
a 300 200 ] I |
° " l e 1a0 0 ¢ sy
0025 |- — - - -

Fig. 1.4. Response of the stirred tank to a step of 0.002 m%s in the feed F; (left column)
and to a step of 0.002 m%s in the feed F, (right column),

1.3.3 Diagonalization

An explicit form of the transition matrix of a time-invariant system can be
obtained by diagonalization of the matrix A. The following result is available
{Noble, 1269).

Theorem 1.5. Suppose that the constant n x n matrix A has n distinct
characteristic values 2, Ay, - --, 4, Let the corresponding characteristic
vectors be ey, ey, -+, e,. Define the n x n matrices

T= (81, Eay " "7y E"), 1-77a
A = diag (&g, Ay -5 A). 1-77b



16 Elements of Lincar System Theory

Then T is nonsingular and A can be represented as
A=TAT™ 1-78

Here the notation 1-77a implies that the vectors ey, ey, -+, e, are the
columns of the matrix T, and 1-77b means that A is a diagonal matrix with
Ay, Ay, v+, A, as diagonal elements. It is said that T diggonalizes A.

The following fact is easily verified.

Theorem 1.6, Consider the matrix A that satisfies the assumptions of
Theorem 1.5. Then

(a) et = TeMT, 1-79
(b) M = diag (e, e, « - -, '), 1-80

This result makes it simple to compute exp (4¢) once A is diagonalized. It is
instructive to present the same result in a different form.

Theorem 1.7. Consider the time-invariant system
() = A=x(t), 1-81

where A satisfies the assumptions of Theorem 1.5. Write the matrix T-* in the
form

i

fa

T 1-82

l

I

that is, the row vectors fi, fa, * + + , [, are the rows of T, Then the solution of
1-81 can be written as

w(t) = e*e,fx(0). 1-83
i=1

This is easily shown by expanding x(t} = Texp (Af)T'x(0) in terms of
e; [y, and exp (i), i= 1,2, -+, n. We write 1-83 in the form

n .
x(t) = 3 ', 1-84
i=1

where the g, are the scalars f;z(0), i= 1,2, --, n. This clearly shows that
the response of the sysiem 1-81 is a composition of motions along the
characteristic vectors of the matrix 4. We call such a motion a mode of the
system. A particular mode is excited by choosing the initial state to have a
component along the corresponding characteristic vector.
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It is clear that the characteristic values 4;,/ = 1,2, - - - , n, to a considerable
extent determine the dynamic behavior of the system. We often refer to these
numbers as the poles af the system. '

Even if the matrix A has multiple characteristic values, it can be diagonalized
provided that the number of linearly independent characteristic vectors for
each characteristic value equals the multiplicity of the characteristic value.
The more complicated case, where the matrix 4 cannot be diagonalized, is
discussed in Section 1.3.4.

Example 1.4. Inverted penculum.
The homogeneous part of the state differential equation of the inverted
pendulum balancing system of Example 1.1 is

0 —+£ 0 o0
) M (1) 85
a(h) = a(1). ) 1-
( 0 0 0 1
- £ 9 £
L’ L'

The characteristic values and characteristic vectors of the matrix A4 can be
found to be

;{1=0! Aﬁz'_fus ;{![=\/g, ﬂ-nj:_\/ix
M 3 L I

1 1 0 0
_f
0 Iy 0 0
el = 1 2 e‘.l = o 3 e:.l = 1 1 el 1 [l
0 — 5 — /B
M L ' L'
1-86
where
£
o= L -, 1-87
g F
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and where we assume that the denominator of o differs from zero. The matrix
T and its inverse are

o - £ o o
M
=11 « 1 1 '
0 _ F \/g_ _ \/g_
M L !
1 M 0 0
F
0 _M 0 0
F
SUVR N SRR S T Oy O 188
2 F . /& 2 2V g
M L’
1 : Lo
2 _F g 2 2V g
M L
The modes of the system are
1 1 0
0 —1—5 0
g\ F1AD 7 et‘/u/L” E—t\/ olL
1 H o 2 1
F g
g — 5
0 Y, T
1-89

The first mode represents the indifference of the system with respect to
horizontal translations, while the third mode exhibits the unstable character
of the inverted pendulum.
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1.3.4* The Jordan Form

In the preceding section we saw that the representation of the transition
matrix can be facilitafed by diagonalizing the matrix 4. This diagonalization
is not possible if the n x n matrix 4 does not have # linearly independent
characteristic vectors. In this case, however, it is possible to bring A4 inio the
so-called Jordan normal form which is almost diagonal and from which the
transition matrix can easily be obtained.

We first recall a few facts from linear algebra. If Af is a matrix, the nu/
space of M is defined ag

NA(M) = {z: v e®", Mz =0}, 1-90

where %" is the n-dimensional complex vector space. Furthermore, if ./
and ./, are two linear subspaces of an n-dimensional space, a linear subspace
Ay is said to be the direct sum of .#, and ./, written as

Ay = D My, 1-91

if any vector &, & ./, can be written in one and only one way as vy = ©;, + @,
where x, € .#, and =, € ¥,
We have the following result (Zadeh and Desoer, 1963).

Theorem 1.8. Suppose that the n x n matrix A has k distinct characteristic
values 2;, i.=1,2,-- -, k. Let the multiplicity of each characteristic value 2;
in the characteristic polynomial of A be given by m;. Define

M= (4 — D", 1-92
and let
AN = M (M. 1-93
Then
(a) The dimension of the linear subspace A" ism;, i=1,2,--,k;

. (b) The whole n-dimensional complex space €™ is the direct sun of the null
spaces A7, i =1,2,---,k, that is,.

Er=AN BN B DA 1-94

When the matrix 4 has n distinct characteristic values, the null spaces v
reduce to one-dimensional subspaces each of which is spanned by a charac-
teristic vector ol 4.

We have the lollowing fact (Noble, 1969).

Theorem 1.9,  Consider the matrix A with the same notation as in Theorem
1.8. Then it is always possible to find a nonsingular transformation matrix T

* See the Preface for the significance of the sections marked with an asterisk.
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which can be partitioned as

T=(T15T2:“':Tk)! 1"95
such that
CA=TJT, 1-96
where
J=diag (Jy, Jy, " -, J). 1-97

The blocic J; has dimensions m; X my, i = 1,2, -+, k, and the partitioning of
T matches that of J. The colunns of T; form a specially chosen basis for the
null space A", i =1,2, -, k. The blocks J; can be subpartitioned as

Jy = diag (Ji, Jps 5 s 1-98
where each subblock J; is of the form
PR I |
0 4 1 0
Jym [ oo . 1-99
0r+--0 4, 1
Devenens 0 A

J is called the Jovdan normal form of A.

| Expression 1-96 suggests the following practical method of computing the
transformation matrix T (Noble, 1969). From 1-96 it follows

AT = TJ. 1-100

Let us denote the columnns of T as gy, ¢,  * -, g,. Then from the form of J, it
follows with 1-100 that :

Ag; = Aq; + 795 1-101

where y; is either 0 or 1, depending on J, and where 4 is a characteristic value
of A. Let us subpartition the block T, of T" corresponding to the subpartition-
ing 1-98 of J; as T}, Ty, -+ +, T}, Then the number y; is zero whenever the
corresponding column ¢, of T is the first column of a subblock. Since if
y; = 0 the vector g, is a characteristic vector of 4, we sec that we can find
the first columns of each subblock as the characteristic vectors of 4. The
remaining columns of each subblock then follow from 1-101 with »; = 1.
Those remaining columns are known as generalized characteristic vectors of
the matrix 4. We stop this process when 1-101 fails to have a solution.
Example 1.5 at the end of this section illustrates the procedure.

Once the matrix 4 has been brought into Jordan normal form, the ex-
ponential of A is easily found.
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Theorem 1.10. Consider the matrix A with the same natanan as in Theorems
1.8 and 1.9. Then

(a) etb— Te™'T, 1-102
(b) EJ'I! - d!ag (e.f]_l ll cee e.ﬂ.—f)’ 1-103
(€) e’ = diag (e’ e ‘”"‘ ce, el ' 1-104
tﬂ Inu~1
1+ —
! (n:'j — !
Tast t i
(@) efit = gt 01 t--r— , 1-105
(n;; — 2!
Q-ccvvranennn 1

whtere ny is the dimension of Ji;.
It is seen from this theorem that the response of the system
(1) = A=(1) 1-106

may contain besides purely exponential terms of the form exp (1) also
terms of the form 7 exp (4;¢), t* exp (4,#), and so on.

Completely in analogy with Section 1.3.3, we have the following fact
{Zadeh and Desoer, 1963).

Thearem 1.11. Cansider the time-invariant linear system
#(t) = Ax(r). ' 1-107

Express the initial state x(0) as

k
H{0)=Yv,  withped, i=12-,k 1-108
=1 '
Write
U,
U,

T1= . s 1-109

A
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where the partitioning corresponds to that of T in Theorem 1.9. Then the
response of the system can be expressed as

13

a(t) = > Tyexp (S;DU,. 1-110

From this theorem we see that if the initial state is within one of the nult
spaces /7;, the nature of the response of the system to this initial state is
completely determined by the corresponding characteristic value. In analogy
with the simple case of Section 1.3.3, we call the response of the system to
any initial state within one of the nuil spaces a mode of the system.

Example 1.5. Tnverted pendulum.

Consider the inverted pendulum of Example 1.}, but suppose that we
neglect the friction of the carriage so that F = 0. The homogeneous part of
the linearized state differential equation is now given by %(t) = A4x(t), where

0 1 0 0
0 0 0 0
a=| 9 o001} 1-111
£ g £ g
L L

The characleristic values of A can be found to be

L=0 Ju=0, =[5, .1}{-2—-/—g-. 1112
L 4 L

It is easily found that corresponding to the double characteristic value 0
there is anly one characteristic vector, given by

1
0
1-113
1
0
To %, and A, correspond the characteristic vectors
0 0
0
and 1-114

1

AN

e
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Since the characteristic values i, and 2, are single, the corresponding null
spaces have dimension one and are spanned by the corresponding charac-
teristic vectors. Since zero is a double characteristic value, the corresponding
null space is two-diménsional. The fact that there do not exist two linearly
independent characteristic vectors gives rise to one subblock in the Jordan
form of size 2 x 2. Let the characteristic vector 1-113 be the first column ¢,
of the transformation matrix 7. Then the second column ¢, must follow from

Aga =0 g4+ q1. 1-115

It is easily found that the general solution to this equation is

0 1
1 0

a== |, + 8 L 1-116
1 0

where f# is an arbitrary constant. We take § = 0. Since g4, and g, have to be
the characteristic vectors given by 1-114, we find for the transformation
matrix 7,

1 01 0 0
0 1] 0 0 .
T={1 0l 1 1 1-117
0 i \/i — |E
L L
The corresponding Jordan normal form of A is
11 0 0
07 0 0
= o 1-118
S 0 \/& 0 .
L _
of o |~ \/5-
L

The exponential of 4 can now easily be found from 1-102, 1-117, and 1-118.
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1.4 STABILITY

1.4.1 Definitions of Stability

In this section we are interested in the overall time behavior of differential
systems. Consider the general nonlinear state differential equation

#(#) = flz(t), u(t), £1. 1-119

An important property of the system is whether or not the solutions of the
state differential equation tend to grow indefinitely as : — o. In order to
simplify this question, we assume that we are dealing with an autonomous
system, that is, a system without an input # or, equivalently, a system where
u is a fixed time function. Thus we reduce our attention to the system

£(1) = f[=(2), t]. 1-120

Just as in Section 1.2.2 on linearization, we introduce a nominal solution zy(t)
which satisfies the state differential equation:

Zo(t) = f [o(2). ). _ 1-121
A case of special interest occurs when w,(#) is a constant vector z,; in this
case we say that x, is an equilibrium state of the system.

We now discuss the stability of so/utions of state differential equations.
First we have the following definition (for the whole sequence of definitions
that follows, see also Kalman and Bertram, 1960; Zadeh and Desoer, 1963;
Brockett, 1970).

Definition 1.1.  Consider the state differential equation

#(t) = f (1), 1] 1-122
with the nominal solution x,(r). Then the nominal solution is stable in the sense
of Lyapunov if for any t, and any € > 0 there exists a é(e, ty) > 0 (depending
upon & and possibly wupon ty) such that ||z(t)) — 2o(to)lf < & implies
l=(t) — o) < & forall t > t,.

Here ||z[] denotes the norm of a vector x; the Fuclidean norm

Il =/ >, 1123

where the §,i=1,2,---,n, are the components of =, can be used. Other
norms are also possible.

Stability in the sense of Lyapunov guarantees that the state can be pre-
vented from departing too far from the nominal solution by choosing the
initial state close enough to the nominal solution. Stability in the sense of
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Lyapunov is a rather weak form of stability, We therefore extend our
concept of stability.

Definition 1.2,  The nominal solution x(t) of the state differential equation
a(r) = f (1), 1] 1124
is asymptotically stable if

(2) It is stable in the sense of Lyapunouv;
(b) For all 1, there exists a p(ty) > 0 {possibly depending upon 1) such that
letie) — %alto)ll < p implies

(1) — mo(D)] ~ 0 as 1 — co.

Thus asymptotic stability implies, in addition to stabilify in the sense of
Lyapunov, that the solution always approaches the nominal solution,
provided the initial deviation is within the region defined by

l(te) — (o)l < p.

Asymptotic stability does not always give information for large initial
deviations from the nominal solution. The foilowing definition refers to the
case of arbitrary initial deviations.

Definition 1.3. The nominal solution zy(t) of the state differential equation
#(t) = [ la(), 1] - 1125
is axymptotically stable in the large if

{(a) It is stable in the sense af Lyapunov;
(b) For ony x(t;) and any 1,

fle(t) — ()| = O ' 1-126
as i — o0,

A solution that is asymptotically stable in the large has therefore the property
that all other solutions eventually approach it.

So far we have discussed only the stability of selutions. For nonlinear
systems this is necessary becaunse of the complex phenomena that may occur.
In the case of linear systems, however, the situation is simpler, and we find it
convenient to speak of the stability af systems rather than that of solutions.
To make this point clear, let z;(t} be any nominal solution of the linear
differential system

(1) = A()x(t), 1127

and denote by x(¥) any other solution of 1-127. Since both z,(r) and =(¢) are
solutions of the linear state differentiai equation 1-127 =(s) — x,(f) is also a
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solution, that is, g
- [2(1) — zo(0)] = AWN[=(1) — =(1)]. 1-128

This shows that in order to study the stability of the nominal solution x,(¢),
we may as well study the stability of the zero solution, that is, the
solution z(t) =0. If the zero solution is stable in any sense (of
Lyapunov, asymptotically or asymptotically in the large), any other
solution will also be stable in that sense. We therefore introduce the following
terminoclogy.

Definition 1.4. The linear differential system
(1) = A=) 1-129

is stable in a certain sense (of Lyapunov, asymptotically or asymptotically in
the large), if the zera solution x(t) = 0 iy stable in that sense.

In addition to the fact that all nominal solutions of a linear differential
system exhibit the same stability properties, for linear systems there is no
need to make a distinction between asymptotic stability and asymptotic
stability in the larpe as stated in the following theorem.

Theorem 1.12. The linear differential system
&(t) = A=) 1-130
is asympiotically stable if and only if it is asymptotically stable in the large.

This theorem follows from the fact that for linear systems solutions may be
scaled up or down without changing their behavior.

We conclude this section by introducing another form of stability, which
we define only for linear systems (Brockett, 1970),

Definition 1.5.  Thre linear time-varying differential system

(1) = A(D=() 1-131
is exponentially stable if there exist pasitive canstants o and B such that
=) < ae™ = a(t)], 1 2 1, 1-132

Jor every initial state z(ty).

A system that is exponentially stable has the property that the state converges
exponentially to the zero state irrespective of the initial state.
We clarify the concepts introduced in this section by some examples.

Example 1.6. Tnverted penduium.
The equilibrium position s() =0, ¢(t) =0, u(f) =0 of the inverted
pendulum of Example 1.1 (Section 1.2.3) obviously is not stable in any sense.



14 Stability 27

Example 1.7. Suspended pendulum.

Consider the pendulum discussed in Example 1.1 (Section 1.2 .3). Suppose
that u(r) = 0. From physical considerations it is clear that the solution
5(t) = 0, (1) = = (corresponding to a suspended pendulum) is stable in the
sense of Lyapunov; by choosing sufficiently small initial offsets and velocities,
the motions of the system can be made to remain arbitrarily small. The system
is not asymptotically stable, however, since no friction is assumed for the
pendulum; once it is in motion, it remains in motion. Moreover, if the
carriage has an initial displacement, it will not return to the zero position
without an external force. :

Example 1.8.  Stirred tank,
Consider the stirred tank of Example 1.2 (Section 1.2.3). For u(t) = 0 the
linearized system is described by

(1) = , (1), 1-133

which has the solution
E(f) = e™50), t2>0,

E(N) = e E0), 120,

Obviously £ (#) and £.(f) always approach the value zerc as ¢ increases
since 0 > 0. As a result, the linearized system is asymptotically stable,
Moreover, since the convergence to the equilibrium state is exponential, the
system is exponentially stable.

In Section 1.4.4 it is seen that if a linearized system is asymptotically
stable then the equilibrium state about which the linearization is performed
is asymptotically stable but not necessarily asymptotically stable in the large.
Physical considerations, however, lead us to expect that in the present case
the system is also asymptotically stable in the large.

1-134

1.4.2 Stability of Time-Invariant Linear Systems

In this section we establish under what conditions time-invariant linear
systems possess any of the forms of stability we have discussed. Consider the

system
#(t) = Az(1}, 1-135

where 4 is a constant # X » matrix. In Section 1.3.3 we have seen that if 4
has » distinct characteristic values A, 4., - - - , 4, and corresponding charac-
teristic vectors e, es, * * * , €, the response of the system to any initial state
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can be represented as n
x(t) = D petile,, 1-136

§=1
where the scalars ',u,!-, i=1,2,---,n follow from the initial state %(0). For
systemms with nondiagonizable A, this expression contains additional terms
of the form * exp (4;1) (Section 1.3.4). Clearly, the stability of the system in
both cases is determined by the characteristic values ;. We have the following
result,

Theorem 1.13. The time-invariant linear system
B(t) = Ax(t) 1-137
is stable in the sense of Lyapunov if and only if

(a) all of the characteristic values of A have nonpositive real parts, and
(b) to any characteristic value on the imaginary axis with multiplicity m there
correspond exactly m characteristic vectors of the matrix A.

Condition (b) is necessary to prevent terms that grow as ¢* (see Section 1.3.4).
This condition is always satisfied if 4 has no multiple characteristic values
on the imaginary axis. For asymptotic stability we need slightly stronger
conditions.

Theorem 1.14. The time-invariant system
(1) = Ax(r) 1-138

is asymptotically stable if and only if all of the charaeteristic values of A have
strictly negative real parts.

This result is also easily recognized to be valid. We furthermore see that if a
time-invariant linear system is asymptotically stable the convergence of the
state to the zero state is exponential. This results in the following theorem.

Theorem 1.15. The time-invariant system
#(1) = Ax(t) 1-139
is exponentially stable if and only if it is asymptotically stable.

Since it is really the matrix 4 that determines whether a time-invariant
system is asymptotically stable, it is convenient to use the following ter-
minology.

Definition 1.6. The n X n constant mairix A is asymptotically stable if all its
characteristic values have strictly negative real parts.

The characteristic values of 4 are the roots of the characteristic polynomial
det (I — A). Through the weil-known Routh-Hurwitz criterion (see, e.g.,
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Schwarz and Friedland, 1965) the stability of A4 can be tested directly from
the coefficients of the characteristic polynomial without explicitly evaluating
the roots. With systems that are not asymptotically stable, we find it con-
venient to refer to those characteristic values of A that have strictly negative
real parts as the stable poles of the system, and to the remaining ones as the
unstable poles.

We conclude this section with a simple example. An additional example is
given in Section 1.5.1, '

Example 1.9. Stirred tank.

The matrix 4 of the linearized state differential equation of the stirred tank
of Example 1.2 has the characteristic. values —(1/20) and —(1/8). As we
concluded before (Example 1.8), the linearized system is asymptotically
stable since ! > 0.

1.4.3* Stable and Unstable Subspaces for Time-Invariani Linear
Systems

In this section we show how the state space of a linear time-invariant
differential system can be decomposed into two subspaces, such that the
response of the system from an initial state in the first subspace always con-
verges to the zero state while the response from a nonzero initial state in the
other subspace never converges.

Let us consider the time-invariant system

#(t) = Az(t) 1-140
and assume that the matrix 4 has distinct characteristic values (the more

general case is discussed later in this section). Then we know from Section
1.3.3 that the response of this system can be written as

alt) = 3 wetle,, 1-141
=

where A;, Aa, - - -, 4, are the characteristic values of 4, and e, -- -, e, are
the corresponding characteristic vectors. The numbers yy, o, =+ , f, are
the coefficients that express how the initial state =(0) is decomposed along the
veclors ey, ey, "+, 2. )

Let us now suppose that the system is not asympiotically stable, which
means that some of the characteristic values A; have nonnegative real parts.
Then it is clear that the state will converge to the zero state only if the initial
state has components only along those characteristic vectors that correspond
to stable poles.

If the initial state has components only along the characteristic vectors that
correspond to unstable poles, the response of the state will be composed of
nondecreasing exponentials, This leads to the following decomposition of the
state space.
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Definition 1.7. Consider the n-dimensional system a(t) = Ax(t) with 4 a
constant matrix. Suppose that A has n distinct characteristic values. Then we
define the stable subspace for this system as the real linear subspace spanned
by those characteristic vectors of A that correspond to characteristic values
with strictly negative real parts. The unstable subspace for this system is the
real subspace spanned by those characteristic vectors of A that correspond to
characteristic values with nonnegative reol parts.

We now extend this concept to more peneral time-invariant systems. In
Section 1.3.4 we saw that the response of the system can be written as

E
a(t) = 3 T;exp (J ) Uy, 1-142
i=1

where the »; are in the null spaces I, i =1,2, -, k. The behavior of
the factor exp (J;t) is determined by the characteristic value 2,; only if 4; has
a strictly negative real part does the corresponding component of the state
approach the zero state. This leads us in analogy with the simple case of
Definition 1.7 to the following decomposition:

Definition 1.8. Consider the n-dimensional [inear time-invariant system
&(t) = Ax(t). Then we define the stable subspace for this system as the real
subspace of the direct sum of those null spaces A", that correspond to charac-
teristic values of A with strictly negative real parts. Similarly, we define the
unstable subspace of A as the real subspace of the direct sum of these null
spaces A" ; that correspond to characteristic values of A with nonnegative real
parts.

As a result of this definition the whole real n-dimensional space 2" is the
direct sum of the stable and the unstable subspace.

Example 1.10. Tnverted pendulum.

In Example 1.4 (Section 1.3.3), we saw that the matrix 4 of the linearized
state differential equation of the inverted pendulum has the characteristic
values and vectors:

F g g
W=0, lo=-——, 2:\/—, L=— %, 1143
' M ‘N ! L

1 1 0 0
0 _£ 0 0
M
el = s e'_} = 3 Eﬂ = 5 e} =
1 e 1 1
0 o F 2 — &
M L I
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Apparently, the stable subspace of this system is spanned by the vectors e,
and e;, while the unstable subspace is spanned by e, and e;.

Example 111, Tnverted pendulum without friction.

In Example 1.5 (Section 1.3.4), we discussed the Jordan normal form of
the A matrix of the inverted pendulum with negligible friction. There we
found a double characteristic value 0 and the single characteristic values
v (g/L") and —v/ (g/L"). The null space corresponding to the characteristic
value O is spanned by the first two columns of the transformation matrix T,
that is, by

1 0
0 1
and . 1-145
1 0
0 1

These two column vectors, together with the characteristic vector corre-
sponding to +/(g/L'), that is,

0

0

l 3

s

span the unstable subspace of the system, The stable subspace is spanned by
" the remaining characteristic vecior

1-146

0

1-147

A
Ln’

1.4.4% Investigation of the Stability of Nonlinear Systems through
Linearization

Most of the material of this book is concerned with the design of linear
control systems. One major goal in the design of such systems is stability. In



a2 Elements of Linear System Theory

later chapiers very powerful techniques for finding stable linear feedback
control systems are developed. As we have seen, however, actual systems
are never linear, and the linear models used are obtained by linearization.
This means that we design systems whose linearized models possess good
properties. The question now is: What remains of these properties when the
actual nonlinear system is implemented ? Here the following result is helpful.

Theorem 1.16. Consider the time-invariant system with state differential
equation .

(1) = (). 1-148

Suppose that the system has an equilibritm state x, and that the function f
possesses partial derivatives with respect to the components af © at x,. Suppose
that the linearized state differential equation about z, is

E(t) = A%, 1-149

where the constant matrix A is the Jacobian of f at x,. Then if A is asymp-
totically stable, the solution x(¢) = x, is an asymptotically stable solution of
1-148.

For a proof we refer the reader to Roseau (1966). Note that of course we
caunot conclude anything about stability in the large from the linearized
state differential equation.

This theorem leads to a reassuring conclusion. Suppose that we are con-
fronted with an initially unstable system, and that we use linearized equations
to find a controller that makes the linearized system stable. Then it can be
shown from the theorem that the actual nonlinear system with this controller
will at least be asymptotically stable for small deviations from the equi-
librium state.

Note, however, that the theorem is reassuring only when the system con-
tains “smooth™ nonlinearities. If discontinuous elements occur (dead zones,
stiction) this theory is of no help.

We conclude by noting that if some of the characteristic values of 4 have
zero rea) paris while all the other characieristic values have strictly negative
real parts no conclusions about the stability of =, can be drawn from the
linearized analysis. If A has some characteristic values with positive real
parts, however, =, is not stable in any sense (Roseau, 1966).

An example of the application of this theorem is given in Chapter 2
(Example 2.6, Section 2.4).
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1.5 TRANSFORM ANALYSIS OF TIME-INVARIANT
SYSTEMS

1.5.1 Solution of the State Differential Equation through Laplace
Transformation

Often it is helpful to apalyze time-invariant linear systems through Laplace
transformation. We define the Laplace transform of a time-varying vector
z(t) as follows

Z(s) = L(1)] = J; et di, 1-150

where s is a complex variable. A boldface capital indicates the Laplace

transform of the corresponding lowercase time function. The Laplace

transform is defined for those values of s for which 1-150 converpes. We see

that the Laplace transform of a time-varying vector z(¢) is simply a vector

whose components are the Laplace transforms of the components of z(¢).
Let us first consider the homogeneous state differential equation

£(1) = Ax(r), 1-151
where 4 is a constant matrix. Laplace transformation yields
8X(5) — =(0) = AX(s), 1-152

since all the usuval rules of Laplace transformations for scalar expressions
carry over to the vector case (Polak and Wong, 1970). Solution for X(s)
yields

X(s} = (sI — AY=(0). 1-153

This is the equivalent of the time domain expression

#(2) = e<fz(Q). 1-154
We conclude the following.

Theorem 1.17. Let A be a constant n X n matrix. Then (s — Ay =
Llett, or, equivalently, et = PA(sl — A

The Laplace transform of a time-varying matrix is obtained by transforming
each of its elements. Theorem 1.17 is particularly convenient for obtaining
the explicit form of the transition matrix as long as # is not too large,
irrespective of whether or not 4 is diagonalizable.

The matrix function (sf — 4)~" is called the reso/vent of 4. The following
result is useful {Zadeh and Desoer, 1963; Bass and Gura, 1965).
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Theorem 1.18, Consider the constant n % n matrix A with characteristic
polynomiat

det {af — A} =57 + o, 8% T 4+ -+ 4 o + @ 1-155

Then the resolvent of A can be written as

1 n

sl — Ay = ———— % IR 1-156
( ) det (sT — A);% )
where the matrices R; are given by '
n s
Ry =3 w,A™, i=1,2,+",m 1-157
i=i
with o, = 1. The coefficients o, and the matrices Ry, i = 1,2, -, 1 can be
obtained through the following algorithm. Set
2, =1, R,=1T 1-158
Then
1
rxn_k = e ;‘ tr (A-Rn—k-l-l)! 1-159
4
) Rﬂ—k = U.n_kf + ARH—k—l—l’ . 1"‘160
Jork=1,2,--- n Fork = nwe have
Ry =0. 1-161
Here we have employed the notation
. tr (M} =3 M;, 1-162
=1
if M is an n X n matrix with diagenal elements M,;, i=1,2,---,n We

refer to the algorithm of the theorem as Leverrier’s algorithm (Bass and
Gura, 1965). It is also known as Souriau’s method or Faddeeva's method
(Zadeh and Descer, 1963). The fact that R, = 0 can be used as a numerical
check. The algorithm is very convenient for a digital computer. It must be
pointed out, however, that the algorithm is relatively sensitive to round-off
errors (Forsythe and Stranss, 19535), and double precision is usually employed
in the computations. Melsa (1970) gives a listing of a FORTRAN computer
Program.

Let us now consider the inhomogeneous equation ,
(1) = A=z(t) + Bu(t), 1-163
where 4 and B are constant, Taplace transformation yields

sX(s) — z(0) = AX(s) + BU(s), 1-164
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which can be solved for X({s). We find

X(s) = (s — A)'x(0) + (sI — Ay *BU(s). 1-165
Let the output equation .of the system be given by
y(t) = Cz(1), 1-166

where C is constant. Laplace transformation and substitution of 1-165 yields
Y(5) = CX(s5) = C(s] — A)'x2(0) + C(sI — A)y*BU(s), 1-167

which is the equivalent in the Laplace transform domain of the time domain
expression 1-70 with 7, = 0:

i
y(t) = Cedax(0) + C f e="By(+) dr, 1-168
1]
For %(0) = 0 the expression 1-167 reduces to
Y(s) = H()U(s), 1-169
where H(s) = C(s — A)1B. 1-170

The matrix H(s) is called the transfer matrix of the system. If H(s) and U(s)
are known, the zero Initial state response of the system can be found by
inverse Laplace transformation of 1-169.

By Theorem 1.17 it follows immediately from 1-170) that the transfer matrix
H(s) is the Laplace transform of the matrix function K(¢) = Cexp (41)B,
t 2 0. It is seen from 1-168 that K(z — 7), t > =, is precisely the impulse
response matrix of the system.

" From Theorem 1.18 we note that the transfer matrix can be written in the

form
1

)= or— )’

where P(s) is a matrix whose elements are polynomials in 5. The elements of
the transfer matrix H(s) are therefore rational functions of s. The common
denominator of the elements of H(s)is det (s] — A), unless cancellation occurs
of factors of the form s — 2;, where 2, is a characteristic value of 4, in all
the elements of H(s).

We call the roots of the common denominator of H{s) the poles of the
transfer matrix H(s); If no cancellation occurs, the poles of the transfer
matrix are precisely the poles of the system, that is, the characteristic values
of 4. '

If the input u(f) and the output variable ¥{r) are both one-dimensional,
the transfer matrix reduces to a scalar transfer function. For multiinput
multioutput systems, each element H;,(s} of the transfer matrix H{s) is the
transfer function from the j-th component of the input to the /-th component
of the output.

(s), 1171



36  Elements of Linenr Sysiem Theory

Example 1.12. A nondiagonizable systen.
Consider the system

0 1
ﬂﬂ:( )ma 1-172
oo

It is easily verified that this system has a double characteristic value 0 but
only a single characteristic vector, so that it is not diagonizable, We compute
its transition matrix by Laplace transformation. The resolvent of the system
can be found to be ' '

11
a1 s 1 s s
(sI — A" == = . 1-173
550 s 0 1
5

Inverse Laplace transformation yields

1 ¢

Note that this system is not stable in the sense of Lyapunov.
Example 1.13. Stirred tank.

The stirred tank of Example 1.2 is described by the linearized state differen-
tial equation '

L 0 1 1
20
() = ’ )+ g —cp €x— ¢y Ju(®) 14175
0 -= |4 |7
o 0 o
and the output equation
L g
y(t) = |26 @(1). 1-176
0 1
The resolvent of the matrix 4 is
1
1 0
*t 2
(s — A" = . . 1177
a
s 4+ 1
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H

The systern has the transfer matrix

1 1
24 20
i 5 + l. s + —
H(s) = 20 20 . 1-178
é €1 — Cg 1 Ca == Cp 1
| 1 Va 1
sty Sty

The impulse response matrix 1-75 of the system follows immediately by
inverse Laplace transformation of 1-178.

1.5.2 Frequency Response

In this section we study the frequency response of time-invariant systems,
that is, the response to an input of the form

u(®) = u,e’™, t>0, 1-179
where 1, is a constant vector. We express the solution of the state differential
equation

£(1) = Az(t) + Bu(f) 1-180

in terms of the solution of the homogeneous equation plus a particular
solution. Let us first try to find a particular selution of the form
I‘IJ(I) = I‘mejwts 1-181

where x,, is a constant vector to be determined. It is easily found that this
particular solution is given by

@, (f) = (jul — Ay 'Bu,e™, t> 0. 1-182

The general solution of the homogeneous equation #(t} = A=z(t) can be
written as

mh(r) = E:“ﬂ, 1-183

where a is an arbitrary constant vector. The general solution of the inhomo-
geneous equation 1-180 is therefore

z(t) = et'a + (jol — Ay "Bu,é™, >0 1-184

The constant vector a4 can be determined from the initial conditions. If the
system 1-180 is asymptotically stable, the first term of the solution will
eventually vanish as ¢ increases, and the second term represents the sfeady-
state response of the state to the input 1-179. The corresponding steady-stale
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respense of the output
#(t) = Cz(f) 1-185
is given by
y(t) = Cljod — )_1B“1nejmt
= H(je)u, et 1-186

We note that in this expression the transfer matrix H(s) appears with s
replaced by jo. We call H{ jw) the frequency response matrix of the system.
Once we have obtained the response to complex periodic inputs of the
type 1-179, the steady-state response to real, sinusoidal mputs is easily found.
Suppose that the &-th component g, (¢) of the input «(¢) is given as foliows

ety = fig sin (et + &), t>0. 1-187

Assume that all other components of the input are identically zero. Then the
steady-state response of the i-th component #,(t) of the output y(f) is given by

7:(1) = Hy(jeo)| fiysin (wf + ¢ + pads 1-188
where H,.( jw) is the (i, k)-th element of H{jw) and
Yq = arg [Hy(jw)]. 1-189

A convenient manner of representing scalar frequency response functions is
thrcmgh asymptotic Bode plots (D’Azzo and Houpis, 1966). Melsa (1970)
gives a FORTRAN computer program for plotting the modulus and the
argument of a scalar frequency response function.

In conclusion, we remark that it foilows from the results of this section that
the steady-state response of an asymptotically stable system with frequency
response matrix H{jw) to a constant input

u(t)y =u, 1-190
is given by
y(t) = H{O)u,,. 1-191

Example 1.14,  Stirred rank.
The stirred tank of Example 1.2 has the transfer matrix (Example 1.13)

1 1
2 20
s+i s+ =
H(s) = 24 20 . 1-192
—c¢ 1 €a—ocp 1
Y s-l—l Yo S-l-l
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The system is asymptotically stable so that it makes sense to consider the
frequency response matrix. With the numerical data of Example 1.2, we have

0.01 0.01
jo 4 0.01 e 4 0.01
H(jw) = . 1-193
—0.25 0.75

jo + 0.02 jw + 0.02

1.5.3 Zeroes of Transfer Matrices

Let us consider the single-input single-output system
Bt} = Aw(t) + bu(),
) = ez(t),

where p(7) and #5(#) are the scalar input and outpult variable, respectively, b is
a column vector, and ¢ a row vector. The transfer matrix of this system
reduces to a transfer function which is given by

1-194

H(s) = c(s] — A)™b. 1-195
Denote the characteristic polynomial of 4 as
det (s7 — 4) = $(s). 1-196
Then H{s) can be written as
¥(s)
H(s) = —=, 1-197
$(s)

where, if 4 isann X n matrix, then ¢(s} is a polynomial of degree # and y(s)
a polynomial of degree # — 1 or less. The roots of v(s) we call the zeroes of
the system 1-194. Note that we determine the zeroes before cancelling any
common factors of (s} and $(s). The zeroes of H{s) that remain after
cancellation we call the zeroes of the transfer function.

In the case of a multiinput multioutput sysiem, H{(s) is a matrix. Each
entry of H(s) is a transfer function which has its own zeroes. It is not obvious
how to define “the zeroes of H(s)"" in this case. In the remainder of this
section we give a definition that is motivated by the results of Section 3.8.
Only square transfer matrices are considered.

First we have the following result (Haley, 1967).

Theorem 1.19, Consider the systemn
B(t) = A=(t) + Bult),
y(1) = Cx(1),

1-198
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where the state  has dimension n and both the input u and the output variable
i have dimension m. Let H(s) = C{s] — A)™B be the transfer-matrix of the
systent. Then

_ ¥) g
det [H(s)] = e . 1-199
where
#(s) = det (s7 — A), 1-200

and y(s) is a polynomial in s of degree n — m or fess.

Since this result is not generally known we shall prove it. We first state the
following fact from matrix theory.

Lemma 1.1. Let M and N be matrices of dimensions m X n and n x m,
respectively, and let I, and I, denote unit matrices of dimensions m.x m and
n X n, Then
(@) det (7, + MN) = det (1, + NM). 1-201
(b) Suppose det (I,, + MN) 7 O; then B

(I, + MNYY = I, — M, + NM)™N. 1-202

nm

The proof of (a) follows from considerations involving the characteristic
values of I, + MN (Plotkin, 1964; Sain, 1966). Part (b) is easily verified.
It is not needed until later.

To prove Theorem 1.19 consider the expression
det [Af,, + C{sI,, — A)™'B], 1-203

where 4 is a nonzero arbitrary scalar which later we let approach zero.
Using part (a) of the lemma, we have

det [AI,, + C(sI, — A)™B] = det (AI,,) det [1 +% C(sf, — A)“IB:I
— A" det [1,, + ,II(SI" — A)‘lBC]

A™ det I:S[n — A+ %BC:I
= - . 1-204
det (s, — A)
We see that the left-hand and the right-hand side of 1-204 are polynomials
in 1 that are equal for all nonzero 4; hence by letting A — 0 we obtain

det [C(s] — A)'B] = ) 1-205

$(s)’
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where
p(s) = lim A™ det (SI,1l — A4+ %BC‘) . 1-206
A-0

This immediately shows that %(s) is a polynomial in 5. We now consider the
degree of this polynomial. For |s| — oo we see from Theorem 1.18 that

lm s(s] — Ay =1. 1-207
lz] =~

Consequently,
tim P _ G o™ det (C(sT — A
o d(s)  Jeloe
= lim det [Cs(sT — A)™B] = det (CB). 1-208

la]—+ =
This shows that the degree of ¢(s) is greater than that of p(s) by at least m,
hence p(s) has degree n — m or less. If det (CB) = 0, the degree of y(s) is
exactly # — m. This terminates the proof of Theorem 1.19.

We now introduce the following definition.
Definition 1.9. The zeroes of the system
(1) = A=x(t) + Bu(i),
y(t) = Cz(?),

where the state & has dimension n and botl the input u and the output y have
dimension m, are the zeroes of the polynomial y(s), where

1-209

det [H(s)] = #ls) 1-210

$(s)
Here H(s) = C(sI — AY-'B is the transfer mairix and ¢(s) = det (s — 4)
the characteristic polynomial of the system.

An p-dimensional system with m-dimensional input and output thus has at
most # — n zeroes. Note that for single-input single-output systems our
definition of the zeroes of the system reduces to the conventional definition
as described in the beginning of this section. In this case the system has at
most n — 1 zeroes.

The numerical computation of the numerator palynomial for a system of
some complexity presents problems. One passible way of going about this
is to write the numerator polynomial as

p(s) = (s} det (H{s)], 1211

where ¢(s) is the characteristic polynomial of the system. The coeflicients of
p(s) can then be found by substituting # — » 4 1 suitable values for s into
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~ the right-hand side of 1-211 and solving the resulting linear equations.
Another, probably more practical, approach results from using the fact that
from 1-206 we have

w(s) = lim (s, 2), 1-212
10

where
(s, ) = A" det (sI — A+ %BC) . 1-213

Inspection shows that we can write

m

p(s, 2) =3 Nus), 1-214
=0

where o, (s), i = 0,1, -, m, are polynomials in 5. These polynomials can
be computed by calculating (s, 2) for m different values of A. The desired
polynomial (s is precisely o(s).

We illustrate the results of this section by the following example.

Example 1.15. Stirred tank.
The stirred tank of Example 1.2 (Section 1.2.3) has the transfer matrix

1
2

21~

1 1
H(s) = S+ 35 St : 1215

¢, — ¢ 1 s — C 1
1 [} 2 )

|8 ¥, 1
5§+ =
3]

1
s+
0

The characteristic polynomial of the system is
d(s) = (s + i) (s + l) . 1-216
20 7

We find for the determinant of the transfer matrix

lea-q

0 1
det [H(s)] = . 1-217

(o))

Apparently, the transfer matrix has no zeroes. This is according to expectation,
since in this case n — m = 0 so that the degree of (s) is zero.
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1.5.4 Interconnections of Linear Systems

In this section we discuss interconnections of linear systems. Two important
examples of interconnected systems that we frequently encounter are the
series comnection of Fig. 1.5 and the feedback eontfiguration or closed-loop
system of Fig. 1.6.

uq(t) system ¥ () = uqyll) system yait)
Rt R

1 2

Fig. 1.5, Series connection.

system yiti=u,y(t)

1

System

2

Fig.1.6. Feedback connection.

We often describe interconnections of systems by the state augmentation
tecimigue. In the series connection of Fip. 1.5, let the individual systems be
described by the state differential and output equations

#,(1) = 4, (0w (1) + Bl(f)lfl(f)]
system 1,
Yu(1) = Cy(t)es (1) + Dy(eny (1) 1-218
Ba(1} = Ay(Daa() + -Bn(t)ffz(t)]
system 2.
Yalt) = Co(tdra(r) + Dop(Dua(t)
Defining the augmented state
2 (#)
= , 1-219
i (ma(t))
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the interconnected system is described by the state differential equation

PO (,H_( By(1) ) o o
T —-'(Bﬂ(f)C'l(t) Aﬂ(t)) ByO)Dy(0) 1 (1), _

where we have used the relation (1) = y,(¢). Taking y,(t) as the output of
the interconnected system, we obtain for the output equation

1a(t) = [D(DC (), G (1) + Do) Dy (1), 1-221

In the case of time-invariant systems, it is sometimes convenient to describe
an interconnection in terms of transfer matrices. Suppose that the individual
transfer matrices of the systems 1 and 2 are given by H,(s) and H,(s), respec-
tively. Then the overall transfer matrix is Ha(s)H1(s), as can be seen from

Ya(s) = Hy(s)Ua(s) = Ha(s) Hi(s)Un(s). 1222

Note that the order of #, and H, penerally cannot be interchanged.

In the feedback configuration of Fig. 1.6, r(¢) is the input to the overall
system. Suppose that the individual systems are described by the state
differential and output equations

E(1) = Ay ()m (1) -+ By(Duy (1)
) = Co0m () system |,
hit) = 1)e it .
' o 1-223
(1) = Aa()ea(t) + By(thualr)
system 2.
#ot) = Cao(t)ra(r) -+ Dy(us(1)

Note that we have taken system 1 without a direct link, This is to avoid
implicit algebraic equations. In terms of the augmented state z(¢) =
col [z,(t), ®=(t)], the feedback connection can be described by the state
differential equation

) (Al(f) — Bi{(NDy(r)Ci(1) “BL(f)Cu(r)) (5‘1(!))
(1) = z(t) + r(t),
Ba{)C1(7) Al 0
1-224

where we have used the relations (1) = () and w,(t) = r(t) — ¥, (). If
y,(t) is the overall output of the system, we have for the output equation

y(t) = [Ci(D), Ofx(1). 1225

Consider now the time-invariant case. Then we can write in terms of transfer

matrices
Y, (s) = H(S)[R(s) — Ha()Y (5], 1-226
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where H,(s) and H,(s) are the transfer matrices of the individual systems.
Solving for Y, (x), we find

Y3 (5) = [/ + Hi()He(s)] ™ Hy ()R (5)- 1-227
It is convenient to give the expression J 4 f;(s)H,(s) a special name:

Definition 1.10. Consider the feedback configuration of Fig. 1.6. and let the
systems 1 and 2 be time-invariant systems with transfer matrices Hy(s) and
Hy(5), respectively. Then the matrix function

J() = I + H(s)H,(s) 1-228
is called the return difference matvix. The matrix function
L(s) = H,(s)Hy(s) 1-229
is colled the loop gain matrix,

The term “return difference’ can be clarified by Fig. 1.7. Here the loop is cut
at the point indicated, and an external input variable u,(f} is connected.

Hets) @ 7 p ual)
‘ 7/

Halsl)

Fig. 1.7. Ilustration of return difference.

This yields (putting r(f) = 0)
Y, (5} = —H (5} H(5)Ua(5). 1-230
The difference between the “returned variable” y,(+) and the “injected

variable’” ug(¢) is
Uy(s) — Yy (5) = [I + Hy()Ha(5)]Uy(s)

= J(s)Ua(5).
Note that the loop can also be cut elsewhere, which will result in a different

return difference matrix. We strictly adhere to the definition given abaove,
however. The term “loop gain matrix’ is self-explanatory.

1-231
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A matter of great interest in control engineering is the stability of inter-
connections of systems. For series connections we have the following result,
which immediately follows from a consideration of the characteristic poly-
nomial of the augmented state differential equation 1-220.

Theorem 1.20. Consider the series connection of Fig, 1.5, where the systems
1 and 2 are time-invariant systems with characteristic polynomials ¢, (s) and
da(s), respectively. Then the interconmection has the characteristic polynomial
$1(5)pa(s). Hence the interconnected system is asymptotically stable if and
only if both system | and system 2 are asymptotically stable.

In terms of transfer matrices, the stability of the feedback configuration of
Fig. 1.6 can be investipated through the following result (Chen, 1968a; Hsu
and Chen, 1968).

Theorem 1.21. Consider the feedback configuratian of Fig. 1.6 in which the
systems 1 and 2 are time-invariant linear systems with transfer matrices
H,y(s) and Hy(s) and characteristic pelynomials ¢y(s) and ¢.(s), respectively,
and where system 1 does not have a direct link. Then the characteristic poly-
nomial of the interconnected system is

b1 ($)pa(s) det [ + Hy(s)Hy(s)]. 1-232

Hence the interconnected system is stable if and only if the polynomial 1-232
has zeroes with strictly negative real parts only.

Before proving this result we remark the following. The expression
det [I + Hy(s)H.(s)] is a rational function in 5. Unless cancellations take
place, the denominator of this function is ¢y (s} (s) so that the numerator of
det [J + H,(s)H,(s5)] is the characteristic polynomial of the interconnected
system. We often refer to 1-232 as the closed-loop characteristic polynomial.

Theorem 1.21 can be proved as follows. In the time-invariant case, it
follows from 1-224 for the state differential equation of the interconnected

system
Ay — B,DsC; —B,Cs B
i ={ " " T"Tam+ ). 1-233

B,C, Aa 0

We show that the characteristic polynomial of this system is precisely 1-232.
For this we need the following result from matrix theory.

Lemma 1.2. Let M be a square, partitioned matrix of the form

M, M,
M= . 1-234
My, M,
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Then if det (My) # 0,
det (M) = det (M) det (M, — MM M,). 1-235

1f det (M) # O, _
det (M) = det (M) det (My — M.M7IM,). 1-236

The lemma is easily proved by elementary row and celumn operations on
M. With the aid of Lemmas 1.2 and 1.1 (Section 1.5.3), the characteristic
polynomial of 1-233 can be written as follows.

sl — A]_ + Bl-D'_‘Cl .B]_CE
det
—B,C, sI— A,

= det (s — Ay) det [sf — A4, + B, D,C, + B, Colsf — A,)2B, ]
= det (5] — A,) det (s — A4;)
- det {7 4+ By[Ds + ColsI — AJ1B,JC (s — Ay}
= det (sf — A,) det (s — A,)
sdet {J + Cy(sf — A) 1B [Cols] — A)™1B, + Dy} 1-237
Since
det (s] — A,) = dy(s),
det (sf — Au) = du(s), 1-238
Ci(sI — A)7B; = Hy(s),
Cals! — Ay By + Dy = Hy(s),

‘1-237 can be rewritten as
b1 (S)a(s) det [{ + H(s)Ha(s)] 1-239

This shows that 1-232 is the characteristic polynomial of the interconnected
system; thus the stability immediately follows from the roots of 1-232.

This method for checking the stability of feedback systems is usually more
convenient for single-input single-output systems than for multivariable
systems. In the case of single-input single-output systems, we write

) Pa(s)
? H2 §) = H 1-240
©) 'ﬁﬂ(-‘)

where w,(s) and #,(s) are the numerator pelynomials of the systems. By
Theorem 1.21 stability now follows from the roots of the pelynomial

yn(8)wa(s) . . }
¢1(s)qsa(s)[1 T MSJ — b)) + (ysls). 1241

It often happens in designing linear feedback control systems that either
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in the feedback path or in the feedforward path a gain factor is left undeter-
mined until a late stage in the design. Suppose by way of example that
5
Hy(s) = p 22 1-242
‘ibl(s)
where p is the undetermined gain factor. The characteristic values of the
interconnected system are now the roots of

(D da(3) + py(s)wu(s). 1-243

An interesting problem is to construct the loci of the roots of this paly-
nomial as a function of the scalar parameter p. This is a special case of the
more general problem of finding in the complex plane the loci of the roots of

$(s) + pyls) 1-244

as the parameter p varies, where ¢o(s) and (s) are arbitrary given polynomials.
The rules for constructing such loci are reviewed in the next section.

Example 1.16. Inverted pendulum

Consider the inverted pendulum of Example 1.1 (Section 1.2.3) and suppose
that we wish to stabilize it. It is clear that if the pendulum starts
falling to the right the carriape must also move to the right. We therefore
attempt a method of control whereby we apply a force p(t) to the carriage
which is proportional to the angle ¢(#). This angle can be measured by a
potentiometer at the pivot; the force x(r) is exerted through a small servo-

motor. Thus we have ul(t) = k(o) 1-245

where k is a constant. It is easily found that the transfer function from p(f)
to (t)is given by
— ]
Hy() = LM . 1-246

e+ -5

The transfer function of the feedback part of the system follows from 1-245:

Hy(s) = —k. 1-247
The characteristic polynomial of the pendulum positioning system is
o) b=
=sls+ =)= E), 1-248
ba(s) ( + v 5 I

while the characteristic polynomial of the feedbaclk part is

da(s) = 1. 1-249
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It follows from 1-246 and 1-247 that in this case

(h g) Fg
s+s—+ — _—
M LM L ML

1+ H1(55H2(5) =

s 1-250
2 g
By
( M\ T
while from 1-248 and 1-249 we obtain
Fy\ /. g)
W(5) = + — s —=]). 1-251
SR = s(s + 1) (#~ &

We note that in this case the denominator of 1 4 H,(s)H:(s) is not the
product of the characteristic polynomials 1-251, but that a factor s has been
canceled. Therefore, the numerator of 1-250 is not the closed-loop char- -
acteristic polynomial. By multiplication of 1-250 and 1-251, it follows that
the characteristic polynomial of the feedback system is

s{s“+s=£+s(i—§) Fg} 1252
M LM L ML

We see that one of the closed-loop characteristic values is zero. Moreover,
since the remaining factor contains a term with a negative coefficient,
according to the well-known Routh-Hurwitz criterion (Schwarz and
Friedland, 1963) there is at least one root with a positive real part. This
"means that the system cannot be stabilized in this manner. Example 2.6
(Section 2.4) presents a more sophisticated control scheme which succecds
in stabilizing the system.

Example 1.17. Stirred tank

Consider the stirred tank of Example 1.2 (Section 1.2.3). Suppose that it
is desired to operate the system such that a constant flow F(t) and a
constant concentration ¢(¢) are maintained. One way of doing this is to use
the main flow F; to regulate the flow F, and the minor flow F, to regulate the
concentration ¢. Let us therefore choose p; and u, according to

w(t) = —keym(2),
Ua(t) = —kymy(t).

This means that the system in the feedback loop has the transfer matrix

1-253

i
Ha(s) = (01 10 ) . 1-254
i3

It is easily found with the numerical data of Example 1.2 that the transfer
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matrix of the system in the forward loop is given by

0.01 0.01
s 001 5+0.01
BO= e ars | 1-255

s+ 002 54002

‘With this the return difference matrix is

5 -+ 001k, 4+ 0.01 0.01/c,
s + 0.01 5 + 0.01
J = I I'.I Hr: = . 1-256
() = I+ Hi{s)Hls) —0.251, 5 + 0.75ks + 0.02
5+ 0.02 s -+ 0.02

For the characteristic polynomials of the two systems, we have
$i(s) = (s + 0.01)(s + 0.02),
Pal5) = 1.

It follows from 1-256 that

1-257

3y .02 0025k, ka
det [J(5)] = (s <+ 0.01k, + 0.01)s - 0.75k, 4 0.02) - 0.0025k, A ®  4osg
(s + 0.01)(s + 0.02)

Since the denominator of this expression is the product ¢, (s)eh(s). its
numerator is the closed-loop characteristic polynomial. Further evaluation
yields for the closed-loop characteristic polynomial

5% 4 5(0.01k; + 0.75k, 4+ 0.03) + (0.0002k,

+ 00075k + 0.01cykey + 0.0002). 1-259

This expression shows that for positive /; and k, the feedback system is
stable. Let us choose for the gain coefficients &y = 10 and i, = 0.1. This
gives for the characteristic polynomial

5% 4 0.205s - 0.01295. 1-260
The characteristic values are
—0.1025 &£ j0.04944. 1-261

The effectiveness of such a control scheme 1-253 is investigated in Example
2.8 (Section 2.5.3).
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1.5.5* Root Loci

In the preceding section we saw that sometimes it is of interest to find in the
complex plane the [o21 of the roots of an expression of the form

$(s) + py(s), 1262

where ¢(s) and p(s) are polynomials in &, as the scalar parameter p varies.
In this section we give some rules pertaining to these loci, so as to allow us
to determine some special points of the loci and, in particular, to determine
the asymptotic behavior. These rules make it possible to sketch root loci
quite easily for simple problems; for more complicated problems the assist-
ance of a digital computer is usually indispensable. Melsa (1970) gives a
FORTRAN computer program for computing root loci.
We shall assume the following forms for the polynomials ¢(s) and y(s):

$(s) = ]j; (s — 7,

ws) =1L (s = ) 1-263
We refer to the m;, i=1,2,---,n, as the open-loop poles, and to the
py== 1,3, -+, as the open-loop zeroes. The roots of 1-262 will be called
the closed-loop poles. This terminology stems from the significance that the
polynomials ¢(s) and p(s) have in Section 1.5.4. We assume that m < n;
this is no restriction since if m > # the roles of ¢{s) and p{s) can be reversed
by choosing 1/p as the parameter.

The most important properties of the root loci are the following.

(a) Number of roots: The number of roots of 1-262 is n. Each of the roots
traces a continuous lacus as p varies from — o fa oo,

(b) Origin of loci: The loci originate for p =0 at the poles w;, i =1,2,
..., . This is obvious, since for p = 0 the roots of 1-262 are the roots of
B(s).

(c) Behavior of loci as p — Fo0: As p— L0, m of the loci approach the
zeroes v;,i=1,2, -+, m. The remaining n — m loci go to infinity. This
follows from the fact that the roots of 1-262 are also the roots of

1 4(s) + wls). 1-264
2]

(d) Asymptotes af loci: Thase n — m loci that go to infinity approach
asympiotically n — m straight lines which make angles

a + 2
H—m

k=0,1,"--,n—m~—1, 1-265
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with the positive real axis as p — + o0, and angles

k2w
—, k=0,1,---,n—m—1, 1-266
n—am
as. p— —coo. The n — m asymptotes intersect in one point on the real axis
given by

n

l Z —2mn

5 & 1267
n—m
These properties can be derived as follows. For large s we approximate
1-262 by
§" + ps™. 1-268
The roots of this polynomial are .
(_P)ll(n-—m), 1-269
which gives a first approximation for the faraway roots. A more refined
analysis shows that a better approximation for the roots is given by

7 m
27— 2"
i=1 i=1 + (_P)h'(n—ml- 1-270

R—m
This proves that the asymptotic behavior is as claimed.

(e) Peortions of voat laci on real axis: If p assumes only positive values,
any portion of the real axis to the right of which an odd number of poles and
zeroes lies on the real axis is part of a roo! locus. If p assuwmnes only negative
values, any portion of the real axis to the right of which an even number of
poles and zeroes lies on the real axis is part of a root focus. This can be seen as
follows. The roots of 1-262 can be found by solving

3(s)

= —p 1-271
p(s)
If we assume p to be positive, 1-271 is equivalent to the real equations
#)| _ p, 1-272
ws)
arg '(é-(s—) = 7+ 2nk, 1-273
(s)

where % is any integer. If s is real, there always exists a p for which 1-272
is satisfied. To satisfy 1-273 as well, there must be an odd number of zeroes
and poles to the right of 5. For nepative p a similar argument holds.

Several other properties of root loci can be established (D’Azzo and
Houpis, 1966) which are helpful in sketching root locus piots, but the rules
listed above are sufficient for our purpose.
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Im

{s5-1}

314 Re-s(5-T)

t
[
g3
-

L

|
sk
o

Fig.1.8. Root locus for inverted pendulum. X, open-loop poles; O, open-loop zero.

Example 1.18. Inverted pendulum
Consider the proposed proportional feedback scheme of Example 1.16
where we found for the closed-loop characteristic polynomial

s(s + —}i) (.!i"1 - 5) + . 5% 1-274
M r M

Here K is varied from 0 to co. The poles are at 0, —F/M, «./gT'LT and

~~/g[L’, while there is a double zero at 0. The asymptotes make angles of

{2 and —/2 with the real axis as k — o since n — m = 2. The asymptotes

intersect at --%(F/M). The portions of the real axis between \/Iﬂ and 0,

and between —F/M and —+/g/L’ belong to a locus. The pole at 0 coincides
with a zero; this means that 0 is always one of the closed-loop poles. The loci
of the remaining roots are sketched in Fig. 1.8 for the numerical values given
in Example 1.1. It is seen that the closed-loop system is not stable for any F,
as already concluded in Example 1.16.

1.6* CONTROLLABILITY

1.6.1* Definition of Controllability

For the solution of control problems, it is important to know whether or not
a given system has the property that it may be steered from any given state
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to any other given state. This leads to the concept of controllability (Kaiman,
1960), which is discussed in this section. We give the following definition.

Definition 1.11." The linear system with state differential equation
E(t) = A@Rx(t) + B(u(t) 1-275

is said to be completely controllable if the state of the system can be transferred
Jrom the zero state at any Initial time t, to any terminal state ©(t)) = &
within a finite time t; — 1.

Here, when we say that the system can be transferred from one state to
ancother, we mean that there exists a piecewise continuous input u(z), 7, <
t < t;, which brings the system from one state to the other.

Definition 1.11 seems somewhat limited, since the only requirement is
that the system can be transferred from the zero state to any other state. We
shall see, however, that the definition impiies more. The response from an
arbitrary initial state is by 1-61 given by

x(t) = Oy, f)=(d,) + f h(I)(tl, ) B{(r)u(7r) dr, 1-276

so that h:l
w(ty) — D(ty, tpx(t,) = J. @1y, T)B(r)u(r) dr. 1-277

tn

This shows that transferring the system from the state x(r)) = %, to the state
a(#;) == x, is achieved by the same input that transfers =(#;) = 0 to the state
x(#;) = &, — D¢y, o), This implies the following fact.
Theorem 1.22. Tl linear differential system

() = ANOx() + B(Ou(t) 1-278

is completely eontrollable if and only if it ean be transferved from any initial
state x, at any initial time ty to any terniinal state x(t,) = x, within a finite time
t, — t.
Example 1.19. Stirred tank

Suppose that the feeds F; and F, of the stirred tank of Example 1.2 (Section
1.2.3) have equal concentrations ¢, = ¢, = £. Then the steady-state concen-

tration ¢, in the tank is also &, and we find for the linearized state differential
equation

0
11
HHES (1) + ( )u(r). 1-279
1 g0

g

<
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Tt is clear from this equation that the second component of the state, which is
the incremental concentration, cannot be controlled by manipulating the
input, whose components .are the incremental incoming flows. This is also
clear physically, since the incoming feeds are assumed to have equal con-
centrations.

Therefore, the system obviousiy is not completely controllable if ¢; = ca.
If ¢, ¥ £q, the system is completely controllable, as we shall see in Example
1.21.

1.6.2%* Controllability of Linear Time-Invariant Systems

In this section the conirollability of linear time-invariant systems is studied.
We first state the main result.

Theorem 1,23. The n-dimensional linear time-invariant system
£(t) = Ax(t) + Bu(t) 1-280

is complerely controllable if and only if the column vectors of the controllability
matrix
P = (B, AB, AB, - -+, A"1B) 1-281

span the n-dimensional space.

This result can be proved formally as follows. We write for the state at fy,

when at time #, the system is in the zero state,
!

i1 ‘ ’
a(ty) =f e"=Bu(r) dr. 1-282
ty

The exponential may be represented in terms of its Taylor series; doing this
we find

b31 11
x(ty) = Bf u(r) dr + ABf {t, — Du(r) dr
1o o
o 2 (t —_— 1_)2
+ A°B 1—’1— u(r)dr + -+, 1-283
to L3

We see that the terminal state is in the linear subspace spanned by the column
vectors of the infinite sequence of matrices B, 4B, A®B, - - - . In this sequence
there must eventually be a matrix, say 4B, the column vectors of which are
all linearly dependent upon the combined column vectors of the preceding
matrices B, AB, - - -, A'*B. There must be such a matrix since there cannot
be more than n linearly independent vectors in n-dimensional space. This
also implies that [ < n.
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Let us now consider A8 = A(A'B). Since the column vectors of A'B
depend linearly upon the combined column vectors of B, AB,- -, AR,
we can write - -

AB =BA, + ABA, + -+ + A7BA,_,, 1-284
where the A, i=0,1,+--,1— 1 are matrices which provide the correct
coefficients to express each of the column vectors of A*B in terms of the
column vectors of B, AB, - - -, A"1B. Consequently, we write

AR = ABAy + A"BA, + - - 4 A'BA,_,, 1-285
which very clearly shows that the columns of 4B also depend linearly
upon the column vectors of B, AB, - - -, A*1B. Similarly, it follows that the
column vectors of all matrices A*B for k > ! depend linearly upon the column
vectors of B, AB, -+, A"1B,

Returning now to 1-283, we see that the terminal state @(#)) is in the linear
subspace spanned by the column vectors of B, AB,---, A™1B. Since
I < n we can just as well say that =(¢} is in the subspace spanned by the
column vectors of B, AB, - -+, A™B, Now if these column vectors do not
span the n-dimensional space, clearly only states in a linear subspace that is
of smaller dimension than the entire #-dimensional space can be reached,
hence the system is not completely controllable. This proves that if the system
is completely controllable the column vectors of the controllability matrix P
span the n-dimensional space.

To prove the other direction of the theorem, assume that the columns of P
span the n-dimensional space. Then by a suitable choice of the input u(7),
fy £ 7 £ 1 (e.g., involving orthogonal polynomials), the coefficient vectors

f10p i
f =1 oy dr 1-286
io il

in 1-283 can always be chosen so that the right-hand side of 1-283 equals any
given vector in the space spanned by the columns of P. Since by assumption
the columns of P span the entire #-dimensional space, this means that any
terminal state can be reached, hence that the system is completely control-
lable. This terminates the proof of Theorem 1.23.

The controllability of the system 1-280 is of course completely determined
by the matrices 4 and B. It is therefore convenient to introduce the following
terminology.

Definition 1.12. Let A beann % nond Bann X k matrix. Then we say that
the pair {A, B} is completely controllable if the system

i(t) = Az(t) + Bu(r) - 1-287
is completely controllable.
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Example 1.20. Twerted pendulum
The inverted pendulum of Example 1.1 (Section 1.2.3) is a single-input
system which is described by the state differential equation

0 1 g 0 0
0 — % o 0 ﬁ
(1) = (1) + u(t).  1-288
0 0 0 1 0
_£ 3 E 9 0
I r

The controllability matrix of the system is

g L _E1 (i)ﬂ_l-

M MM \M/M
1 F1 /JF¥1 £yl
M_MMG%J%MM

P = 1-289

0 o o &1

LM

0 0 gl gF1

DM IMM

It is easily seen that P has rank four for all values of the parameters, hence
that the system is completely controllable.

1.6.3* The Controliable Subspace

In this section we analyze in some detail the structure of linear time-invarjant
systems that are not completely controllable. If a system is not completely
controllable, clearly it is of interest to know what part of the state space can
be reached. This motivates the following definition,

Definition 1.13.  Thie controllable subspace of the linear thne-invariant system
() = Az{t) + Bu(t) 1-290

is the linear subspace consisting of the states that can be reached from the
zero state within a finite time.

In view of the role that the controllability matrix P plays, the following result
is not surprising.
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Theorem 1.24. The controliable subspace of the n-dimensional linear time-

fnvariant system
2(f) = A=) + Bu(t) 1-291

is the linear subspace spanned by the columns of the controllability matrix
P = (B,AB, -, A" B). 1-292

This theorem immediately follows from the proof of Theorem 1.23 where we
showed that any state that can be reached from the zero state is spanned by
the columns of P, and any state not spanned by the columns of £ cannot be
reached. The controllable subspace possesses the following property.

Lemma 1,3. The controllable subspace of the system #(t) = Az(t) + Bu(t)
is invariant under A, that is, if a vector % is in the controllable subspace, Ax
Is also in this subspuce.

The proof of this lemma follows along the lines of the proof of Theorem 1.23.
The controllable subspace is spanned by the column vectors of B, AB, * - - ,
A"71B. Thus the vector 4=, where z is in the controliable subspace, is in the
linear subspace spanned by the column vectors of AB, 4°B, - - -, A"B. The
column vectors of 4"B, however, depend linearly upon the column vectors of
B, AB, - - -, A" LB; therefore A% is in the subspace spanned by the column
vectors of B, AB, - -+, A™'B, which means that Az is in the controllable
subspace. The controllable subspace is therefore invariant under 4.

The concept of a controllable subspace can be further clarified by the
following fact.

Theorem 1,25, Consider the linear time-invariant system () = Az(t) +
Bu(t). Then any initial state x, in the controllable subspace can be transferred
to any terminal state =, in the controllable subspace within a finite time.

We prove this result by writing for the state of the system at time ¢;:

¢
z(ty) = e"i“‘_’“’:vn +f 1e““”“”’..l‘i'lt(‘r) dr. 1-293
ta

Now if @ is in the controllable subspace, exp [A(t; — )]z, is also in the
controllable subspace, since the controllable subspace is invariant under 4
andexp [A(t; — tg)] =T + A(ty — 1) + £A4%{y; — 1) + - -« . Therefore, if
%, is in the controllable subspace, x;, — exp [4(t; — f,)}%, is also in the con-
trollable subspace, Expression 1-293 shows that any input that transfers the
zero state to the state x; — exp [A(#, — tg)lx, also transfers x, to x,. Since
z; — exp [4(t; — #)lw, is in the controllable subspace, such an input exists;
Thearem 1.25 is thus proved.
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We now find a state transformation that represents the system in a canoni-
cal form, which very clearly exhibits the controllability properties of the
system. Let us suppose that P has rank m < », that is, P possesses m linearly
independent column vectors, This means that the controllable subspace of the
system 1-290 has dimension m. Let us choose a basis e,, s, * * * , €,, for the
controllable subspace. Furthermore, let e,.,4.€p42, """ .6, be n—m
linearly independent vectors which together with ey, e;,* -+, e, span the
whole n-dimensional space. We now form the nonsingular transformation
matrix

T = (T, Ta). 1-294
where

Tl = (81, e‘-.‘: Y Em), 1—295
and

TE = (emJ,-ls em-:~2; T en)' 1-296

Finally, we introduce a transformed state variable «'(¢) defined by
T (1) == =(1). 1-297

Substituting this into the state differential equation 1-290, we obtain

Tw'(t) = AT (1) + Bu(t) 1-298
or
@&'(t) = TLATH' () + T Bu(t). 1-299
We partition T as follows ‘
Vs
T = ) 1-300
Uy

where the partitioning corresponds to that of T in the sense that U, has m
rows and U, has n — m rows. With this partitioning it follows

Ul ) UITEL U1T2 I m 0
T7'T = (T, Tp) = = . 1-301
U v, U,T, 0

] n—m

From this we conciude that

U, T, =0, 1-302
T, is composed of the vectors e, e, +, e, which span the controllable
subspace. This means that 1-302 impiies that

Uz =0 1-303

for any vector x in the controllable subspace.
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With the partitionings 1-294 and 1-300, we write

Ul UlAT]_ UlATﬂ
TAT = A(T, T) = 1-304
' U, U, AT, U.ATa
and
U, U,B
T'B = B = . 1-305
U, U.B

All the columns of 77 are in the controllable subspace. This means that
all the columns of AT, are also in the controllable subspace, since the con-
trollable subspace is invariant under 4 (Lemma 1.3). However, then 1-303
implies that

UpgdT, = 0. 1-306

The columns of B are obviously all in the controllable subspace, since B is
part of the controllability matrix. Therefore, we also have

U.B=0. 1-307
Our findings can be summarized as follows.
Theorem 1.26. Consider the n-dimensional time-invariant system
£(t) = dz=(?) + Bu(t). 1-308

Form a nonsingular transformation matrix T = (11, Ty) where the columns of
Ty form a basis far the m-dimensional (m < n) controllable subspace of
1-308 and the column vectors of T, together with those of Ty form a basis for the
whole n-dimensional space. Define the transfarmed state

z'(f) = T=(}). 1-309
Then the state differentinl equation 1-308 is transformed into the controilability
canonical form
A Aia) B
() = ( z'(f) + u(f). 1-310
0 Ak 0 ® .

Here Ay is anm X m matrix, and the pair {A1,, By} is completely controllable.
Partitioning

z1()
xs(r))’

where =} has dimension m and =, dimension 7 — m, we sec from Theorem 1.26
that the transformed system can be represented as in Fig. 1.9. We note that

z'(f) = ( 1-311
Lk
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U(t] 'I(t] A‘ -y (t Al \ ¢ |
1 A=Ay x VA, [t) +Buit)

x;_(t)

Ry (b =25 xb )

Fig.1.9. The controllzbility canonical form of a linear time-invariant differential system,

&y behaves completely independently, while 2; is influenced both by «z and
the input . The fact that {4y, By} is completely controllable follows from
the fact that any state of the form col (27, 0) is in the controllable subspace
of the system I-310. The proof is left as an exercise.

It should be noted that the controllability canonical form is not at all
unique, since both T; and T}, can to some extent be freely chosen. It is easily
verified, however, that no matter how the transformation T is chosen the
characteristic vaiues of both A3, and 45, are always the same (Problem 1.5).
Quite naturally, this leads us to refer to the characteristic values of Ay, as the
controilable poles of the system, and to the characteristic values of As, as the
uncontrollable poles. Let us now assume that all the characteristic values of |
the system 1-310 are distinct (this is not an essential restriction). Then it is
not difficult to recognize (Problem 1.5} that the controllable subspace of the
system 1-310 is spanned by the characteristic vectors corresponding to the
controllable poles of the system. This statement is also true for the original
representation 1-308 of the system. Then a natural definition for the
uncontroflable subspace of the system, which we have so far avoided, is the
subspace spanned by the characteristic vectors corresponding to the uncon-
trallable poles of the system.

Example 1,21, Stirred tank
The stirred tank of Example 1.2 (Section 1.2.3) is described by the state
differential equation

—-—= 0 1 1

.’E(I) + € —Cy Ca— Cy ll(t). 1-312

1) = {
o Vo Va
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The controllability matrix is

1 1
1 ! Y g
P= . 1-313
Cp— Cp Ca— €y _]_f1"cn _]_C'.'—Co
1% 1 0 ¥ 8 ¥

P has rank two provided ¢, ¢ co. The system is therefore completely con-
trollable if ¢; 7 o

If ¢, = ¢y = &, then ¢, = € also and the controllability matrix takes the
form

R

P= 20 20 1-314
00 0 0

The controllable subspace is therefore spanned by the vector col(1, 0). This
means, as we saw in Example 1.19, that only the volume of fluid in the tank
can be controlled but not the concentration.

We finally remark that if ¢, = ¢, = ¢, = € the state differential equation
1-312 takes the form 1-279, which is already in controllability canonical
form. The controllable pole of the system is —1/(20); the uncontrollable
pole is —1/0.

1.6.4*% Stabilizability

In this section we develop the notion of stabilizability (Galperin and Krasov-
ski, 1963; Wonham 1968a).- The terminology will be motivated in Section 3.2.
In Section 1.4.3 we defined the stable and unstable subspaces for a time-
invariant system. Any initial state »(0) can be uniquely written as

(0) = x,(0) 4 ,(0), 1-315

where 2,(0) is in the stable subspace and ,(0) in the unstable subspace.
Clearly, in order to control the system properly, we must require that the
unstable component can be completely controlled. This is the case if the un-
stable component x,(0) is in the controllable subspace. We thus state.

Definition 1.14.  The linear time-invariant system
£(t) = Ax(1y 4 Bult) 1-316

iv stabilizable if its wnstable subspace is contained in its controllable subspace,
that is, any vector x in the unstable subspace is also in the controllable subspace.

It is sometimes convenienl to employ the following abbreviated terminology.
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Definition 1.15. The pair {4, B} is stabilizable if the system

(1) = Az(t) 4+ Bu(t) 1-317
is stabilizable,

Obviously, we have the FoI.lowing result.

Theorem 1,27, Any asymptotically stable time-invariant system is stabilizable.
Any completely controllable system is stabilizable.

The stabilizability of a system can conveniently be checked when the state
differential equation is in controllability cancnical form. This follows from
the following fact.

Theorem 1.28. Consider the time-invariant linear system

E(t) = A=x(t) + Bu(?). 1-318
Suppose that it is transformed according to Theorem 1-26 into the controllability
canonical form
Ay Afs By
#(f) = ( . l“) 2(1) + ( 1)u(t), 1-319
0 Al Q

where the pair {A},, Bi} is completely controliable. Then the system 1-318 is
stabilizable if and only if the matrix As, is asymptaotically stable.

This theorem can be summarized by stating that a system is stabilizable if
and only if its uncontrollable poles are stable. We prove the theorem as
follows. '

(a) Stabilizability implies Ay, asymptotically stable. Suppose that the system
1-318 is stabilizable. Then the transformed system 1-319 is also stabilizable
(Problem 1.6). Let us partition

]
2(f) = (mlm ) 1-320
(1)

where the dimension #2 of 21(f) is the dimension of the controllable subspace
of the original system 1-318. Suppose that 45, is not stable. Choose an
{(n — m)-dimensional vector x, in the unstable subspace of As. Then
obviously, the n-dimensional columnn vector col (0, %) is in the unstable
subspace of 1-319. This vector, however, is clearly not in the controllable
subspace of 1-319. This means that there is a vector that is in the un-
stable subspace of 1-319 but not in the controllable subspace. This contradicts
the assumption of stabilizability. This proves that if the system 1-318 is
stabilizable A:, must be stable.

(b) A stable implies stabilizabifity: Assume that Ay, is stable. Then any
vector that is in the unstable subspace of 1-319 must be of the form
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col (w1, 0). However, since the pair {41,, By} is completely controllable, this vec-
tor is also in the controllable subspace of 1~319. This shows that any vector in
the unstable subspace of 1-319 is aiso in the controllable subspace, hence
that 1-319 is stabilizable. Consequently (Problem 1.6), the original system
1-318 is also stabilizable.

Example 1.22. Stirred tank _
The stirred tank of Example 1.2 (Section 1.2.3) is described by the state
differential equation
- 0
(® () (1 1)() 1-321
() = z(1) + u(t), -
¢ 0

I [ b=

if we assume that ¢, = ¢y = ¢, = ¢. As we have seen before, this system is
not completely controllable. The state differential equation is already in
the decomposed form for controllability. We see that the matrix 45, has the
characteristic value —1/8#, which implies that the system is stabilizable. This
means that even if the incremental concentration &{f) initially has an in-
correct value it will eventually approach zero.

1.6.5* Controllability of Time-Varying Linear Systems

The simple test for controllability of Theorem 1.24 does not apply to time-
varying linear systems. For such systems we have the following result, which
we shall not prove.

Theorem 1.29.  Consider the linear time-varying systent with state d{ﬂer‘ehﬁal
equation
#(t) = A(Dx(f) + B(t)ult). 1-322

Define the nonnegative-definite synunetric matrix function
;
Wty 1) =f @(t, 7}B(r) B ()BT (¢, 7) d, 1-323
o

where Q(t, 1y) is the transition matrix of the system. Then the system is com-
pletely controliable if and only if there exists for all tq a t, with ty <1, < @
such that W(ty, t,) Is nonsingular.

For a proof of this theorem, the reader is referred to Kalman, Falb, and
Arbib (1969).

The matrix W=(1, t;} is related to the minimal “control energy” needed
to transfer the system from one state to another when the “control energy™
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is measured as

i
f wT(Du(t) di, 1-324

o

A stronger form of ‘controllability results if certain additional condmons
are imposed upon the matrix W{t,, t} (Kalman, 1960);

Definition 1.16. The time-varying system 1-322 is uniformly completely
contyollable if there exist positive constants a, oy, vy, By, and By such that

(@) vl < Wty ty + o) <ol forallty; 1-325

(B) Bol SOy, ty + AW (itgs ty + YOV (to, ty + ) < B for all 1,
1-326

where W(ty, 1) is the mateix 1-323 and Q (1, t,) is the transition matrix of the
systent.

Unifarm controllability implies not only that the system can be brought fram
any state to any other state but also that the control energy involved in this
transfer and the transfer time are roughly independent of the initial time.
In view of this remark, the following result for time-invariant systems is not
surprising.

Theorem 1.30. The time-invariant linear system
() = Az(t) 4+ Bu(t) 1-327
is uniformly completely controllable if and only if it is completely controflable.

1.7% RECONSTRUCTIBILITY

1.7.1* Definition of Reconstructibility

In Chapter 4 we discuss the problem of reconstructing the behavior of the
state of the system from incomplete and possibly inaccurate observations.
Before studying such problems it is important to know whether or not a given
system has the property that it is at all possible to determine from the behavior
of the output what the behavior of the state is. This leads to the concept of
reconstructibility (Kalman, Falb, and Arbib, 1969), which is the subject of
this section.
We first consider the following definition,

Definition 1.17.  Let y(!; ty, %, t} denote the response of the output variable
y(1) of the linear differential system

£(t) = A()=(1) + B(Du(t),

y(1) = C(x(N), 1-328
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to the initial srate (1)) = ®q. Then the system is called completely recon-
structible if for all t; there exists a ty with —o0 < 1y < t; such that

Syt by, mg, WY = YU by, Ty, U, N L1 Ky, 1-329
Jor all u(t), 1, < t < 1y, implies zq = .

The definition implies that if a system is completely reconstructible, and the
output variable is observed up to any time f,, there always exists a time
ty < 1, at which the state of the system can be uniquely determined. If (z;)
is known, of course x(¢,) can also be determined.

The following result shows that in order to study the reconstructibility of
the system 1-328 we can confine ourselves to considering a simpler situation.

Theorem 1.31. The system 1-328 is completely reconstructible if and only if
Jor all 1y there exists a ty with — oo < 1y, < 1, such that

¥(t; 1gs Ty 0} = 0, Lh=<t1<ty, 1-330
implies that x, = 0.
This result is not difficult to prove. Of course if the system 1-328 is completely
reconstructible, it follows immediately from the definition that if 1-330

holds then =y = 0. This proves one direction of the theorem. However,
since

t
(15 fgs Tgy 11) = C(t)l:tb(r, gy + f Oz, ) B(ru(r) d'T':|, 1-331
to
the fact that
(1 to, 2o, 1) = }(15 1y, 24, 1) for <1<y 1-332
implies and is implied by
C(HD(, 1)z, = CHOD(, 1)z, for <t < 1. 1-333
This in turn is equivalent to
CHD0, 1)y — 2} =0 for o<t <t 1-334
Evidently if 1-334 implies that z, — x; = 0, that is, =, = x;, the system is

completely reconstructible. This finishes the proof of the other direction of
Theorem 1.31.

The definition of reconstructibility is due to Kalman (Kalman, Falb, and
Arbib, 1969). It shouid be pointed out that reconstructibility is complementary
to observability. A system of the form 1-328 is said to be completely observ-
able if for all 7, there exists a #; < @ such that

y(ts toy mp, 1) = Yty o 1), L K1 KMy 1-335
for all u(y), t, <t <, implies that =, = z;. We note that observability
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means that is it possible to determine the state at time f#;, from the future
output. In control and filtering problems, however, usually only past outpﬁt
values are available. It is therefore much more natural to consider recon-
structibility, which regards the problem of determining the present state from
past observations. It is easy to recognize that for time-invariant systems com-
plete reconstructibility implies and is implied by complete observability.

Example 1.23. Thverted pendulum )
Consider the inverted pendulum of Example 1.1 (Section 1.2.3) and take
as the output variable the anple ¢(t). Let us compare the states

Q dp

0 and 0 1-336
0 dy

0 0

The second state differs from the zero state in that both carriage and
pendulum are displaced over a distance d,; otherwise, the system is at rest.
If an input identical to zero is applied. the system stays in these positions,
and ¢(t) = 0 in both cases. It is clear that if only the angle ¢(¢)is observed it
is impossible to decide at a given time whether the system is in one state or
the other; as a result, the system is not completely reconstructible.

1.7.2% Reconstructibility of Linear Time-Invariant Systems

In this section the reconstructibility of linear time-invariant systems is dis-
cussed. The main result is the following.

Theorem 1.32. The n-dimensional linear time-invariant system

() = Azx(t) + Bult),
y(r} = Cz(1)s

is completely reconstructible if and only if the row vectors of the reconstructi-
bility matrix

1-337

c
CA

o= C.AH ' 1-338

CA™1
span the n-dimensional space.
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This can be proved as follows. Let us first assume that the system 1-337 is
completely reconstructible. Then it follows from Theorem 1.31 that for all
1, there exists a #, such that

Ce_d(i—in)_.cu =0, h<t < iy, 1-339

implies that »; = 0. Expanding exp [A(t — #;}] in terms of its Taylor series,
1-339 is equivalent to

3 _ a
[C+CA(!—tD)+CA2—t--:;'—r”)—+CA“(L§—@-+--A:Ia;ﬂ=0,

tp <1<ty 1-340

Now if the reconstructibility matrix @ does not have full rank, there exists
4 nonzero z, such that

Cxy =10, CAz, =10, RN CA* gy = D. 1-341

By using the Cayley-Hamilton theorem, it is not difficult to see also that
CA'zy = 0 for ! > . Thus if Q does not have full rank there exists a nonzero
x such that 1-340 holds. Clearly, in this case 1-339 does not imply z, = 0,
and the system is not completely reconstructible. This contradicts our
assumption, which proves that Q must have full rank.

We now prove the other direction of Theorem 1.32. Asume that Q has full
rank, Suppose that

y(1) = Cett=ly, =0  for t, <t <y, 1-342
It follows by repeated differentiation of y(r) that
Y(to) = Czy =0,

¥'{tg) = CAz, =0,
y"(t) = CAzy =0, 1-343

y(n—ll(rn) = CAn1 x, = 0:
or
Oz, = 0. 1-344

Since @ has full rank, 1-344 implies that z, = 0. Hence by Theorem 1.31 the
system is completely reconstructible. This terminates the proof of Theorem
1.32.

Since the reconstructibility of the system 1-337 depends only on the matrices
A and C, it is convenient to employ the following terminology.
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Definition 1.18. Let A be an n X i and C an 1 X n matrix. Then we call
the pair {A, C} completely reconstructible if the system

(1) = Ax(t), 1-345
y(t) = Ca(D), 1-346
is completely reconstructible.

Example 1.24. Inverted pendufim
The inverted pendulum of Example 1.1 (Section. 1.2.3) is described by the
state differential equation

0 1 0 0 0
o —L£ 00 1
(1) M (1) M @) 1-347
(1) = a(t) + ). -
0 0 0 1 o f*
~&£ 9 £ 9 0
It I

If we take as the output variable #(r) the angle ¢(t), we have

1 1
ny=-—, 0, —=. 0):1:1‘4 1-348
0= (=3 0 2. 0)s
The reconstructibility matrix is
1 0 1,
E L
o 1 o L
r L '
0= . 1349
g1 F1 gl
Lr ML rr
- (E)ﬁi o E1L
rr M/ L rr

This matrix has rank three; the system is therefore not completely recon-
structible. This. confirms the conclusion of Example 1.23. If we add as a
second component of the output variable the displacement s(f) of the carriage,
we have

=1 L L (o, 1-350
0

0
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This yields for the reconstructibility matrix

__l 0 _1.. 0
I I
1 0 0 0
. 1 o 1L
I I
0 1 0 o0
Fl 1
o=f -£ == &= 1-351
I ML LI
0 _F 0 0
M
_51_(£)”1 o &1
e \Mmr Lr
0 (ﬁ) 0 0
M

With this output the system is completely reconstructible, since @ has rank
four.

1.7.3* The Unreconstructible Subspace

In this section we analyze in some detail the structure of systems that are not
completely reconstructible. If a system is not completely reconstructible, it is
never possible to establish uniquely from the output what the state of the
system is. Clearly, it is of interest to know exactly what uncertainty remains.
This introduces the following definition.

Definition 1.19. The unreconstructible subspace of the linear time-invariant

systen &(t) = Ax(t) + Bu(h), 1-352

is the linear subspace consisting of the states x, for which

y(t; xp, £, 0) = 0, t> 1. 1-353
The following theorem characterizes the unreconstructible subspace.
Theorem 1.33. The unreconstructible subspace of the n-dimensional Ilinear

time-invariant system &(f) = Az(f) + Bu(p), 1354
y(t) = Cz=(1),
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is the null space of the reconstructibility matrix

C
CA

0= : ] 1-355

CA™?

The proof of this theorem immediately follows from the proof of Theorem
1.32 where we showed that any initial state in the null space of Q produces an
output that is identical to zero in response to a zero input. Any initial state
not in the null space of Q produces a nonzero response, which proves that
the null space of Q is the unreconstructible subspace. The unreconstructible
subspace possesses the following property.

Lemma 1.4. The wunreconstructible subspace of the system (1) = Az(f),
(1) = Cuz(i) is invariant under A.

‘We leave the proof of this lemma as an exercise.
The concept of unreconstructible subspace can be clarified by the following
fact.

Theorem 1,34, Consider the time-invariant system
(1) = A={t) + Bu(t),
y(t} = Cx(1).

Suppose that the output y(t) and the input u(t) are known over an interval

to <t < ty. Then the initial state of the system at time t, is determined within

the addition of an arbitrary vectar in the unreconstructible subspace. As a

result, also the terminal state at time 1, is determined within the addition af an
arbitrary vector in the unreconstructible subspace.

1-356

To prove the first part of the theorem, we must show that if two initial states
z(ty) = xp and z(#;) = x; produce the same output y{t), f, < ¢ < f,, for any
input u(t), 1, < ¢t £ 1;, then x, — =y lies in the unreconstructible subspace.
This is obviously true since by the linearity of the system,

y(t; tu: Zp, “) = ’?J(f, tu: 563 1!), rl] S t _<.. tls 1-357
is equivalent to
y{t; tyy T — %5, 0) =0, Lh<i<t, 1-358

which shows that x; — zy is in the unreconstructible subspace.
The second part of the theorem is proved as follows. The addition of an
arbitrary vector zj in the unreconstructible subspace to =z, resuits in the
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addition of exp [A{t; — #;)]zg to the terminal state. Since exp [A{f; — 1,)]
can be expanded in powers of 4, and the unreconstructible subspace is in-
variant under.4, exp [A(t, — ty)]z; is also in the unreconstructible subspace.
Moreover, since exp [4(t; — ;)] is nonsingular, this proves that also the
terminal state is determined within the addition of an arbitrary vector in the
unreconstructible subspace.

We now discuss a state transformation that represents the system in a
canomnico! form, which clearly exhibits the reconstructibility properties of the
system. Let us suppose that  has rank m < n, that is, O possesses m linearly
independent row vectors. This means that the null space of Q, hence the un-
reconstructible subspace of the system, has dimension n# — m. The row
vectors of ¢ span an m-dimensional linear subspace; let the row vectors
fisfe. s ¢+ 4 [ be a basis for this subspace. An obvious choice for this basis is a
set of m independent row vectors from @. Furthermore, let £, 1, fosees © "7 »
f. be n — m linearly independent row vectors which together with f3, <+ -, /i
span the whole n-dimensional space. Now form the nonsingular transforma-

-tion matrix

U,
U= , 1-359
U
where
fl fm+1
f.! .fm-!—ﬂ
- and U= ) 1-360
.}r"l .]rﬂ
Finally, introduce a transformed state variable ='(t) as
z'(1) = Ux(t). 1-361

Substitution into 1-356 yields
U—E' () = AU () + Bu(f),

y(1) = CU-2(1), 1-362

or
' (t) = UAU ' (t) + UBu(r),
¥ty = CcU' ().

‘We partition U/ as follows

1-363

Ut = (Ty, To), 1-364
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where the partitioning corresponds to that of U/ so that T, has m and T,
n — m columns. We have

LA U.T, UTh I, ©
vUt = (T, Tp) = = . 1365
Uﬂ Ui!:n. Uﬂ Tﬂ 0 In—m

from which we conclude that
U, Ty = 0. 1-366

The rows of U; are made up of linear combinations of the linearly independent
rows of the reconstructibility matrix (. This means that any vector = that
satisfies U,z = O also satisties Oz = 0, hence is in the unreconstructible -
subspace. Since

U T, =0, 1-367

all column vectors of T, must be in the unreconstructible subspace. Because
T. has n — m linearly independent column vectors, and the unreconstrucible
subspace has dimension # — m, the column vectors of T, form a basis for the
subspace. With this it follows from 1-367 that U,z = 0 for any = in the sub-
space.

With the partitionings 1-359 and 1-364, we have

U, U AT, UAT,
UAUL = A(T,, Ty) = 1-368
U, UpdT, URAT,
and
CU-l = (CTy, CT.). 1-369

All column vectors of T, are in the unreconstruclible subspace; because the
subspace is invariant under 4 (Lemma 1.4), the columns of AT, are also in
the subspace, and we have from 1-367

U, AT, = 0. 1-370

Since the rows of C are rows of the reconstructibility matrix @, and the
columns of T, are in the unreconstructible subspace, hence in the null space

of 0, we must also have
CT,=0. 1-371

We summarize our results as follows.
Theorem 1.35. Consider the n-th order time-invariant linear system

&(t) = A=x(t) + Bu(s),

y(t) = Cz(1). 1-372
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Form a nonsingular transformation matrix

U,
U= , 1-373
Uy

where the m rows of Uy form a basis for the m-dimensional (n < n) subspace
spanned by the rows of the reconstructibility matrix of the system. The n — m
rows of U, form together with the m rows of U, a basis for the whole n-dimen-
sional space. Define a transformed state variable ='(t) by

z'(f) = Uz(t). 1-374
Then in terms of the transformed state variable the system is represented in

the reconstructibility canonical form

o fan oo\ (B
vo={ o+ o 375
y() = (Ci, 0)'(2).

Here Ay is an m X m matrix, and the pair {A};, Ci} is completely recon-

structible.

Partitioning

w1(1)
") = 1-376
0 (mg(:)) ’ ;

where z; has dimension m and z, dimension » — m, we see from Theorem
1.35 that the system can be represented as in Fig. 1.10. We note that nothing
about z, can be inferred from observing the output y. The fact that the pair
{A};, C1} is completely reconstructible follows from the fact tbat if an initial

yit)

k) (8) = Ay x] (4] +B) ut)

L x%(t]

*h{t) =AY, x) (8] +40 5 xb t6) +B ult}

Fig.1.10. Reconstructibility canonical form of a time-invariant linenr differential system.
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state a'(¢,) produces & zero input response identical to zero, it must be of the
form 2’ (15} = col (0, za,). The complete proof is left as an exercise.

We finally note that the reconstructibility canonical form is not unique
because both U; and U, can to some extent be arbitrarily chosen. No matter
how the transformation is performed, however, the characteristic values of
Ay, and A, can be shown to be always the same. This leads us to refer to the
characteristic values of A1, as the reconstructible poles, and the characteristic
values of Ay, as the wunreconstructible poles of the system 1-372. Let us assume
for simplicity that all characteristic values of the system are distinct. Then it
can be proved that the unreconstructible subspace of the system is spanned by
those characteristic vectars of the system that correspond to the unreconstruct-
ible poles. This is true both for the transformed version 1-375 and the original
representation 1-372 of the system. Quite naturally, we now define the
reconstructible subspace of the system 1-372 as the subspace spanned by the
characteristic vectors of the system corresponding to the reconstructible poles.

Example 1.25. Tnverted pendulum

In Example 1.24 we saw that the inverted pendulum is not completely
reconstructible if the angle ¢(¢) is chosen as the observed variable. We now
determine the unreconstructihle subspace and the reconstructibility canonical
form. It is easy to see that the rows of the reconstructibility matrix @ as given
by 1-349 are spanned by the row vectors

(—1,0,1,0),(0, —1,0,1), and (0,1,0,0). 1-377

Any vector & = col (&, &, &, £ in the null space of @ must therefore
satisfy

_"51 + Eﬂ. = 0’
—&+ =0, 1-378
£, = 0.

This means that the unreconstructible subspace of the system is spanned by
col (1,0,1,0). 1-379

Any injtial state proportional to this vector is indistinguishable from the
zero state, as shown in Example 1.23.

To bring the system equations into reconstructibility canonical form, let
us choose the row vectors 1-377 as the first three rows of the transformation
‘matrix U7. For the fourth row we select, rather arbitrarily, the row vector

(1,0,0,0). 1-380



76  Elements of Linenr System Theory

With this we find for the transformation matrix U and its inverse

-1 0 1 0 000 1
0 -1 0 1 001 0
U= L U= . 1-381
0o 1 0 0 100 1
1 o0 o0 o0 0110

Ii follows for the translormed representation

0 1 0 0 0
g5 £ iy _1
L M M
(1) = (1) + u(, 1.382
0 0 ——E- 0 i
M M
\0 0 1 0 0
W= |—., 0, O,IO)a:’t.
10 (L, 0)=

The components of the transiormed state are, from 1-24,

G0 = =610 + &) = L),

Sa() = £a(0) = $(0),

£4(1) = &) = s(0).
In this representation the position and velocity of the pendulum relative to
the carriage, as well as the velocity of the carriapge, can be reconstructed from
the observed variable, but not the position of the carriage.

It is easily seen that the reconstructible poles of the system are —F/M and

+./g/L’. The unreconstructible pole is 0.

1.7.4* Detectablity

In the preceding section it was found that if the output variable of a not com-
pletely reconstructible system is observed there is always an uncertainty about
the actval state of the system since to any possible state we can always add an
arbitrary vector in the unreconstructible subspace (Theorem 1.34). The best
we can hope for in such a situation is that any stale in the unreconstructible
subspace has the property that the zero input response of the system to this
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state converges to zero. This is the case when any state in the unreconstruct-
ible subspace is also in the stable subspace of the system. Thén, whatever we
guess for the unreconstructible component of the state, the error will never
grow indefinitely. A system with this property will be called detectable
{(Wonham, 1968a). We define this property as follows.

Definition L.20. The linear time-invariant system
2(t) = Az() + Bu(t),
y(t) = Cx(1),

is detectable if its unreconstructible subspace is cantained in its stable subspace.,

1-384

It is convenient to employ the following abbreviated terminology.
Defipition 1.21. The pair {A, C} is detectable if ihe spstem

&) = Az(t), '

y(1) = C=(2),

1-385

is detectable.
The following result is an immediate consequence of the definition:

Theorem 1.36. Any asymptotically stable system of the form 1-384 is de-
tectable. Any completely reconstructible system af the form 1-384 is de-
tectable.

Detectable systems possess the following property.
Theorem 1.37. Consider the linear time-invariant system

(1) = A=(1),

1-386
y(t) = Ca(r).
Suppose that it is transformed according to Theorem 1.35 into the form
A, 0
(1) = ( )ﬂ?'(f),
Ay Al 1-387

y(f) = (C1, Oa'(),
where the pair {A};, Ci} is completely reconstructible. Then the system is

detectable if and only if the matrix Ay, is asymptotically stable.

This theorem can be summarized by stating that a system is detectable if and
only if its unreconstructible poles are stable. We prove the theorem as
follows,



78 Elements of Linear System Theory

(a) Detectability implies Az a.sympraticaf!y stable: Let us partition the

transformed state variable as
' z;(1)
(1) = , 1-388

where the dimension m of z,(¢) is equal to the rank m of the reconstructibility
matrix. The fact that the system is detectable implies that any initial state in
the unreconstructible subspace gives a response that converges to zero. Any
initial state in the unreconstructible subspace has in the transformed repre-
sentation the form

0
2(0) = ( ) 1-389
z4(0)
The response of the transformed state to this initial state is given by
a'(t) = \ . 1-390
el uufmé(o)

Since this must give a response that converges to zero, 4 must be stable.

(b) Afw asymptotically stable implies detectability: Any initial state ()]
in the unreconstructible subspace must in the transformed representation
have the form

z'(0) = ( ) 1-391
w:2(0)
The response to this initial state 18
)] ( 0 ) 1-392
(1) = . . -
et si(0)

Since Al is stable, this response converges to zero, which shows that =(0),
which was assumed to be in the unreconstructible subspace, is also in the
stable subspace. This implies that the system is detectable.

Example 1.26. Inverted pendulum

Comnsider the inverted pendulum in the transformed representation of
Example 1.25. The matrix As, has the characteristic value 0, which implies
that the system is not detectable. This means that if initially there is an un-
certainty about the position of the carriage, the error made in guessing it will
remain constant in time.

1.7.5%# Reconstructibility of Time-Varying Linear Systems

The reconstructibility of time-varying linear systems can be ascertained by
the following test.
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Theorem 1.38. Consider the linear time-varying system
Z(t) = A@)=(r) + B()u(t),

1-393
y(t) = C(1)=().
Define the nonnegotive-definite matrix function
t
M, 1) =f l(IJT(q-, NCHHC() (7, 1) dr, 1-394
t

where ©(t, t) is the transition matrix of the system. Then the system is com-
pletely reconstructible if and only if for all t, there exists a ty with —oo <
ty < ty such that M1y, 11) is nonsingular.

For a proof we refer the reader to Bucy and Joseph (1968) and Kalman,
Falb, and Arbib (1969). A stronger form of reconstructibility resuits by
imposing further conditions on the matrix M (Kalman, 1960):

Definition 1.22. The time-varying system’ 1-393 is nniformly completely
reconstructible if there exist positive constants o, oy, oy, Bo, and fy such that

(a) ool < M, — o, ) Lo farall ty; 1-395
(b} Al < ‘DT(H — o, tIM(t; — o, )Pt — o, 8) < o] Jor afl t,,

1-3%6
where M(t, ;) is the matrix function 1-394,

Uniform reconstructibility puarantees that identification of the state is
always possible within roughly the same time. For time-invariant systems the
following holds.

Theorem 1.39. The time-invariant linear system
(1} = A=z(t} + Bu(s)},
y(t} = Cx(1),

is uniformly completely reconstructible if and only if it is completely recon-
structible.

1-397

1.8%* DUALITY OF LINEAR SYSTEMS

In the discussion of controllability and reconstructibility, we have seen that
there is a striking symmetry between these properties, This symmetry can be
made explicit by introducing the idea of duality (Kalman, 1960; Kalman,
Falb, and Arbib, 1969).
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Definition 1.23.  Consider the linear time-varying system
#(t) = ADx(t) + B(Hu(),
y(1) = C(D=(1),

1-398

and also the sysient

@*(1) = AT(* — Dx*(t) + CT(* — Nu(e),
yX(1) = BT(1* — Ha*(y),

1-399

where t* is an arbitrary fixed time. Then 1-399 is called the dual of the system
1-398 with respect to the time t*.

The purpose of introducing the dual system becomes apparent in Chapter 4
when we discuss the duality of linear optimal control problems and lingar
optimal observer problems. The following result is immediate.

Theorem 1.40. The dual of the system 1-399 with respect to the time 1* is the
original system 1-398,

There is a close connection between the reconstructibility and controllability
of a system and its dual.

Theorem 1.41. Consider the system 1-398 and its dual 1-399 where t* is
arbitrary.

(a) The system 1-398 is (uniformly) completely controflable if and only if its
dual is (uniformly) completely reconstructible.

(b) The system 1-398 is (uniformly) completely reconstructible if ond only if its
dual is (uniformiy) completely conitrollable.

(€) Assume thot 1-398 is time-invariant. Then 1-398 is stabilizable if ond only
if its dual is detectable.

(d) Assume that 1-398 is time-invariont. Then 1-398 is detectable if and only
if its dual is stabilizable.

We give the proof only for time-invariant systems. The reconstructibility
matrix of the dual system is given by

BT
BT(AT)
0* = . = pPT, 1-400

BT(AT)H—]
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where P is the controllability matrix of the original system. This immediately
proves (a).

Part (b) of the theorem follows similarly. The controllability matrix of the
dual system is given by

P* = (CT, ATCT, sl (AT)"‘1CT) — QT, . 1-401

where @ is the reconstructibility matrix of the original system. This implies
the validity of (b).

Part (c) can be proved as follows. The original system can be transformed
by a transformation «’ = T~z according to Theorem 1.26 (Section 1.6.3)
into the controllability canonical form

(1) (Al’l A{“) (1) + (Blr) 0) 1-402
#(1) = x u(t), -
0 Al 0

y(1) = (G, Caz'(d).

If 1-398 is stabilizable, the pair {43, By} is completely controllable and Ay,
is stable. The dual of the transformed system is

AT 0 c
#¥(1) = P A O P L OF 1-403

AT A 3

2

v = (BT, 0)z*().

Since {4}, Bj,} is completely controllable, {A;7, BT} is completely re-

constructible [part (a)]. Since A4, is stable, A is also stable, This implies
that the system 1-403 is detectable. By the transformation 7%z* = z'¥
(see Problem 1.8), the system 1-403 is transformed into the dual of the original
system. Therefore, since 1-403 is detectable, the dual of the original system is
also detectable. By reversing the steps of the proof, the converse of Theorem
1.41(c) can also be proved. Part (d) can be proved completely analogously.
The proofs of (a) and (b) for the time-varying case are left as an exercise for
the reader.

We conclude this section with the following fact, relaling the stability of a
system and its dual.

Theorem 1.42. The system 1-398 is exponentially stable if and only if its
ehtal 1-399 s expanentially stable.

This result is easily proved by first verifying that if the system 1-398 has the
transition matrix Bz, ¢) its dual 1-399 has the transition matrix @7 (#* — fo,
t* — 1), and then verifying Definition 1.5 (Section 1.4.1).
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1.9* PHASE-VARIABLE CANONICAL FORMS
For single-input time-invariant linear systems, it is sometimes convenient
to employ the so-called phase-variable canonical form.

Definition 1.24. A4 single-input fime-invariant linear system is in phase-
variable canonical form if ifs spstem equations have the form

0 1 0 neeeenes 0 0
0 o 10 - 0 0

)= o a4+ |- | wy , 1-404
0 rvcemrrurenian o 1 0
—dy —oy e —e, 1

y(t) = Cz(1).

Note that no special form is imposed upon the matrix C in this definition.
It is not difficult to see that the numbers o;, i =0,---,n — | are the co-
efficients of the characteristic polynomial

2o _ 1-405

=0
of the system, where &, = 1.
It is easily verified that the system 1-404 is always completely controllable.
In fact, any completely controliable single-input system can be transformed
into phase-variable canonical form.

Theorem 1.43. Consider the completely controllable single-input  time -
invariant finear system

#(1) = Az(t) + bu(n),
y(t) = Cx(t),

where b is a column vector. Let P be the controllability matrix of the systen,

1-406

P o= (b, Ab, A%, - -+ | A"1b), 1-407
and fet
mn
det (s — A) = 3 o', 1-408

=0

where o, = 1, be the characteristic polynomial of the matrix A, Then the
system is transformed into phase-variable canonical form by a transformation
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z(t) = Ta'(t). T is the nonsingular transformation matrix

T =PM,
where
Uy Oy teeres .,
. oty 0 a, 0
M=1 et i 1-409
Gpa %y 00
an 0 .......... 0

If the system 1-406 is not completely controllable, no such transformation
exists.

This result can be proved as follows (Anderson and Luenberger, 1967).
That the transformation matrix T is nonsingular is easily shown: P is non-
singular due to the assumption of complete controllability, and det (M) =&’ (——i)
because o, = 1. We now prove that T transforms the system into phase-
variable canonical form. By postmultiplying P by M, it is easily seen that T

can be written as T= (1t "5 1), 1-410
where the column vectors ¢; of T are given by
t = b -+ ogdd + oy d®h & o0+ o, A5,
th = ogh + agdb + - -+ a, AT,

1-411
lp1= “;—15 + w,A4b,
t, = Dcﬂb.
It is seen from 1-411 that
Aty =ty 4 — a1, i=2,3,---,n, 1-412

since b = t,.
Now in terms of the new state variable, the state differential equation of the
system is given by

(1) = TLAT (1) + T %u(t). 1-413
Let us consider the matrix T*AT. To this end denote the rows of T by
rg, i=1,2,---,n Then for i=1,2,---,n and j=2,3,---,n, the
(i, )-th entry of T-*AT is given by
, : 1 ifi=j—1,
(TAT); = rldt) = rt_y — oy gty = ¢ —oty ifi=n, 1-414

0 otherwise.
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This proves that the last # — 1 columns of T-1AT have the form as required
in the phase-variable canonical form. To determine the first column, we
observe from 1-411 that

Aty = (@A + od® + 4+ 0, A" = —agh = —uyt,,  1-415
since according to the Cayley-Hamilton theorem
ool + oty + cod® + -+ + o, A" = 0, 1-416
Thus we have fori=1,2,---,n,
—o ifi=n,
(T71A4T);; = r{dl) = —oyrii, = 1-417
0 otherwise.

Similarly, we can show that 75 is in the form required, which terminates the
proof of the first part of Theorem 1.43. The last statement of Theorem 1.43 is
easily verified: if the system 1-406 is not completely controllable, no non-
singular transformation can bring the system into phase-variable canonical
form, since nonsingular transformations preserve controllability properties
(see Problem 1.6). An alternate method of finding the phase-variable canoni-
cal form is given by Ramaswami and Ramar (1968). Computational rules
are described by Tuel (1966), Rane (1966), and Johnson and Wonham

(1966).

For single-input systems represented in phase-variable canonical form,
certain linear optimal control problems are much easier to solve than if the
system is given in its general form (see, e.g., Section 3.2). Similarly, certain
filtering problems involving the reconstruction of the state from observations
of the output variable are more easily solved when the system is in the dual
phase-variable canonical form.

Definition 1.25. A4 single-output linear time-invariant system is in dual
phase-variable canonical form if it is represented as follows:

000 ++- 0 =—o
1 00 -+ 0 —g

=010 -0 —wu J=)+Bu@),
.................... 1_418
0 Orrvv-- 01 —o,,y

MO=@© 0 0 -+ 0 D).

It is noted that the definition imposes no special form on the matrix B. By
“dualizing” Theorem 1.43, it is not difficult to establish a translformation to
transform completely reconstructible systems into dual canonical form.
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Related canonical [orms can be derived for multiinput and multioutput
systems (Anderson and Luenberger, 1967; Luenberger, 1967; Johnson,
1971a; Woiovich and Falb, 1969).

1.10 VECTOR STOCHASTIC PROCESSES

1.10.1 Definitions

In later chapters of this bock we use stochastic processes as mathemaltical
models for disturbances and neise phenomena. Often several disturbances
and noise phenomena simultaneously influence a given system. This makes it
necessary to introduce vector-valued stochastic processes, which constitute
the topic of this section.

A stochastic process can be thought of as a family of time functions, Each
time function we call a realization of the process. Suppose that »,(¥), ».(?),
-+, v,(?) are n scalar stochastic processes which are possibly mutually
dependent. Then we call

U(r) = CO] [111(f), "]2(1)1 T, ‘J'n(r)] 1-419

a vector stochastic process. We always assume that each of the components of
o(t) takes real values, and that ¢t > ¢, with ¢; given.
A stochastic process can be characterized by specifying the joint probability
distributions
Plo(t) < v, 0(ty) < wpy o 05 0(,) <01 1-420

for all real vy, 04, "+, 0, forall t,, t,, -+, ¢, > Iy and for every natural
number m. Here the vector inequality »(#;) < v; is by definition satisfied if

the inequalities w(t) < vy j=1,2,0,n, 1-421

are simultaneously satisfied. The »,; are the components of v,, that is, v; =
col ('pil: Viny "7 7 s 'p:‘n)'

A special class of stochastic processes consists of those processes the statisti-
cal properties of which do not change with time. We define more precisely.

Definition 1.26. A stochastic process v(t) is stationary if

P{U(rl) ..<_. L TR U(Im) S U-m}
=Plot, + <y, -, 00, +H<L0,} 1-422

Jorall ty, ty, -+, t,, for all vy, -+ -, v, for every natural number m, and for
all 0.

The joint probability distributions that characterize a stationary stochastic
process are thus invariant with respect to a shift in the time origin.
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In many cases we are interested only in the first and second-order properties
of a stochastic process, namely, in the mean and covariance matrix or, equiva-
lently, the second-order joint moment matrix. We define these notions as
follows. o

Definition 1.27. Consider a vector-valued stochastic process v(t). Then we

call m(r) = Efu()} 1-423
the mean of the process,
Ry(ty, 1) = E{[o(ty) — m()][e(t2) — m(12)]7} 1-424
the covariance matrix, and
Clty, to) = E{u(t)o™(8)} 1-425

the second-order joint moment marrix of v(f). R (1, 1) = Q(t) is termed the
vaviance matrix, while C.(t, t) = Q'(t) is the second-ovder moment matrix of
the process.

Here E is the expectation operator. We shall often assume that the stochastic
process under consideration has zero mean, that is, m(¢) = 0 for all ¢; in this
case the covariance matrix and the second-order joint moment matrix
coincide. The joint moment matrix written out more explicitly is

E{"’l(tl)”l(tﬁ)} U E{'”l(tl)"’m(tz)}
E{m(t)n({t)} - E{na(t)va{t)}

.............................

E{vm(tl)vl(tﬁ)} e E{vm(rl)vm(tﬂ)}

Cylin t)) = E{”(tl)”T(ta)} =

1-426
Each element of C (¢, #,) is a scalar joint moment function. Similarly, each
element of R {#,, t,) is a scalar covariance function. It is not difficult to prove
the following.

Theorem 1.44. The covariance matrix R (1,,1,) and the second-order joint
moment matrix C,(t, ts) of a vector-valued stochastic process v(t) have the
Jollowing properties.

(a) Rfts ) = RT(t, 1a)  forallt, 1,  and 1-427

Cv(tﬂ, tl) B CUT(tl, fﬂ) fDr ﬂll f]_, 1‘2; 1-428
b g =RHD=0 foralli, and 1-429
N =Cft,) >0  foralli, 1-430

(©) Cfi, tn) = R(ty, t) + m{t)mT(ts)  for all 1y, ta, 1-431
where m(t) is the mean of the process.
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Here the notation M > 0, where M is a square symmetric real matrix, means
that M is nonnegative-definite, that is,

afMx >0  for all real =. 1-432

The theorem is easily proved from the definitions of R,{t;, f) and C,(#,, ta).
Since the second-order properties of the stochastic process are equally well
characterized by the covariance matrix as by the joint moment matrix, we
usually consider only the covariance matrix.

For stationary processes we have the following result.

Theorem 1.45. Suppose that v(t) is a stationary stochastic process. Then
its mean m(t} is constant and its covariance matrix R (11, 1,) depends on
t; — ts only.

This is easily shown from the definition of stationarity.

It sometimes happens that a stochastic process has a constant mean and a
covariance matrix that depends on f, — ¢, only, while its other statistical
properties are not those of a stationary process. Since frequently we are
interested only in the first- and second-order properties of a stochastic proc-
ess, we introduce the following notion.

Definition 1.28. The stochastic process v(t) is called wide-sense stationary if
its second-order moment matrix C,(t,t) is finite for all ¢, its mean m(t} is
constant, and its covariance matrix R (11, t.) depends on t, — t, only.

Obviously, any stationary process with finite second-order moment matrix is
also wide-sense stationary.

Let v,(¢) and v,(#) be two vector stochastic processes. Then v, and v, are
called independent pracesses if {v,(f,), vi{ta), - -+, v (£))} and {vo{1), v(ts),
-+« , uy(t;,)} are independent sets of stochastic variables for all #,, 5, - -+ , 1},
t, 84, ", 1y =ty and for all natural numbers m and /. Furthermore, o,
and v, are called uncorrelated stochastic processes if v,(f;) and v.(ts) are un-
correlated vector stochastic variables for all #,, t, > #,, that is,

E{[p1(t) — my(t)][pa(ts) — ma(tg)}7} = 0
for all ¢, and ,, where m, is the mean of ; and m, that of v,.

Example 1.27. Gaussion stochastic process

A Gaussian stochastic process v is a stochastic process where for each set
of instants of time #;, fy, =+, f,, = # the n-dimensional vector stochastic
variables o{z,), o(r.), - - -, v(¢,,) have a Gaussian joint probability distribution.
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If the compound covariance matrix

Ru(rh rl) Ru(rlr !2) Tt 'Rw(tlx t'm)

R 1'2, H R:y(t‘za ri‘. e Ru(t‘.!a tm
e | Bt ) ) 1-433

Ru(t'rm i‘1) Rn(trrn t2) ot Ru(rﬂu r:m)

is nonsingular, the corresponding probability density function can be written
as

1
[(2,“_)1'1111 det (R)]Ifﬂ

p(uls Ua, """ um) =

m m

" exp {—fk ¥ 2oy — m{)TA v, — m(zj)]]. 1-434

=1 i=1
The # % n matrices A,; are obfained by partitioning A = R-! corresponding
to the partitioning of R as follows: '

Ay AL - A

] 1m

. . e A
A= . 1-435

.................

A A

ml ma

Note that this process is completely characterized by its mean and covariance
matrix; thus a Gaussian process is stationary if and only if it is wide-sense
stationary.

Example 1.28. Exponentially correlated noise

A well-known type of wide-sense stationary stochastic process is the so-
called exponentially correlated hoise. This is a scalar stochastic process
_ #(¢) with the covariance function :

R,(7) = " exp (— %) ' 1-436

where ¢? is the variance of the process and 0 the “time constant.” Many
practical processes possess this covariance function,

Example 3.29. Processes with uncorrelated increments

A process v(f), t > f,, with uncorrelated increments can be defined as
follows.

1. The initial value is given by

o(ty) = 0. 1-437
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2. For any sequence of instants 4, #a, fg,and f;, with (, <, < L < 1, < 4y,
the increments v(f,) — v{t,) and v(t;) — v(fy) have zero means and are un-
correlated, that is, .

E{v{ts) — v(1))} = E{o{ty) — o(ty)} =0,

'r 1-438
E{fo(ts) — v(t]lo(t) — v(t)1"} = 0.
The mean of such a process is easily determined:
m(t) = E{v(t)} = E{o(#) — v{t)}
=0, >ty 1-439

Suppose for the moment that ¢, > #;. Then we have for the covariance
matrix
R(t, t:) = E{o(t)v7(t)}
= E{fo(t)) — v(t)]lo(ts) — o{ta) + v(ty) — v(t)]17}
= Effo(t)) — v(to)llo(r) — U(ru)]T}

= E{u(t)r" (1)}
= (), th >4 >ty 1-440
where
Q) = E{u(ne™(n} 1-441
is the variance matrix of the process. Similarly,
R (4, 1) = Qi) fori; > ta >t 1-442

Clearly, a process with uncorrelated increments cannot be stationary or wide-
sense stationary, except in the trivial case in which g(t) =0, ¢t > 1.
Let us now consider the variance matrix of the process. We can write for

fy 2 1 2 Iyt
Q(t) = E{o(t)o7(ts)} _
= E{[u{ts) — v(t) + v(ty) — v{t)[v(ts) — v(t)) + v(ts) — v(t:)17}
= E{[o(ts) — v(t)][v(ts) — v(t)1"} + OCty)- 1-443

QObviously, @(r) is a monotonically nondecreasing matrix function of ¢ in the
sense that

QU >0y forallt, >1, > 1. 1-444
Here, if A and B are two symmetric real matrices, the notation
A>B 1-445

implies that the matrix 4 — B is nonnegative-definite. Let us now assume that
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the matrix function Q(¢) is absolutely continuous, that is, we can write

i
o) = | V) dn, 1-446
Ly

where V(1) is a nonnegative-definite symmetric matrix function. It then
follows from 1-443 that the variance matrix of the increment v(ty) — v(ty)
is given by

E{[o(ty) — v{t)Mo(ta) — 0(1)]7} = Q(ta) — O(t)

!
zf V) dr. 1-447
i1

Combining 1-440 and 1-442, we see that if 1-446 holds the covariance matrix
of the process can be expressed as ’

min{ty.ta)
R(1, tn) =J; V{7) dr. 1-448
o

One of the best-known processes with uncorrelated increments is the
Brownian motion process, also known as the Wiener process ar the Wiener—
Lévy process. This is a process with uncorrelated increments where each of
the increments o(f,) — v(t;) is a Gaussian stochastic vector with zero mean
and variance matrix (¢, — #,)/, where [ is the unit matrix. A generalization of
this process is obtained when it is assumed that each increment o(¢,) — o(#)
is a Gaussian stochastic vector with zero mean and variance matrix given in
the form 1-447. Since in the Brownian motion process the increments are
uncorrelated and Gaussian, they are independent. Obviously, Brownian
motion is a Gaussian process. It is an important tool in the theory of sto-
chastic processes.

1.10.2 Power Spectral Density Mairices

For scalar wide-sense stationary stochastic processes, the power spectral
density function is defined as the Fourier transform of the covariance func-
tion. Similarly, we define for vector stochastic processes:

Definition 1.29. The power spectral density matrix T (w) of a wide-sense
stationary vector stochastic process is defined os the Fourier transform, if it
exists, of the covariance matrix R, (1, — 1o) of the process, that is,

I (w) :f e TR (1) dr. 1-449
Note that we have allowed a slight inconsistency in the notation of the co-

variance matrix by replacing the two variables ¢, and ¢, by the single variable
t, — t5. The power spectral density matrix has the following properties.
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Theorem 1.46. Suppose that X (w) is the spectral density matrix of a
wide-sense stationary process o(t). Then X (w) is a complex matrix that has

the properties:

(a) lziu(—cu) =X, Nw) forall w; 1-450
) T Hw) =T {w) forall w; 1-451
() Tfw) >0  forall w. 1-452

Here the asterisk denotes the complex conjugate transpose, while M > 0,
where M is a complex matrix, indicates that Af is a nonnegative-definite
matrix, that is, z*Mz > 0 for all complex .

The proofs of parts (a) and (b).follow in a straightforward maaner from
the definition of 2 (w) and Theorem 1.44. In order to prove part (c), one can
extend the proof given by Davenport and Root (1958, Chapter 6) to the
vector case. The reason for the term power spectral density matrix becomes
apparent in Section 1.10.4.

Example 1.30. Exponentially correlated noise
In Example 1.28 we considered exponentially correlated noise, a scalar
wide-sense stationary process #() with covariance function

2 — 1
R(t; — 1) = 0" exp (-— LI-F-A]-) 1453
By Fourier transformation it easily follows that »(¢) has the power spectral
density function
20°0

o 1454
1 + w*f*

X (w) =
provided & > 0.

1.10.3 The Response of Linear Systems to Stochastic Inputs

In this section we study the statistical properties of the response of a linear
system if the input is a realization of a stochastic process. We have the follow-
ing result.

Theorem 1.47. Consider a linear system with impulse response matrix
K(t, v) which at time t, is in the zero state. Suppose that the input to the system
is a realization of a stochastic process u(t) with mean m,(t) and covariance
matrix R, (11, t.). Then the output of the system is a realization of a stochastic
process y(1t) with mean

i
myt) = f K(t, )my(x) dr, 1-455
4}
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and covariance matrix

3 tn .
Ry(t'ia 'f-s) =f 1d"'1f K(tls T])Ru(ﬁa TQKT(Iar 7‘2) de: 1-456
to to

provided the integrals exist.

We present a formal proof of these results. The output y, which is a sto-
chastic process, is given by

y(®) =fK(r, u(r) dr. ) 1-457

Taking the expectation of both sides of 1-457, interchanging the order of the
integration and the expectation, one obtains 1-455.
Similarly, we can write (assuming for simplicity that m (1) = 0)

Ry, 1) = E{y(tl)yT(tﬂ)}

_ E{ |: J; : Kty m)u(ry) dq-l] U;:!K(IE, Ta)u(Ts) d'rﬂ] T}

i in
= E{f 1(11‘1‘[ drs K(ty, m)u(r)ut () KT (ts, rg}
ta 1l

{1 in
=| dry| dvr K(ty, Tl)E{ll(Tl)llT('rﬂ)}KT(Ig, Tg)
fo

fo

t1 In
=f dnf drs K(ty, T)Ru(71, ) K {ig, 7). 1-458
] to

For a time-invariant system and a wide-sense stationary input process,
we have the lollowing result.

Theorem 1.48. Suppose that the linear system of Theorem .47 is an asymptot-
ically stable time-invariant system with impulse response matrix K(t — 1),
and that the input stochastic process u(t) is wide-sense stationary with co-
varianee matrix R (t; — t.). Then if the input to the system is a realization of
the process u(t), which is applied from time — o0 on, the autput is a realization
of a wide-sense stationary stochastic process y(t) with covariance matrix

Rty — 1) =f dry f dry K(r)Ru(t, — ta + 7o — T)KT(r2). 1-459
0 o

Note that we have introduced a slight inconsistency in the notation of the
impulse response matrix K and the covariance matrix R,. It is in Section
1.3.2 that we saw that the impulse response matrix of a time-invariant system
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depends on ¢ — 7 only. The result 1-459 can be found from 1-456 by letting
tg— — oo and making some simple substitutions.

For wide-sense stationary processes, it is of interest to consider the power
density matrix.

Theorem 1.49. Consider an asymptotically stable time-invariant linear
system with transfer matrix H(s). Suppose that the input is a reafization of a
wide-sense stationary stochastic process u(t) with power spectral density
matrix 2, (w) which is applied from time — oo on. Then the output is a realiza-
tion of a wide-sense stationary stochastic process y(t) with power spectral
density matrix

¥ () = H(jw)Z (a)HT(—jw). 1-460

This result follows easily by Fourier transforming 1-459 after replacing
ty — t, with a variable =, using the fact that H(s) is the Laplace transform
of K(7).

Example 1.31. Stirred tani

Consider the stirred tank of Example 1.2 (Section 1.2.3) and assume that
fluctuations occur in the concentrations ¢, and ¢, of the feeds. Let us therefore
write

c(t) = 9 + (1),
ca(t) = g + m(8),

where ¢, and caq are the average concentrations and v (t) and »,(t)fluctuations
about the average. It is not difficult to show that the linearized system equa-
tions must be modifted to the following:

1-461

-1 1 1
. 20
&) = 1 2@ + Lo — € Ex — g u(t)
T 7
0 0
1’1(0
+ | Fig Fa , 1-462
= = ‘)
Vﬂ VD
L0
() = {20 2(1).
0 1

If we take the input u(t) = 0, the transfer matrix from the disturbances
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(1) = col [»,(t), ()] to the output variable (t) can be found to be

0 0
FIU/V;] FEDIVEI . 1—463
1 1
S+B S+B

Obviously, the disturbances affect only the second component of the output
variable na.(f) = £,(#). Let us assume that »,(#) and »,(t) are two independent
exponentially correlated noise processes, so that we can write for the co-
variance matrix of v(t)

0% exp (_ 1t ;‘ IEI) 0
Rty —t) = ! . 1-d64

. 0,

With this we find for the power spectral density matrix of ()

20,%, 0
1+ w%,®
Yw) = . . 1-465
20q 0,
0

1+ w6,

It follows from 1-460 for the power spectral density matrix of the contribu-
tion of the disturbances »(t) to the output variable y(?)

0 0
S wy= |0 1 |:(F 10/ VE)“%U'fal (Fuf Vo)"%ﬂ'a:ﬂa} . 1-d66
a 1 1+ wb” 1+ w*6,"
w” + E

1104 Quadratic Expressions

In later chapters of this book it will be convenient to use a measure for the
mean square value of a stochastic process. For vector stochastic processes
we introduce to this end quadratic expressions of the form

E{pT(OWOuO}, ' 1-467
where W(t) is a symmetric weighting matrix. If 2(t) = col [».(2), - - -, #,(£}]
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and W has elements W, i, f=1,2, -+, n, 1-467 can be written as

EQp*(Ow(nu(n)} = E Z Z" (OW (DD s 1-468

=24
which is the expectation of a quadratic expression in the components »,(¢)
of v{#). Usually, W(¢) is chosen to be nonnegative-definite so that the ex-
pression assumes nonnegative values only.

It is helpful to develop expressions for quadratic expressions of this type in
terms of the covariance matrix and power spectral density matrix of o(z).
We have the following result.

Theorem 1.50. Ler v(f) be a vector-valued stochastic process. Then if W{(t)
is a symmetric matrix,
ET(W(Hv()} = tr [W(DC,(t, D], 1-469

where C, (1, 12) is the second-order joint moment matrix of o(t). If v(t) is
wide-sense stationary with zero mean and covariance matrix R (t; — t3),
and W is constant,

E{vT(OWu(1)} = tr [WR(0)]. 1-470
If v(2) has zero mean and the power spectral density mairix I (w),
ERTowuo} =t | | Wi ], 1471
where ' -
= w/2m. 1-472
Furthermore,
R(0) = f Z(w) df. 1-473

By tr{4) we mean the trace of the matrix A4, that is,

tr{d) = 3 oy 1-474
i=1

where o, i =1, -, n are the diagonal elements of the matrix. The first
result of the theorem follows in an elementary mannet:

ERZ@Wn0} = B 3 n@Wim )

i,3=1

WD E{» (v )}

1

- .‘i(t)Cu :.1'(ll I)

i, f=1

tr [R(O)C,(, D], 1-475

-,

I
a TM=
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where C, ;{t, 1} is the (i, j)-th element of C (¢, ¢). The second result, 1-470,
is immediate since under the assumptions stated C, (¢, £) = R, (0). The third
result can be shown by recalling that the power spectral density matrix
%, (w) is the Fourier transform of R, (7), and that consequently R, (r) is the
inverse transform of X (w):

R,(7) =r 3 (w)e™ df. 1-476

For = = 0 we immediately obtain 1-471 and 1-473.

" Equation 1-471 gives an inierpretation of the term power spectral density
matrix. Apparently, the total “power™ E{oT (t)Wu({)} of a zero-mean wide-
sense stationary process »(t) is obtained by integrating tr [WX, (w)] over all
frequencies. Thus tr [WE, {(w)] can be considered as a measure for the power
“density’ at the frequency . The weighting matrix W determines the con-
tributions of the various components of v(¢) to the power.

Example 1.32. Stirred tank

We continue Example 1.31 where we computed the spectral density matrix
of the output ¥(t) due to disturbances () in the concentrations of the feeds
of the stirred tank. Suppose we want to compute the mean square value of
the fluctuations #,(¢) in the concentration of the ountgoing flow. This mean
square value can be written as

E{n"(0} = E{yT(OWy(D}, 1-477
where the weighting matrix " has the simple form
W= (0 0), 1-478
0 1

Thus we find for the mean square error

@y} = e
= 1 (Ff Vn)ezﬂ'lﬂﬂl (Fzf V0)22 Uzﬂﬂu
il s )Y

—m 1 p.t 1 20,
2 4 E + wl, + iy
- (Fio/Va)'o,"0,0° | (Foof Vn)ﬂﬂ’nﬂﬂsﬂﬂ ) 1-479
g4 0, 944,

Integrals of rational functions of the type appearing in 1-479 frequently occur
in the computation of quadratic expressions as considered in this section,
Tables of such integrals can be found in Newton, Gould, and Kaiser (1957,
Appendix E) and Seifert and Steeg (1960, Appendix).
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1.11 THE RESPONSE OF LINEAR DIFFERENTIAL
SYSTEMS TO WHITE NOISE

1.11.1 White Noise

One frequently encounters in practice zero-mean scalar stochastic processes
w with the property that w(#) and w(#.) are uncorrelated even for values of
|ta — 4] that are quite small, that is,

R, (ts, H} =0 for |ty — 14| > &, 1-480

where € is a “*small” number. The covariance function of such stochastic
processes can be idealized as follows.

R, (ta, t1) = V(1) 0(ts — 1), V{t) = 0. 1-481

Here 6{t, — #,) is a delta function and V{(¢) is referred to as the infensity of
the process at time . Such processes are called witite noise processes for
reasons explained later, We can of course extend the notion of a white noise
process to vector-valued processes:

Definition 1.30, Let w(t) be a zero mean vector-valued stochastic process with
covariance matrix

Rm(rE: i‘1) = V(fl) (5("2 - tl): 1-452

where V(1) = 0. The process w(t) is then said to be a white noise stochastic
process with infensity V{t). '

In the case in which the intensity of the white noise process is constant, the
process is wide-sense stationary and we can introduce its power spectral
density matrix. Formally, taking the Fourier translorm ol F3(7), we see that
wide-sense stationary white noise has the power spectral density matrix

(@) = V. 1.483

This shows that a wide-sense stationary white noise process has equal power
density at a/l frequencies. This is why, in analogy with light, such processes
are called white noise processes. This result also agrees with our physical
intuition. A process with little correlation between two nearby values w(fy)
and w(t,) is very irregular and thus contains power at quite high frequencies.

Unfortunately, when one computes the total power of a white naoise proc-
ess using Eq. 1-470 or 1-471, one obtains an infinite value, which immediately
points out that although white noise processes may be convenient to work
with, they do not exist in the physical world. Also, from a strict mathematical
viewpoint, white noise processes are not really well-defined. As we shall see
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in Example 1.33, white noise is the “derivative’” of a process with uncor-
related increments; however, such a process can be shown te have no deriva-
tive. Once the white noise has passed at least one integration, however, we
are again on a firm mathematical ground and the following integration rules,
which are needed extensively, can be proved.

Theorem 1.51. Let w() be a vector-valued white noise process with intensity
V(). Also, let A1(1), Aa{t), and A(2) be given time-varying matrices, Then

@) E{J:EA(t)w(t) dz] —0; 1-484

o [l o]
=Ltf [VOAT(WAL()] dt, 1-485

where Iis the intersection of [t,, ty] and [ty, 1,) and W is any weighting matrix;

© E{ U:’Al(z)w(c) dr] [ J: :’Az(r)w(x') d:f] T}

_ =J. A, (OV()ALT() dt, 1-486
where 1 is as defined before. !

Formally, one can prove (a) by using the fact that w(r) is a zero-mean pro-
cess, while (b) can be made plausible as follows.

E[ U:ﬁAl(x)w(t) dt] “w U:Aﬂ(r')w(r') dt’} ]

in i
=E{J- er- ar wIinAa,r (i)WAa(t’)w(t’)] 1-487a
2% iy

1) ta
=EU dtJ- tr [w(t T (DA, T (O W 4.()] dr’] 1-487b
11 fa
ta

dtJ-h tr [E{w(tWwT(O}A,T(OW A1) dF'  1-487Tc
11 #

a1

iz 14
=f d:f tr [V A, TOW AL 80t — ) df’  1-487d
1 in

=f tr [V (£)A; T WAL1)] dt. 1-487¢
I .

The transition from 1-487c¢ to 1-487d uses 1-482, and the transition from
1-4B7d to 1-487e follows from the properties of the delta function, We have



1.11 Response to White Noise 99

also used the fact that tr(4B) = tr(BA4) for any two matrices 4 and B of
compatible dimensions. :
The proof of (c) is similar to that of (b).

Example 1.33. Wiite noise as the derivative of a process with uncorrelated
ficrements

"In Example 1.29 (Section 1.10.1) we considered processes v(f), t > #y,
with uncorrelated increments, which we showed to be processes with zero
means and covariance matrices of the form

(1) for =4 =1,
R (1, 13) = 1-488
O(ty) for # >ty > 1,

[t LR )

Proceeding completely formally, let us show that the covariance matrix of
the derivative process

B(t) = d—u(i), 1>t 1-489

dt :
consists of a delta function. For the mean of the derivative process, we have
E{5(N} = -[%E{u(r)} =0, t>1. 1-490

For the covariance matrix of the derivative process we write, completely
formally,

Ryt tp) = E{’j(tl)ﬁr(fﬂ}

2

= E{o(t v (t
o, o, {p(t)v" (1)}
=~ Rt bl 1-491
aflatBRﬂ(l ..) JEIRS iy g}
Now, successively carrying out the partial differentiations, we obtain
Rty t) = O(t) 6(, — 1),  th, 1y > 1y, 1-492
where
o) = %(‘) : 1-493
t

This shows that the derivative of a process with uncorrelated increments is a
white noise process. When each increment »(f,) - v(t,) of the process has a
variance matrix that may be written in the form

1]
f V(1) dt, 1-494
t

1
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the intensity of the white noise process that derives from the process with un-
correlated increments is V(¢), since (see Example 1.29)

o) = J: V) dr. 1-495

A special case that is of considerable interest occurs when the process o(z)
from which the white noise process derives is Brownian motion (see Example
1.29). The white noise process then obtained is often referred to as Gaussian
white noise.

It the rigorous theory of white noise, the white noise process is never
defined. Instead, the theory is developed in terms of increments of processes
with uncorrelated increments, In particular, integrals of the type appearing
in Theorem 1.51 are redefined in terms of such processes. Let us consider the
integral

ta
_ J- A(Dw(t) dt. 1-496
This is replaced with "
£ a1
f A(ty do(t) = lim 3 A(r)[e{r) — v(7)] 1-497
31 =0 D

where v(r} is the process with uncorrelated increments from which the white
noise process w{t) derives and where f; = 1o < 7 <+ * < 7, = fa, With

£ =max |ry — 7l » 1-498
i .

is a partitioning of the interval [t,, fa]. The limit in 1-497 can be so defined
that it is a proper stochastic variable, satisfying the properties of Theorem
1.51. For detailed treatments we refer the reader to Doob (1953), Gikhman
and Skorokhod (1969), Astrém (1970), and Kushner (1971). For an extensive
and rigorous discussion of white noise, one should consult Hida (1970).

The material in this example is offered only for background. For our
purposes, in the context of linear systems, it is sufficient to have Theorem 1.51
available.

1.11.2 Linear Differential Systems Driven by White Noise

It will turn out that a linear differential system driven by white noise is a very
convenient mode! for formulating and solving linear control problems that
involve disturbances and noise. In this section we obtain some of the
statistical properties of the state of a linear differential system with a white
noise process as input. In particular, we compute the mean, the covari-
ance, joint moment, variance, and moment matrices of the state ».
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Theorem 1.52. Suppose that x(t) is the solution of
#(1) = A(D(t) + BIyw(),
) =,

where w(t) is white noise with infensity V(1) and =, is a stochastic variable
independent of w(), witlht mean my and Qy = E{(xy — my)(z, — my)" } as its
variaiice matrix. Then x(t) has mean

m(ty = D¢, tymy, 1-500

1-499

where (2, ty) is the transition matrix of the system 1-499. The covariance
matrix of a(r) is

Rz(rlx tﬂ) = CD(II: fn)Ql:quT('r{b tﬂ)
miniiy, i) -
+J. O(ty, BNV (EBI() D1y, 7) dr.  1-501
Jio
The varignee matrix Q(f) = R, (t, 1) satisfies the matrix differential equation

O = AN + AMAT() - B(HV(HBT(),

Q(f n) = Qu~
Furthermore,

1-502

T
Rty ty) = lQ(Il)cD (o)t 1-503

D1y, 12)0(t0), ty 2 ta
The second-order joint moment matrix of (1) is

Colt, 1) = E{a(t)z7 (1)}
= CD(ID PU)CI(TD, t")(DT(ta, th)

min{ty,t)
+J- @1, NBAV(OBIDT (15, 7) dr.  1-504
tn
The moment matrix C,(t, £y = Q'(t) satisfies the matrix differential equation

0'() = ANQ(N + Q' (NAT(1) -+ BV (NBT(1), 1-505

Q'(ty) = E{zgz, T} 1-506
Finalfy,

Qr(tl)(DT(rEa tl)s tﬂ 2 f13

D(t1: 12)Q (1), th 2 tp
These results are easily proved by using the iniegration rules given in Theorem
1.51. Since

Colty, 1o} = { 1-507

z(t) = O, t)ay, +ft O, 7)B()w(T) dT, 1-508
tp
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it follows by 1-484 that m,(t) is given by 1-500. To find the covariance and
joint moment matrices, consider

) E{:r.(tl)a:T(ta)} E-(D(rls fu)E{mnmnT}"T‘T(raa fo)
" E{[(Il(t ) ][ ® (ta, )BT drﬂ
1y {1} " a3

" E[ [J;:lflj(tl, BEW) d{| [D(t, to)zo]T]

+ E{ U:lrb(:l, 2B df] U:”tb(rﬂ, DB d{| T]. 1-509

Because of the independence of z; and w{r) and the fact that w({r} has zero
mean, the secand and third terms of the right-hand side of 1-509 are zero.
The fourth term is simplified by applying 1-486 so that 1-509 reduces to
1-504. Similarly, 1-501 can be obtained. The variance Q(¢) is obtained by
setting ¢, = t; = ¢ in 1-501:

() = B(t, )0 D7(t, 1) + f Bt DBV ()BEDT(L, 1) dr. 1510
to

The differential equation 1-502 is found by differentiating Q(#) in 1-510 with
respect to ¢ The injtial condition 1-502 is obtained by setting ¢ = #,. The
differential equation for C_(#, {) = Q'(¢) follows similarly. Finally, 1-503 and
1-507 follow-directly from 1-501 and 1-504, respectively.

In passing, we remark that if =, is a Gaussian stochastic variable and the
white noise w{#} is Gaussian (see Example 1.33), then =(t) is a Gaussian
stochastic process. We finally note that in the analysis of linear systems it is
often helpful to have a computer program available for the simulation of a
linear differential system driven by white noise (see, e.g., Mehra, 1969).

Example 1.34. A first-order differential system driven by white noise
Consider the first-order stochastic differential equation

D) = — % £t) + w(®), 1511

where w(t) is scalar white noise with constant intensity g. Let us suppose
that £(0) = &,, where &, is a scalar stochastic variable with mean zero and
variance E(&;%) = ¢®. It is easily found that &£(¢) has the covariance function

. ub 0 _pis,
Ryt 1) = (a“ — ‘—f)—) gt ”7 el S 0, 1-512
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The variance of the process is

o) = (a“ — “76) ey ‘-‘:i t>0. 1-513

1.11.3 The Steady-State Variance Matrix for the Time-Invariant Case

In the preceding section we found an expression [Eq. 1-510] for the variance
matrix of the state of a differential linear system driven by white noise. In
this section we are interested in the asymptotic behavior of the variance
matrix in the time-invariant case, that is, when 4, B, and ¥V are constant
matrices. In this case 1-510 can be written as

o) = eA(t—tn)QuE.elT(t—tu) +fie:l(t-—r)BVBTe ATt-r) g 1-514
tn

It is not difficult to see that if, and only if, 4 is asymptotically stable, @(¢)
has the following limit for arbitrary Qg:

lim O(f) = lim Q(t) = @ =f ed" BV BT ed" 7, 1-515
t—+on fp—+—m . L]

Since ¢(¢) is the solution of the differential equation 1-502, its limit @ must

also satisfy that differential equation, so that

AJ + AT + BVBT = 0. 1-516

It is quite helpful to realize that this algebraic matrix equation in @ has a
unique solution, which must then necessarily be given by 1-515. This follows
from the following result from matrix theory (Frame, 1964).

—_—

Lemma 1.5, Let M,, My, and M bereal n X n,m X m, andn X mmatrices.
Let A, i=1,2,-+~,n, ond uy, j= 1.2, ,m denole the characteristic
values of M, and My, respectively. Then the matrix equation

MX + XM,T = M, 1-517
has a unigue n % m solution X if and only if for all i, j
A+ uy # 0, 1-518

In applying this lemma to 1-516, we let M; = A4, My = A”. It follows that
m=mnand g, = A;, j=1,2,---, m. Since by assumption 4 is asymptoti-
cally stable, all characteristic values have strictly negative real parts, and
necessarily

A+ A %0 1-519

for all i, j. Thus 1-516 has a unique solution.
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We summarize as follows.
Theorem 1.53. Consider the stochastic differential equation
E #(t) = Aw(r) + Bw(r),

:u(fﬂ) = "rl}:

1-520

where A and B are constant and w(t) is white noise with constant intensity V.
Then if A is asymptotically stable and t,— —w or t — w, the variance
matrix of ©(t) tends fo the consiant nonnegative-definite matrix

d =f BV B e dt, 1-521
4}
which is the unique solution of the matrix equation

0= AQ + GAT + BVBT. 1-522

The matrix & can thus be found as the limit of the solution of the differential
equation 1-502, with an arbitrary positive-semidefinite Q, as initiaf condition,
from the integral 1-521 or from the algebraic equation 1-522.

Matrix equations of the form 1-522 are also encountered in stability
theory and are sometimes known as Lyapinov equations. Although the matrix
equation 1-522 is linear in @, its solution cannot be directly obtained by
simple matrix inversion. MacFarlane (1963) and Chen and Shieh (1968a)
give useful suggestions for setting up linear equations from which @ can be
solved. Barnett and Storey (1967), Davison and Man (1968), Smith (1968},
Jameson (1968), Rome (1969), Kleinman (1970a), Miiller (1970}, Lu (1971),
and Smith (1971) give alternative approaches. Hagander (1972) has made a
comparison of various methods of selution, but his conclusions do not rec-
ommend one particular method, Also Barmnett and Storey (1970} and
Rothschild and Jameson (1970) review several methods of solution.

We remark that if 4 is asymptotically stable and #, = — oo, the output of
the differential system 1-499 is a wide-sense stationary process. The power
spectral density of the state = is

3 (w) = (jwI — A 'BVBT(—jwl — ATy 1-523

Thus using 1-473 one can obtain yet another expression for @,
g =f (joI — A7BVBT(—jul — ATy df. 1-524
The steady-state variance matrix @ has thus far been found in this section

as the asymptotic solution of the varjance differential equation for #5— —
or t— o, Suppose now that we choose the steady-state variance matrix



1.11 Response to White Noise 105

0 as the initial variance at time fy, that is, we set

0,=0. 1-525

]

By 1-502 this leads to-
oNy=0, 1>1, 1-526

The process x(¢#) thus obtained has all the properties of a wide-sense station-
ary process. '

Example 1.35. The steady-state covariance and variance functions of a
first-order system

Consider as in Example 1.34 the scalar first-order differential equation
driven by white noise,

Ei) = — %E(f) + o), 1.527

where the scalar white noise w() has intensity # and § > 0. Denoting by J
the limit of O(¢) as t — 0, one sees from 1-513 that

~ g

g="-—. -
| g=3 | 1-528
The Lyapunov equation 1-522 reduces to
2
- EQ 4+ u=0, 1-529
which agrees with 1-528. Also, 1-521 yields the same result:
— ® . /]
O=u f B0 gy = &2 1-530
a 2
Finally, one can also check that 1-524 yields:
- F= 0
g=| —L—u=E. 1-531
_w (m2 n i) 2
B'..‘
Note that the covariance function Rg{ty, ) given in 1-512 converges to
6 t - rn
E exp (— 1—) 1-532
2 0

as fy + £y — co with #, — #, finite. R.(t;, t») equals this limit at finite 1, and #,
if the variance of the initial state is

¢ =%,
2

o

1-533
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Apparently, 1-527 represents exponentially correlated noise, provided £(f,)
is a zero-mean stochastic variable with variance 1-533.

1.11.4 Modeling of Stechastic Processes

In later chapters of this book we make almost exclusive use of linear differ-
ential systems driven by white noise to represent stochastic processes. This
representation of a stochastic process v(r) usually takes the following form.
Suppose that o(¢) is given by
v(8) = C(t)=(t), 1-534
with
#(t) = A(O)=(t) + B(t)w(t), 1-535

where 1#() is white noise. Choosing such a representation for the stochastic
process v, we call modeling of the stochastic process ». The use of such models
can be justified as follows.

(a) Very often practical stochastic phenomena are generated by very fast
fluctuations which act upon a much slower differential system. In this case the
model of white noise acting upon a differential system is very appropriate.
A typical example of this situation is thermal noise in an electronic circuit.

(b) As we shall see, in linear control theory almost always only the mean
and covariance of the stochastic processes matter. Through the use of a linear
model, it is always possible to approximate any experimentally obtained mean
and covariance matrix arbitrarily closely,

(c) Sometimes the stochastic process to be modeled is a stationary process
with known power spectral density matrix. Again, one can always generate
a stochastic process by a linear differential equation driven by white noise
so that its power spectral density matrix approximates arbitrarily closely the
power spectral density matrix of the original stochastic process.

Examples 1.36 and 1.37, as well as Problem 1.11, illustrate the technique of
modeling.

Example 1.36. First-order differential system
Suppose that the covariance function of a stochastic scalar process », which
is known to be stationary, has been measured and turns out to be the ex-
ponential function
R(ts, ty) = g ln—tlio, 1-536

One can model this process for ¢ > ¢, as the state of a first-order differential
system (see Example 1.35):

WD) = — %,,(,) + w(D), 1-537
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with w(z) white noise with intensity 20%# and where »(#) is a stochastic
variable with zero mean and variance o®.

Example 1.37. Stirred tank

Consider the stirred tank of Example 1.31 (Sectlon 1.10.3) and suppose
that we wish to compute the varience matrix of the output variable y(z).
In Example 1.31 the fluctuations in the concentrations in the feeds were
assumed to be exponentially correlated noises and can thus be modeled as the
solution of a first-order system driven by white noise. We now extend the
state differential equation of the stirred tank with the models for the sto-
chastic processes »,(¢) and »,(f). Let us write

w(t) = &(t), 1-538

where

b = — £ + o) 1539

Here w,(¢) is scalar white noise with intensity x;; to make the variance of
»,(¢) precisely o,%, we take p; = 20,8, For »(r) = &,(z), we use a similar
model. Thus we obtain the augmented system equation

_1 0
28
#(1) = o a (1)
0 0 —+ o
0,

0 o o -+
B,

1 1 00

Cip — Cp €ap = Cy 0 0

n o Voo |y + w(t), 1-540
0 0 10
0 0 01

where w(t) = col [w,(t), w,(*)]. The two-dimensional white noise w(f) has
intensity

r={ & ] 1-541
0 X P




108 Elements of Linear System Theory

Solution of 1-522 for the variance matrix ( yields, assuming that u(f} =0
in 1-540,

0 0 O 0
_ 0 gm gm dm
Q= N . 1.542
0 g o O
0 gyg O oy
where
oz = (F 1n/ Vn)"‘ﬂlﬂﬂael (F an/ Vu)gﬂzﬁeaeﬂ , 1-543
0+ 0, 840,
(Frof I’B)Eﬂlﬂoﬁl
gy =, 1-544
fz0 8+ 0,
(Fap/ V,,)Ea‘r.ﬂﬁﬁ..
gy = 1-545
a4 8 + 6,

The variance of %.(#)} = &a(f) 1S gas, which is in agreement with the result of
Example 1.32 (Section 1.10.4).

1.11.5 Quadratic Integral Expressions
Consider the linear differential system
(1) = AD=z() + B()w(D), 1-546

where w(#) is white noise with intensity ¥(#) and where the initial state ={t,) is
assumed to be a stochastic variable with second-order moment matrix

E{x(t)z(ty)} = Qy. 1-547

In later chapters of this book we extensively employ quadratic integral
expressions of the form

E{ f h:cT(I)R(t):E(t) dt + zT(t)Px(t) s 1-548
fo

where R(7) is a symmetric nonnegative-definite weighting matrix for all
t < t<t; and where P; is symmetric and nonnegative-definite. In this
section formulas for such expressions are derived. These formulas of course
are also applicable to the deterministic case, where w(t) = 0, £ > 1y, ®(f,) is
a deterministic variable, and the expectation sign does not apply.

For the solution of the linear differential equation 1-546, we write

a(f) = O(1, o)1) +f: Oz, ) BEWLr) dr, 1-549
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so that

J: zlmT(t)R(t)rc(I) dt + eT (1P, (1)
- J: i [a:T(tU)CDT(r, to) +J::wT(T)BT(T)cpT(t, ) d-rj|
: R(r)[q:s(r, to)a(o) +J:<p(t, T)B(w)w(7) d'r] dt

+ [ET(IU)QT(tl, o) +J::1wT(T)BT(T)cIﬂ‘(tl, ) JT}

-P, ]:(D(tl, t)z(ts) +J:hq:(r1, #)B()w(r) df} . 1-550

Taking the expectation of this expression and using the integration rules of
Theorem 1.51, we obtain the result

E{ﬁzlmT(t)R(t)m(I) dt + a:T(tl)Plns(t]_)]
=tr {U:(DT (t, tR(OD(t, tg) dt + DT (ty, ty)PD(Hy, r“)} O
+f U::V(T)BT(T)cD'—”(z, AR(D(t, 7)B(r) d-rj| dt

+ft1V(T)BT (NDT(ty, P,D(1, 7)B(r) d?‘]. 1-551
in

Now if M and N are arbitrary matrices of compatible dimensions, it
is easily shown that tr (MN) = tr (NM). Application of this fact to the last
two terms of 1-551 and an interchange of the order of integration in the third
term yields

tr {J:t U: V() BHOL(L, DREOD(E, NBE) dT} di
+ J: :1V(T)BT(T)<1)T(:1, PD(t,, 7)B(x) dT}
—tr ‘ J: ‘ [ J: :B(T)V(T)BT(T)Q)T(:, ARDO(, 7) dr} dt
+J:B(T) Vi) BT(R)DT (2, TIPD(t, 7) d*rl
=tr [ J:B(T)V(T)BT(T) U:lqﬂ’(:, ARMD(, 7) di

+ OT(t,, PO, T)} dT}. . 18:2
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Substitution of this into 1-551 shows that we can write
iy
EU =T (OR(D= () dr + a:T(Il)Plz(tl)}
to

= {r [P(zD)Q,, +J;hB(t)V(I)BT(t)P(t) dt], 1-553

where the symmetric matrix P(t) is given by

() = f:l‘DT(—n HRED(r, 1) dr + BT, DPD(, 1), 1-554

By using Theorem 1.2 (Section 1.3.1), it is easily shown by differentiation
that P(r) satisfies the matrix differential equation

—B(t) = AT()P(t) + P(A() + R(1). 1-555
Setting f = #, in 1-554 yields the terminal condition
' P(t;) = P,. 1-556
We summarize these results as follows,
Theorem 1.54. Consider the linear differential system
(1) = A@)z(t) + B()w(z), 1-557

where w(t) is white noise with intensity V(t) and where z(t,) = =, is a stochastic
variable with E{zz," } = Q. Let R(t) be symmetric and nonnegative-definite
Jor ty <t < ty, and Py constant, symmetric, and nonnegative-definite. Then

EthT (OR()=(t) dt + T (rl)Plz(tl)]

—tr [P(IU)QU +f13(z)V(r)BT(r)P(r) dt}, 1-558

where P(t) is the syminetric nonnegative-definite matrix

P(f) = L thT(T, HRED(r, 1) dr + DT(ty, HPD(ty, 1). 1-559

D(1, 1y) is the transition matrix af the system 1-557. P(t) satisfies the matrix
differential equation

—P(t) = AT(OP() + P(DA(D) + R() 1-560

with the terminal condition
P(t,) = P.. 1-561
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In particular, if the differential system 1-557 reduces to an autonomous differ-
ential systen: .
() = A@)=Q), 1-562

that is, V(t) = 0 and x(t,) is deterministic, then

f h:::T(I)R(t):n(t) dt + xT(1)P,z(t) = T (t)P(to)(ty)- 1-563

g
‘We conclude this section with a discussion of the asymptotic behavior of
the matrix P(t) as the terminal time ¢, poes to infinity. We limit ourselves to
the time-invariant case where the matrices A, B, V, and R are constant, so
that 1-559 reduces to:

Pl) = f TRt g g p pltat) 1-564
t

If 4 is asymptotically stable, we obtain in the limit ¢, — oo:
Ple)— P = .£ ¥ g =t podte=) g 1-565
A change of integration variable shows that P can be written as
PF= J; e VR ', 1-566

which very clearly shows that P is a constant matrix. Since P satisfies the
matrix differential equation 1-560, we have

0=A"P + PA+ R 1-567
Since by assumption A is asymptotically stable, Lemma 1.5 (Section 1.11.3)
guarantees that this algebraic equation has a unique solution.
In the time-invariant case, it is not difficuit to conjecture from 1-558 that
far #; 3> #, we can approximate

E{ f “mT(:)Rm(t)dz + 2T(1)Py(t)} == tr [PQy + (1, — to)BVBTF).  1-568

tg
This shows that as ¢, — oo the criterion 1-558 asymptotically increases with
t, at the rate tr(BVBTP).

Example 1.38. Stirred tank

Consider the stirred tank extended with the model for the disturbances of
Example 1.37. Assume that #(¢) = 0 and suppose that we are interested in the
integral expression

131
E[ E2(h) dr]. 1-569
in

This integral gives an indication of the average deviation of the concentra-
tion &(#) from zero, where the average is taken both statistically and over
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time. This expression is of the general form 1-548 if we set
0 000D
01 0D
R= , P, =0. 1-570
0000
0000
Solution of the algebraic equation
0=A"P+ PA+R 1-571
yields the steady-state solution
0 0 0 O
_ 0 Pan Pox Pag
P= , 1-572
0 Pas Poma Pua

0 pas pu pua

where
=
=
6 Fig
2 W
i!:]._l 13
st
QFED
2V
Pﬂa—l-l_i,
8 B,
Fio\ 00, 1-573
ks
Pz = _1+__L s
8 0
)
Yo/ N/ 2 1 1
PETLO L (1T 1)
B, 0, 8 6, 0 6
(FEU)EBB:-
Pu= Bl 2
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If we assume for 1 the form 1-541, as we did in Example 1.37, we {find for the
rate at which the integral criterion 1-569 asymptotically increases with ¢,

[see 1-568]: £ Fo
e (2o
¥y + v, '
1

1 1 1
g 0, & 0,
Not unexpectedly, this is precisely the steady-state value of E{£.2(t)} com-
puted in Example 1.37.

tr (BVBTP) = 1-574

1.12 PROBLEMS

1.1. Revolving sateilite

Consider a satellite that revolves about its axis of symmetry (Fig. [.11).
The angular position of the satellite at time ¢ is ¢(t), while the satellite has a

oxis of

Fig, 1.11. A revolving satellite. bt symmetry

constant moment of inertia J. By means of gas jets, a variable torque u(r)
can be exerted, which is considered the input variable to the system. The
satellite experiences no friction.

{a) Choose as the components of the state the angular position ¢(#) and
the angular speed q';(t). Let the output variable be (¢} = ¢{¢). Show that the
state differential equation and the output equation of the system can be repre-

sented as
0=y g0+ (o
w0 = | o0+ | Jwo. -

(1) = (1, M),
where f§ = 1/J.

{(b) Compute the transition matrix, the impulse response function, and the
step response function of the system. Sketch the impulse response and step
response functions.

{c) Is the system stable in the sense of Lyapunov? Is it asymptotically
stable?

{d) Determine the transfer function of the system,
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o
torque | -
wit) ]
0 ]
1 to ts Ity e
1
| |
_u _____ I——-—J
Fig.1.12. Input torque f(or satellite
repositioning.

(e} Consider the problem of rotating the satellite from one position in
which it is at rest to another position, where it is at rest. In terms of the state,
this means that the system must be transferred from the state =(f;} =
col (g, 0) to the state a(1;) = col (¢, 0), where ¢, and ¢, are given angles.
Suppose that two gas jets are available; they produce torques in opposite
directions such that the input variable assumes only the values —«, 0, and
+a, where « is a fixed, given number. Show that the satellite can be rotated
with an input of the form as sketched in Fig. 1.12. Calculate the switching
time #;, and the terminal time #,. Sketch the trajectory of the state in the
state plane.

1.2, Amplidyne

An amplidyne is an electric machine used to control a large dc power
through a small dc voltage. Figure 1.13 gives a simplified representation
(IrAzzo and Houpis, 1966). The two armatures are rotated at a constant
speed (in fact they are combined on a single shaft). The output voltage of each
armature is proportional to the corresponding field current. Let L; and R,
denote the inductance and resistance of the first field windings and L, and R,
those of the first armature windings together with the second field windings.

R i Rz i2
— T —_—
LY Ly By Lz )
o]
field armature fiald armature

Fig. 1.13. Schematic representation of an amplidyne.
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The induced voltages are given by

e, == kI,
oo 1-576
Ea = kﬂiﬂ.
The following numerical values are used:
R1/L1 = 10 5“1, RE/LQ = 1 S_l,
R, =59, R, =100, 1577

key = 20 V/A, Jeg = 50 V/A.

(a) Take as the components of the state &,(f) = i;(f) and &(¢) = #&(¥) and
show that the system equations are

1
i(f) = a(t) + [ L Jul),
ky R,
- == 0 1-578
L, 2

o) = (0, ka(n),
where pu(f) = ey(t) and 7(1) = ell?).
(b) Compute the transition matrix, the impulse response function, and the
step response function of the system. Sketch for the numerical values given
- the impulse and step response functions.
(c) Is the system stable in the sense of Lyapunov? Is it asymptotically
stable ?
(d) Determine the transfer function of the system. For the numerical values
given, sketch a Bode plot of the frequency response function of the system.
(e} Compute the modes of the systemn.

1.3. Properties of time-invariant systems under state transformations
Consider the linear time-invariant system
£(#) = A=z(t) + Bu(h),
y(t) = Cx(1).

We consider the effects of the state transformation ' = Txz.

1-579

(a) Show that the tramsition matrix ®(t, f;) of the system 1-579 and the
transition matrix @’ (t,, #,) of the transformed system are related by

@'(z, 1)) = TO(, t,)T 1-580

(b) Show that the impulse response matrix and the step response matrix
of the system do not change under a state transformation.
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(c) Show that the characteristic values of the system do not change under a
state transformation.

(d) Show that the transformed system is stable in the sense of Lyapunov
if and only if the original system 1-579 is stable in the sense of Lyapunov.
Similarly, prove that the transformed system is asymptotically stable il and
only if the original system 1-579 is asymptotically stable.

{e) Show that the transfer matrix of the system does not change under a
state transformation.

1.4. Stability of amplidyne with feedback

In an attempt to improve the performance of the amplidyne of Problem
1.2, the following simple proportional feedback scheme is considered.

at) = Aln.() — 7). 1-581
Here #,{t) is an external reference voltapge and 2 a gain constant to be deter-
mined.

(a) Compute the transfer matrix of the amplidyne interconnected with the
feedback scheme 1-581 from the reference voltage 7,(f) to the output voltage
7).

(b) Determine the values of the pain constant 2 for which the feedback
system is asymptotically stable.

L5*. Structure of the controllable subspace

Consider the controllability canonical form of Theorem 1.26 (Section
1.6.3).

{a) Prove that no matter how the transformation matrix T is chosen the
characteristic values of A}; and A4 are always the same,

(b) Define the characteristic values of A;; as the controllable poles and the
characteristic values of 44, as the wncontrollable poles of the system. Prove
that the controllable subspace of the system 1-310 is spanned by the char-
acteristic vectors and generalized characteristic vectors of the system that
correspond to the controllable poles.

{c) Conclude that in the original representation 1-308 of the system
the controllable subspace is similarly spanned by the characteristic vectors
and generalized characteristic vectors corresponding to the controllable
poles.

1.6%. Controllability and stabilizability of a time-invariant system under a
state transformation

Consider the state transformation &' = T2 for the linear time-invariant
system () = Ax(t) + Bu(?). 1-582

* See the preface lor the significance of the problems marked with an asterisk.
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(a) Prove that the transformed system is completely controllable if and
only if the original system 1-582 is completely controllable.

(b) Prove directly (without using Theorem 1.26) that the transformed
system is stabilizable if and only if the original system 1-582 is stabilizable,

1.7%.  Reconstructibility and detectability of a time-invarign! system mder
a state transformation
Consider the state transformation £’ = T& for the time-invariant system

#(1) = Az(t), (1) = Cz(1). 1-583

(a) Prove that the transformed system is completely reconstructible if and
only if the original system 1-583 is completely reconstructible.

(b) Prove directly (without using Theorem 1.35) that the transformed
system is detectable if and only if the original system 1-583 is detectable.

1.8*%.  Dual of a transformed system

Consider the time-invariant system

#(t) = Az(t) + Bu(t),
y() = Cz(1).

Transform this system by defining z'(¢) = Tz(¢) where T is a nonsingular
transformation matrix. Show that the dual of the system 1-584 is transformed
into the dual of the transformed system by the transformation z*(r) =
TTw'*(1). :

1-584

1.9. “Damping” of stirred tank

Consider the stirred tank with fluctuations in the concentrations ¢, and ¢y
as described in Examples 1.31 and 1,32 (Sections 1.10.3 and 1.10.4), Assume
that u(z) = 0. The presence of the tank has the effect that the fluctuations in
the concentrations ¢; and ¢, are reduced. Define the “‘damping factor” of the
tank as the square root of the ratio of the mean square value of the fluctua-
tions in the concentrations ¢(f) of the outgoing flow and the mean square
value of the fluctuations when the incoming feeds are mixed immediately
without a tank (¥ = 0). Compute the damping factor as a function of ¥,
Assume oy = gy, §; = #, = 10 s and use the numerical values of Example 1.2
(Section 1.2.3). Sketch a graph of the damping factor as a function of ¥,

1.10. State of system driven by Gaussian white noise as a Markov process

A stochastic process v(f) is a Markov process if

P{U(tﬂ) < v, l U(fl), U(t.".): Tt U(tn-l)} = P{U(tﬂ) <u, | U(tﬂ—l)} 1-585



118 Elements of Linear System Theory

foralln, allty, ta, *+*, t, with ¢, > t, 4 = tg_s = ** * = f, and all v,,. Show
that the state x(#) of the system

i) = A@)() + BEOW),

z(ty) = =y,

1-586

where w(t) is Gaussian white noise and =, a given stochastic variable, is a
Markov process, provided x, is independent of w(z), t > 1.
1.11. Modeling of second-order stochastic processes

Consider the system

( 0 1 ) (o)
(1) = =)+ | o). 1-587
—o  —ty 1

For convenience we have chosen the system to be in phase canonical form,
but this is not essential. Let e (r) be white noise with intensity 1. The output
of the system is given by

(1) = (1, y2)=(0). 1-588
(a) Show that if 1-587 is asymptotically stable the power spectral density
function of »(f) is given by
Sy(w) = [t Ues | 1-589
(jw) + oa(jow) + oy

(b) Suppose that a stationary stochastic scalar process is given which has
one of two following types of covariance functions:

RV(T) = ﬁle'“'nlf] + ﬂag_"-:!lrlj 1-590
or '

R(7) = B, cos (wyr) + Pfue ! cos (wyr), 1-591

where » = ¢, — t.. Show that 1-587 and 1-588 can be used to model such a
process. Express the constants occurring in 1-587 and 1-588 in terms of the
constants occurring in 1-590 or 1-591.

(c) Atmospheric turbulence manifests itself in the form of stochastically
varying air speeds. The speed fluctuations in a direction perpendicular to
the main flow can be represented as a scalar stochastic process with covari-
ance function

R(r) = cr”e“"""(l — ‘1]), 1-592

1
2

where v = #; — t,. Model this process.
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