Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage oramean accu-
mulation of past causes. We must, of course, demand that the setrofirgtates> be
sufficiently rich to carry all information about the past history2ofo predict the effect of the
past upon the future. We do not insist, however, that the state igdisésuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbib, 1969 [115].

This chapter describes how feedback of a system’s state casdaeto shape
the local behavior of a system. The concept of reachabilitytieduced and used
to investigate how to “design” the dynamics of a system tgloassignment of
its eigenvalues. In particular, it will be shown that undertain conditions it is
possible to assign the system eigenvalues arbitrarily ipycgpiate feedback of
the system state.

6.1 REACHABILITY

One of the fundamental properties of a control system is whtbf points in the
state space can be reached through the choice of a contul ithpurns out that
the property of “reachability” is also fundamental in urstanding the extent to
which feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx
4t = Ax+Bu (6.1)

wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
guestion is whether it is possible to find control signals sb&my point in the state
space can be reached through some choice of input. To stigjywh define the
reachable se¥(xo, < T) as the set of all pointss such that there exists an input
u(t), 0<t <T that steers the system frax(0) = Xo to X(T) = X¢, as illustrated in
Figure 6.1a.

Definition 6.1 (Reachability) A linear system iseachableif for any xg,x; € R"
there exists & > 0 andu: [0, T] — R such that the corresponding solution satisfies
X(0) = xp andx(T) = Xs.
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(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. TheZéty, < T) shown on the left is

the set of points reachable froxg in time less thaM. The phase portrait on the right shows
the dynamics for a double integrator, with the the natural dynamics drawro@zontal
arrows and the control inputs drawn as vertical arrows. The sethiéwble equilibrium
points is thex axis. By setting the control inputs as a function of the state, it is possible to
steer the system to the origin, as shown on the sample path.

The definition of reachability addresses whether it is possthteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibriwmntp of the system
(since we can remain at those points once we get there). Tha aitpossible
equilibria for constant controls is given by

& = {Xe : A%+ bue = 0 for someue € R}.

This means that possible equilibria lie in a one (or possiliyér) dimensional
subspace. If the matri& is invertible this subspace is spanned4oy B.
The following example provides some insight into the poditids.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratbnse dynamics are
given by

5(1 = X2

X2 = U.

Figure 6.1b shows a phase portrait of the system. The open lowndcs (1= 0)
are shown as horizontal arrows pointed to the rightdor- O and to the left for
x2 < 0. The control input is represented by a double-headed amdiaei vertical
direction, corresponding to our ability to set the value:ofThe set of equilibrium
points& corresponds to the, axis, withug = 0.

Suppose first that we wish to reach the origin from an initialditon (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
on the natural dynamics to control the motion to the left agldtr If a > 0, we can
move the origin by first setting < 0, which will casex, to become negative. Once
X2 < 0, the value of; will begin to decrease and we will move to the left. After
a while, we can sait, to be positive, moving, back toward zero and slowing the
motion in thex; direction. If we bringx, > 0, we can move the system state in the
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opposite direction.

Figure 6.1b shows a sample trajectory bringing the systeme@tigin. Note
that if we steer the system to an equilibrium point, it is plolesto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can only pass through the point in a transientafashi O

To find general conditions under which a linear system is ralsleh we will
first give a heuristic argument based on formal calculatiatiswpulse functions.
We note that if we can reach all points in the state space gtfreaome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the state totatep in the input is
given by .
X(t) = / At-TBdr = A-1(eM — 1)B 6.2)
0

(see equation (5.22) and Exercise 5.7). The derivative of aste function is
the impulse functionp(t), defined in Section 5.3. Since derivatives are linear
operations, it follows (see Exercise 6.10) that the respafighe system to an
impulse function is the derivative of equation (6.2):

dx t
a_&a
Similarly we find that the response to the derivative of a impfisction is
d?x
— =A'B.
dt? ¢

Continuing this process and using the linearity of the systle input
u(t) = a1o(t) + ag5(t) +ad(t)+- +apd™ V(1)
gives the state
X(t) = 016MB+ oA B + azA2NB+ - - + 0, A LAB.
Taking the limit ag goes to zero through positive values we get
X(0+) = Q1B+ 02AB+ a3AZB+ - - - + a, AV 1B,
The right hand is a linear combination of the columns of therat

W — [B AB ... Amis]. (6.3)

To reach an arbitrary point in the state space we thus rethatehere are linear
independent columns of the mati. The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themasives is a very
violent signal. To see that an arbitrary point can be reaglhiftdsmoother signals



176 CHAPTER 6. STATE FEEDBACK

we can make use of the convolution equation. Assuming tkeainitial condition
is zero, the state of a linear system is given by

- /t f-UBY(T)dT = /t ATBu(t — 1)dT
0 0

It follows from the theory of matrix functions, specificallig Cayley-Hamilton
theorem (see Exercise 6.11) that

T = lao(T) +Aay(T) +---+ A" Lay_4(1),

whereq; (1) are scalar functions, and we find that

B/ ao(T)u(t—1) dr+AB/ ai(T)u(t —1)dTr+
+ A 1B/ an_1(T)u(t — 1) dT.

Again we observe that the right hand side is a linear comioinaif the columns
of the reachability matri¥\; given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1. A linear system is reachable if and only the reachability nimat/;
is invertible.

The formal proof of this theorem is beyond the scope of thig text follows
along the lines of the sketch above and can be found in modtsboo linear
control theory, such as [48, 133]. We illustrate the conoépeachability with the
following example.

Example 6.2 Reachability of balance systems
Consider the balance system introduced in Example 2.1 awinsimoFigure 6.2.
Recall that this system is a model for a class of examples ichwihe center of
mass is balanced above a pivot point. One example is the Segavesportation
system shown in the left portion of the figure, for which a nalwuestion to
ask is whether we can move from one stationary point to an@ih@ppropriate
application of forces through the wheels.

The nonlinear equations of motion for the system are givergiragon (2.9)
and repeated here:

(M+m)p—mlcosd § = —cp—mlsind 62 +F 6.4
(J+ml?)8 —mlcosh = —yB +mglsing, '

For simplicity, we takec = y = 0. Linearizing around the equilibrium poirg =
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(@) (b)

Figure 6.2: Balance system. The Segway human transportation system shown oft ibe le
an example of a balance system which uses torque applied to the wheekptthkerider
upright. A simplified diagram for a balance system is shown on the right. syetem
consists of a mags on a rod of length connected by a pivot to a cart with mads

(p,0,0,0), the dynamics matrix and the control matrix are

0 0 10 0
0 0 0 1 0
A= mé12 B= J
0 MtJt—n?ZIZ 00 Medk—m2i2 |’
M¢mg| Im
0 MtJttfmzlz 00 Mg J; —mé1 2
whereM; = M +mandJ; = J+ml?. The reachability matrix is
r X gl3m3 3
0 Mg J —n@l2 0 (MyJ—n212)2
0 |mmz , 0 glzn?(r;ﬂ;';/l)z
M —rmPl M —n?l
W — \ 1 S (Med 1 (6.5)
Mg —m?I2 0 (Mt —P12)2 0
Im 0 Q2122 (m+M) 0
Mg —mm?12 (Mt —P12)2
This matrix has determinant
214
g’
detW)=-——"——-—-— #0
W) (Mg, — PI2)4 7

and we can conclude that the system is reachable. This inthhésve can move
the system from any initial state to any final state and, inigaer, that we can
always find an input to bring the system from an initial statemoequilibrium
point. O

It is useful of have an intuitive understanding of the medsrais that make a
system unreachable. An example of such a system is given urd=§3. The
system consists of two identical systems with the same ir(letarly, we can not



178 CHAPTER 6. STATE FEEDBACK

p

Figure 6.3: A non-reachable system. The cart-pendulum system shown on theatefi h
single input that affects two pendula of equal length and mass. Sincertesfaffecting
the two pendula are the same and their dynamics are identical, it is not digoitantrol
the state of the system. The figure on the right gives a block diagramsemation of this
situation.

separately cause the first and second system to do sometffergli since they
have the same input. Hence we cannot reach arbitrary stadesoathe system is
not reachable (Exercise 6.2).

More subtle mechanisms for non-reachability can also odeor example, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists weaarH such that

0= %Hx: H(Ax+Bu) forall u.

ThenH is in the left null space of botA andB and it follows that
HW = H [B AB ... Anle] —0.

Hence the reachability matrix is not full rank. In this cagaye have an initial
conditionXy and we wish to reach a staxe for which Hxg # Hx¢, then since
Hx(t) is constant, no input can move fronxg to X;.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesvent to change
coordinates and write the dynamics of the system in the fitamgd coordinates
z=Tx One application of a change of coordinates is to converistegyinto a
canonical form in which it is easy to perform certain typeswodlysis.

A linear state space system isregachable canonical fornf its dynamics are
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d bl b2 bnfl bn
u < Z\ f P4 f 2 . f Zn—1 f Zn
-1 a a an—1 an

Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inpridiepn the weighted
values of the states. The output is given by an appropriate combinattbe sf/stem input
and other states.

given by
—a; —a —az ... —ay 1
1 0 o ... O 0
z_ 1o 1 0o .. 0]z ]|0]y
dt ; TP : (6.6)
0 1 0 0
y= (bl b, by ... bn] z+du.

A block diagram for a system in reachable canonical form gsshin Figure 6.4.
We see that the coefficients that appear inAhendB matrices show up directly
in the block diagram. Furthermore, the output of the systei $émple linear
combination of the outputs of the integration blocks.
The characteristic polynomial for a system in reachable w@abform is given
by
As)="+as" 1+ +a,_15+an. (6.7)

The reachability matrix also has a relatively simple strrectu

*

1 —a a2—a
0 1 —ay ..
W= (B AB .. ATIB) = |: : - ]
00 0 1 «
00 0 1

wherex indicates a possibly nonzero term. This matrix is full ramicsino column
can be written as a linear combination of the others due tdridaggular structure
of the matrix.

*

We now consider the problem of changing coordinates sudltttbalynamics of a
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system can be written in reachable canonical form A, 8represent the dynamics

of a given system and, B be the dynamics in reachable canonical form. Suppose
that we wish to transform the original system into reachahlgonical form using

a coordinate transformatian= Tx. As shown in the last chapter, the dynamics
matrix and the control matrix for the transformed system are

A=TATt B =TB.
The reachability matrix for the transformed system then bexo
W= (8 AE .. Anig).
Transforming each element individually, we have
AB=TAT 1TB=TAB
A’B = (TAT 12TB=TAT ITAT 1TB=TA’B

A'B=TA'B.
and hence the reachability matrix for the transformed sysse
W =T (B AB - A™1B) —Tw. (6.8)
SinceW; is invertible, we can thus solve for the transformatibithat takes the
system into reachable canonical form:
T=Www 1
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two dimensional system of the form

= [O’w ‘(;’] X+ [(1)] u

We wish to find the transformation that converts the systemrieachable canon-

ical form: L
A_ | —& 5 _
=T (o)

The coefficients; anda, can be determined from the characteristic equation for
the original system:

a; = —2a

A(s) =detsl—A) = 2as+ (% + w?) — y
=0 "+ w".

The reachability matrix for each system is

([0 w ~  [1 —a
Wr_[l or] Wf—[o 1]'
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The transformatio becomes

a;+a a
- 1 —d=5- 1 w 1

w w

and hence the coordinates
a
[zl] _Tx— 6X1+X2
Vi) Xo

put the system in reachable canonical form. O

We summarize the results of this section in the followingtieen.

Theorem 6.2. Let A and B be the dynamics and control matrices for a reachable
system. Then there exists a transformatieax such that in the transformed co-
ordinates the dynamics and control matrices are in reachaainonical forn{6.6)

and the characteristic polynomial for A is given by

detsl—A) ="+ ays" 1+ ... +an_15+an.

One important implication of this theorem is that for anyaeable system,
we can always assume without loss of generality that thedioates are chosen
such that the system is in reachable canonical form. Thisrigepkarly useful for
proofs, as we shall see later in this chapter. However, fgin brder systems, small
changes in the coefficiendés can give large changes of the eigenvalues. Hence, the
reachable canonical form is not always well conditioned amcst be used with
some care.

6.2 STABILIZATION BY STATE FEEDBACK

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the idekesigning the
dynamics a system through feedback of the state. We willnasghat the system
to be controlled is described by a linear state model and teasghe input (for

simplicity). The feedback control will be developed step Bpsusing one single
idea: the positioning of closed loop eigenvalues in dededtions.

State Space Controller Structure

Figure 6.5 shows a diagram of a typical control system usiaig $eedback. The
full system consists of the process dynamics, which we taketlinear, the con-
troller elementsK andk;, the reference input, and processes disturbancds,
The goal of the feedback controller is to regulate the outpth@systemy, such
that it tracks the reference input in the presence of disturbs and also uncer-
tainty in the process dynamics.



182 CHAPTER 6. STATE FEEDBACK

Controller Process

X=Ax+Bu
y=Cx+Du

r —» k

,,,,,,,,,,,,,,,,,

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

An important element of the control design is the perforneasiecification.
The simplest performance specification is that of stabilitythie absence of any
disturbances, we would like the equilibrium point of theteys to be asymptoti-
cally stable. More sophisticated performance specificattgpically involve giv-
ing desired properties of the step or frequency responskeoystem, such as
specifying the desired rise time, overshoot and settlimg tof the step response.
Finally, we are often concerned with the disturbance rejegtroperties of the sys-
tem: to what extent can we tolerate disturbance ingwtad still hold the outpug
near the desired value?

Consider a system described by the linear differential tgua

dx

T Ax+ Bu, y =Cx+Du, (6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference value,and hold it there.

We begin by assuming that all components of the state vectomaasured.
Since the state at timecontains all information necessary to predict the future
behavior of the system, the most general time invariantroblatw is a function of
the state and the reference input:

u=a(xr).
If the feedback is restricted to be a linear, it can be wrigen
u=—Kx+Kkr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figuse Bhe nega-
tive sign is a convention to indicate that negative feedlimtie normal situation.
The closed loop system obtained when the feedback (6.10pigeddo the sys-
tem (6.9) is given by g

X

o = (A= BK)x+Bkr. (6.11)

We attempt to determine the feedback giliiso that the closed loop system has
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the characteristic polynomial
p(s) ="+ P18 4+ + P15+ P (6.12)

This control problem is called the eigenvalue assignmertilpro or “pole place-
ment” problem (we will define “poles” more formally in a latenapter).
Note that the&k, does not affect the stability of the system (which is detasdi
by the eigenvalues ¢k — BK), but does affect the steady state solution. In partic-
ular, the equilibrium point and steady state output for tosed loop system are
given by
Xe=—(A—BK) 1Bkr  ye=Cx+Due,

hencek; should be chosen such that=r (the desired output value). Sinkeis a
scalar, we can easily solve to show thaDi& 0 (the most common case).
k- =—1/(C(A-BK)'B). (6.13)

Notice thatk, is exactly the inverse of the zero frequency gain of the cldsep
system. Th solution fob # 0 is left as an exercise.

Using the gainK andk;, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to corstauch a state feedback
control law, we begin with a few examples that provide somsdiatuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for Vehsteering. The
dynamics describing the lateral deviation where given by

(Yl
C= [1 0) D=0.

The reachability matrix for the system is thus

w- (o )~ 1 3)

The system is reachable since\det= —1 # 0.

We now want to design a controller that stabilizes the dycanaind tracks
a given reference value of the lateral position of the vehicle. To do this we
introduce the feedback

U= —KX+kr = —kgxg — koXo + ki,

and the closed loop system becomes

((jj;(:(A—BK)X—i—Bkrr: [__kall 1:l¥2k2] X+ [‘ﬂj] r

y=Cx+Du= [l 0) X.

(6.14)
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Figure 6.6: State feedback control of a steering system. Step responses obtainedny
trollers designed witl{c = 0.7 andw, = 0.5, 0, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasidut that largew.: also give large initial control

actions. Step responses obtained with controller designedwithl and{. = 0.5, 0.7 and
1 are shown in (b).

The closed loop system has the characteristic polynomial

_ S+yki yke—1) _
det(sI—A+BK)_det[ K S+k2]_sz+(yk1+k2)s+k1.

Suppose that we would like to use feedback to design the dysashihe system
to have the characteristic polynomial

p(S) = S> 4 2{c xS+ W

Comparing this polynomial with the characteristic polynahof the closed loop
system we see that the feedback gains should be chosen as

ki=wf ko= 20— ya?.

Equation (6.13) givek: = ky = w?, and the control law can be written as
U= kg (r —x1) — kaXo = @ (r —x1) — (2{cx — ya?)Xo.

The step responses for the closed loop system for differéumesa@f the design
parameters are shown in Figure 6.6. The effectugfis shown in Figure 6.6a,
which shows that the response speed increases with inegaasi The responses
for wx, = 0.5 and 1 have reasonable overshoot. The settling time is alBocirl
lengths fora. = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths foraw, = 1. The control signad is large initially and goes to zero as time
increases because the controller has an integrator. Tied watue of the control
signal isk; = w?r and thus the achievable response time is limited by theahiail
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actuator signal. Notice in particular the dramatic incesimscontrol signal when
w; changes from 1 to 2. The effect gf is shown in Figure 6.6b. The response
speed and the overshoot increase with decreasing dampsangg these plots, we
conclude that reasonable values of the design parameet® dravew, in the
range of 0.5to 1 ang. ~ 0.7. O

The example of the vehicle steering system illustrates hate seedback can
be used to set the eigenvalues of the closed loop systemitaaylvalues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasnef the system
are the coefficients of the characteristic equation. It isgfoee natural to consider
systems in this form when solving the eigenvalue assignmpreitiem.

Consider a system in reachable canonical form, i.e,

—a; —a —az ... —ay 1
d 1 0 o ... O 0
—Z:Az+l§u: 0 1 0 ... 0 [|z+ lu
dt ; SRR 0 (6.15)
0 1 0 0
y=Ca= (o1 b - tn)z

It follows from(6.7) that the open loop system has the charéatic polynomial
detsl—A) ="+ a;s" 1+ ... +a,_15+an.

Before making a formal analysis we can gain some insight bstigating the
block diagram of the system shown in Figure 6.4 on page 181. hamcteristic
polynomial is given by the parametexsin the figure. Notice that the parameggr
can be changed by feedback from stat¢o the inputu. It is thus straightforward
to change the coefficients of the characteristic polynonyaithte feedback.

Returning to equations, introducing the control law

U= —Kz+kr =—kzi —kozo — - - - — knzn + ki, (6.16)
the closed loop system becomes
—ap—ki —ap—ky —ag—ks ... —a,—kn Ky
1 0 0 0 0
az_ | o 1 0 .. 0 |z]of;
dt : : : (6.17)
0 1 0 0
y— (bn by bl]z.

The feedback changes the elements of the first row oAtheatrix, which corre-
sponds to the parameters of the characteristic equation.cloked loop system
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thus has the characteristic polynomial
'+ (& + k)" 1 4 (ap+ k)" 2 4 -+ (an_1+ kn_1)S+an + kn.
Requiring this polynomial to be equal to the desired closeg [polynomial
p(s) ="+ p1S" T+ + Pr_1S+ Pn
we find that the controller gains should be chosen as

ki=pi—a, k=p-a - k=p—an
This feedback simply replaces the parametgiis the system (6.17) by;. The
feedback gain for a system in reachable canonical form is thu

Kz[pl—al p2—az - pn—an]. (6.18)

To have zero frequency gain equal to unity, the paranietshould be chosen
as -
an+Kn  pn
= =—. 6.19
Kr br by (6.19)
Notice that it is essential to know the precise values of patarsa, andb, in
order to obtain the correct zero frequency gain. The zerai&egy gain is thus
obtained by precise calibration. This is very different frobtaining the correct

steady state value by integral action, which we shall seater kections.

Eigenvalue Placement

We have seen through the examples how feedback can be usedign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that skensys in reachable
canonical form. Consider the system

dx
a—AerBu (6.20)
y =Cx+Du.

We can change the coordinates by a linear transformatioii x so that the trans-
formed system is in reachable canonical form (6.15). Fohsaucystem the
feedback is given by equation (6.16), where the coefficierdsgaven by equa-
tion (6.18). Transforming back to the original coordinagess the feedback

u=—Kz+kr =—KTx+ktr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadRpnsider the system
given by equatioli6.20) with one input and one output. L&ts) =" +a; "1 +
.-+ 4 ap_1S+ a, be the characteristic polynomial of A. If the system is reatda

then there exists a feedback
U= —Kx+kr
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that gives a closed loop system with the characteristicnntyial
p(s) ="+ pas" T+ -+ Pn_1S+ Pn

and unity zero frequency gain between r and y. The feedbaokiggiven by
K=KT= (pl—al po—ax --- pn—an]v\wlrv\/r_l kr :%7 (6.21)

where a are the coefficients of the characteristic polynomial of tietrix A and
the matrices WandW; are given by

-1

1 a3 & an-1
0 1 & -+ apo
VVr:(B AB ... An—ls], W= | : T
o o0 - 1 a1
o o0 o - 1

For simple problems, the eigenvalue assignment problenbeaolved by in-
troducing the elementg of K as unknown variables. We then compute the char-
acteristic polynomial

A(s) =det(sl — A+ BK)

and equate coefficients of equal powers i the coefficients of the desired char-
acteristic polynomial

p(s) ="+ PS4+ pro1+ pn.

This gives a system of linear equations to deternkindhe equations can always
be solved if the system is reachable, exactly as we did in Elag.

Equation (6.21), which is called Ackermann’s formula [3, @dn be used for
numeric computations. It is implemented in the MATLAB functiacker . The
MATLAB function pl ace is preferable for systems of high order because it is
better conditioned numerically.

Example 6.5 Predator-prey

Consider the problem of regulating the population of an gst@$n by modulating
the food supply. We use the predator-prey model introduceskiction 3.7. The
dynamics for the system are given by

H H aHL

_— = _ B — >
gt — ntuH <1 K) 1+aHT, 20
dL L

dt r"‘<1 kH> L=0

We choose the following nominal parameters for the systelmciwcorrespond to
the values used in previous simulations:

r=0.02 K=500 a=0.03
r =0.01 k=0.2 Th=5.
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We take the parametey, corresponding to the growth rate for hares, as the input
to the system, which we might modulate by controlling a foodrse for the hares.
This is reflected in our model by the ter(m, + u) in the first equation.

To control this system, we first linearize the system arourdetuilibrium
point of the system(He, Le), which can be determined numerically to bex
(6.5,1.3). This yields a linear dynamical system

d [21] _ [0.001 —0.01] [21] N [6.4] v

dt |z) 10.002 —-0.01 Y 0
wherez; =L —Le, 2z =H —Heg andv=u. Itis easy to check that the system
is reachable around the equilibriufm v) = (0,0) and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamidhe system. This can
be done by the process of trial and error or by using some ahibre systematic
techniques discussed in the remainder of the text. For nevgimiply choose the

desired closed loop poles to betat= {—0.01,—0.02}. We can then solve for the
feedback gains using the techniques described earliechwhsults in

K — [0.005 —0.15) .

Finally, we solve for the reference gaik, using equation (6.13) to obtakp =
0.003.
Putting these steps together, our control law becomes

v=—Kz+Kkr.

In order to implement the control law, we must rewrite it wsthe original coor-
dinates for the system, yielding

U=Us—K(X—Xe) + ke (r —ve)
H-6.5

= (0005 -0015) [L—1.3

] +0.003(r —6.5).

This rule tells us how much we should modulageas a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shemsulation of

the resulting closed loop system using the parameters defbwme: and starting an
initial population of 15 hares and 5 lynxes. Note that theéeysquickly stabilizes
the population of lynxes at the reference valtie=€ 20). A phase portrait of the
system is given in Figure 6.7b, showing how other initial adads converge to
the stabilized equilibrium population. Notice that the dymcs are very different
than the natural dynamics (shown in Figure 3.20 on page 95). O

The results of this section show that we can use state feedbaiisign the
dynamics of a system, under the strong assumption that wemeasure all of the
states. We shall address the availability of the statesam#éxt chapter, when we
consider output feedback and state estimation. In addifibeorem 6.3 states that
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Figure 6.7: Simulation results for the controlled predator-prey system. The populafion
lynxes and hares as a function of time is shown in (a) and a phase pftréié controlled
system is shown in (b). Feedback is used to make the population stdje-anissingand
Le = missing

the eigenvalues can be assigned to arbitrary locationsashadihly idealized and
assumes that the dynamics of the process are known to higisipre The robust-
ness of state feedback combined with state estimators sdsmed in Chapter 12,
after we have developed the requisite tools.

6.3 STATE FEEDBACK DESIGN

The location of the eigenvalues determines the behaviomredtltised loop dynam-
ics and hence where we place the eigenvalues is the maimddsdajsion to be
made. As with all other feedback design problems, thereradebdffs between the
magnitude of the control inputs, the robustness of the syseperturbations and
the closed loop performance of the system. In this sectioexeenine some of
these tradeoffs, starting with the special case of secaet aystems.

Second Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second order, linear differential equationscaBge of their ubiqui-
tous nature, it is useful to apply the concepts of this chiaptéhat specific class
of systems and build more intuition about the relationsrepueen stability and
performance.

The canonical second order system is a differential equafitime form

G+ 2Z and + wha = ku
y=q.

(6.22)
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In state space form, this system can be represented as

) Eliz] )+ (i) 629
y= X.

The eigenvalues of this system are given by

A=—Janxy\/wh({2-1)

and we see that the origin is a stable equilibrium poirtjf> 0 and{ > 0. Note
that the eigenvalues are complex{if< 1 and real otherwise. Equations (6.22)
and (6.23) can be used to describe many second order systeingdjng damped
oscillators, active filters and flexible structures, as showthé examples below.

The form of the solution depends on the valu€ pfvhich is referred to as the
damping factoffor the system. I > 1, we say that the systemaserdampeénd
the natural response & 0) of the system is given by

_ BxiotXe0 ot G%10+ %20 _pi

y(t) - B —a B —a
whereda = wp({ ++/{%2—1) andB = wn({ — /{2 — 1). We see that the response

consists of the sum of two exponentially decaying sign#lé.=+ 1 then the system
is critically dampedand solution becomes

y(t) = & ™ (x10+ (X20+ { woXao)t).-

Note that this is still asymptotically stable as longeas> 0, although the second
term in the solution is increasing with time (but more slovtan the decaying
exponential that is multiplying it).

Finally, if 0 < { < 1, then the solution is oscillatory and equation (6.22) id sa
to beunderdamped The parameteny is referred to as the natural frequency of
the system, stemming from the fact that for snqalthe eigenvalues of the system
are approximatelp = —{ + jap. The natural response of the system is given by

_ o—Cont (42 1 '
y(t)=e <xlocoswdt+ ( o X10+ wdxzo) S|nwdt> ,

wherewy = wp/1— {2 is called thedamped frequencyFor{ < 1, ay ~ ap de-
fines the oscillation frequency of the solution ahdives the damping rate relative
to wy.

Because of the simple form of a second order system, it isillest® solve
for the step and frequency responses in analytical form. ©haisn for the step
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2

Figure 6.8: Step response for a second order system. Normalized step respdns¢he
system (6.23) fo = 0 (dashed), 0.1, 0.2, 0.5, 0.707 (dash dotted), 1, 2, 5 and 1@{lo
As the damping ratio is increased, the rise time of the system gets longéhebatis less
overshoot. The horizontal axis is in scaled umist; higher values oty results in faster
response (rise time and settling time).

response depends on the magnitudé:of

k - et
y(t) = s (1—e { ot coswdt+\/ﬁe Z“’Otsmwdt> (<1
y(t) = Lz (1— e Y1+ ant)) (=1 (624
L e S wo<12z>t>
y(t)_wg<l e 2(1+Z)e {>1,

where we have takex(0) = 0. Note that for the lightly damped casé £ 1) we
have an oscillatory solution at frequenay.

Step responses of systems whth- wg and different values of are shown in
Figure 6.8. The shape of the response is determined agd the speed of the
response is determined by (included in the time axis scaling): the response is
faster ifwy is larger.

In addition to the explicit form of the solution, we can alsorgute the proper-
ties of the step response that were defined in Section 5.3. Bor@g, to compute
the maximum overshoot for an underdamped system, we retdteutput as

W\~ 1-22
where¢ = arccog. The maximum overshoot will occur at the first time in which
the derivative ofy is zero, and hence we look for the timeat which

y(t) = X (1 ;efz“’otsin(aﬁt + ¢)> (6.25)

0 7 < T—DZZe sin(ayt +¢) 1_t Z2e cofwyt+9) |-
(6.26)



192 CHAPTER 6. STATE FEEDBACK

Table 6.1: Properties of the response to reference values of a second ostiemdpr|{| < 1.
The parametep = arccog.

Property Value (=05 ¢=1/v2 (=1
Steady state value k/ @ k/w@ k/w@ k/w@
Rise time T =1/ -e?/@%  18/ay 22/ap 2.7/wp
Overshoot Mp=e™/VI- 160 4% 0%
Settling time (2%) Ts~4/lwy 80/wy  59/ap  5.8/ap

Eliminating the common factors, we are left with

Vi

4

Since¢ = arccog/, it follows that we must havext, = 17 (for the first non-trivial
extremum) and hendg = 71/ wy. Substituting this back into equation (6.25), sub-
tracting off the steady state value and normalizing, we have

Mp = g /v 1-¢2,

Similar computations can be done for the other charactesisfia step response.
Table 6.1 summarizes the calculations.

The frequency response for a second order system can alsoripited ex-
plicitly and is given by

- k k
0 _ = .
(iw)2+20wp(iw)+wg  wf— w?+ 2 wpw
A graphical illustration of the frequency response is giveRigure 6.9. Notice the
resonance peak that increases with decreaginbhe peak is often characterized

by is Q-value defined a®) = 1/2¢. The properties of the frequency response for
a second order system are summarized in Table 6.2.

tan(wtp + ¢) =

Table 6.2: Properties of the frequency response for a second order systerf{jwithl.

Property Value ¢=0.1 (=05 (=1/V2
Zero frequency gain Mg k/w0? k/w@ k/wf
Bandwidth Wy 1.54un 1.27w Wy
Resonantpeak gain M,  154k/wf 1.27k/w¢  k/wf
Resonant frequency  wmr wp 0.707wy 0
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Figure 6.9: Frequency response of a second order system (6.23). The cppershows
the gain ratioM, and the lower curve shows the phase slfiftThe parameters is Bode plot
of the system with{ = 0 (dashed), 0.1, 0.2, 0.5, 0.7 and 1.0 (dashed-dot).

Example 6.6 Drug administration
To illustrate the usage of these formulas, consider thedwopartment model for
drug administration, described in Section 3.6. The dynanfitiseosystem are

de (—ko—ki ki bo
dt_[ ka —kz]c+[0 !

y— [0 1) X,

wherec; andc, are the concentrations of the drug in each compartment=
0,...,2 andb are parameters of the systemjs the flow rate of the drug into
compartment 1 angis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartmment and we
would like to design a feedback law to maintain the output givan reference
valuer.

We choose&/ = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1 this gives a valuedpr= 0.22
We can now compute the gain to place the eigenvalues at thagidm. Setting
u= —Kx-+kr, the closed loop eigenvalues for the system satisfy

A(s) =—0.198+ 0.0959
Choosek; = —0.2027 andky, = 0.2005 gives the desired closed loop behavior.
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwegn d
administration using a sequence of doses versus continuously monttegiogncentrations
and adjusting the dosage continuously. In each case, the concentrai@mpieximately)
maintained at the desired level, but the closed loop system has substansissat@bility

in the drug concentration.

Equation 6.13 gives the reference gkin= 0.0645. The response of the controller
is shown in Figure 6.10 and compared with an “open loop” ssaiavolving
administering periodic doses of the drug. O

Higher Order Systems

Our emphasis so far has only considered second order syskangigher order
systems, eigenvalue assignment is considerably more diffespecially when
trying to account for the many tradeoffs that are presentf@edback design.

One of the other reasons why second order systems play surhpantant
role in feedback systems is that even for more complicatstigys the response is
often characterized by the “dominant eigenvalues”. To defiase more precisely,
consider a system with eigenvalugsi = 1,...,n. We define the damping factor
for a complex eigenvalug to be

—ReA
=
A

We say that a complex conjugate pair of eigenvalugd™ is adominant pairif it
has the lowest damping factor compared with all other eigler@s of the system.
Assuming that a system is stable, the dominant pair of emjaes tends to be
the most important element of the response. To see thismastat we have a
system in Jordan form with a simple Jordan block correspunth the dominant
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pair of eigenvalues:

i b z+Bu

N
y=Cz

(Note that the state may be complex due to the Jordan transformation.) The re-
sponse of the system will be a linear combination of the nesee from each of
the individual Jordan subsystems. As we see from Figure 6t& & 1 the sub-
system with the slowest response is precisely the one wéfsithallest damping
factor. Hence when we add the responses from each of thedodisubsystems,
it is the dominant pair of eigenvalues that will be the priynctor after the initial
transients due to the other terms in the solution die out. I&\this simple anal-
ysis does not always hold (for example, if some non-domitenmis have larger
coefficients due to the particular form of the system), it i®fthe case that the
dominant eigenvalues determine the (step) response of$ens.

One way to visualize the effect of the closed loop eigenwabrethe dynamics
is to use the eigenvalue plot in Figure 6.11. This chart shopesentative step
and frequency responses as a function of the location of ittenealues. The
diagonal lines in the left half plane represent the dampatip £ = /2 ~ 0.707,
a common value for many designs.

The only formal requirement for eigenvalue placement is thatsystem is
reachable. In practice there are many other constraintsulsecthe selection of
eigenvalues has strong effect on the magnitude and rateaoigehof the control
signal. Large eigenvalues will in general require large argignals as well as
fast changes of the signals. The capability of the actuatdrsherefore impose
constraints on the possible location of closed loop eigega These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance syssesn example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whgeamics were given
in Example 6.2. The dynamics are given by

0 0 1 0 0
0 0 0 1 0
A= 1o ml2g —c} —yim B= J ,
Mk—m212 Mek—m2l2 Mg —m?Pl2 Mg —m212
0 Mmgl —clm —ydt Im_
Md—m2 M-mR2 Mg —mRl2 M Jy—mPl2

whereMy = M +m, J = J+ ml? and we have lefc and y non-zero. We use
the following parameters for the system (correspondinginbuto a human being
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Figure 6.11: Representative step and frequency responses for second ystms, follow-

ing Franklin, Powell and Emami-Naeini [80]. Step responses are rsliothe upper half

of the plot, with the location of the origin of the step response indicating the wdltie
eigenvalues. Frequency responses are shown in the lower half dbth&lpe diagonal lines
represent constant damping rafio= 1/v/2, where the response has very little overshoot
and almost no resonant peak.

balanced on a stabilizing cart):
M = 10kg m= 80 kg c=0.1Ns/m

=9.8m/¢
J =100 kg nf/s? l=1m y=0.01Nms g

The eigenvalues of the open loop dynamics are giveh y0,4.7, —1.9+2.7.
We have verified already in Example 6.2 that the system is rééelaad hence
we can use state feedback to stabilize the system and pravigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethate¢he closed
loop dynamics will roughly consist of two components: a defast dynamics
that stabilize the pendulum in the inverted position andta&slower dynamics
that will control the position of the cart. For the fast dynesn we look to the
natural period of the pendulum (in the hanging down posjtievhich is given
by wp = /mgl/(J+ml2) ~ 2.1 rad/s. To provide a fast response we choose a
damping ratio off = 0.5 and try to place the first pair of polest, ~ —{wp +
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Figure 6.12: State feedback control of a balance system. The step responserufalleo
designed to give fast performance is shown in (a). Although the nsgpoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. s laggressive
controller is shown in (b). Here the response time is slowed down, but piog fmagnitude
is much more reasonable. Both step responses are applied to the lidesizanics.

wp ~ —1=+2i, where we have used the approximation tbéii— {2~ 1. For the
slow dynamics, we choose the damping ratio to ¥t provide small overshoot
and choose the natural frequency to bg @ give a rise time of approximately 5
seconds. This gives eigenvalues, = —0.35+ 0.35.

The controller consists of a feedback on the state and a ferealfd gain for
the reference input. The feedback gain is given by

K — [—18.8 4500 597 —876) ,

which can be computed using Theorem 6.3 or using the MATIpABce com-
mand. The feedforward gain lg = —1/(C(A—BK)1B) = —155. The step
response for the resulting controller (applied to the liizeal system) is given in
Figure 6.12a. While the step response gives the desiredathestics, the input
required (bottom left) is excessively large, almost thieees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiatlen to have
slower dynamics. We see that the peak of the input force scauthe fast time
scale and hence we choose to slow this down by a factor ofdAng&he damping
ratio unchanged. We also slow down second set of eigenvyaltsthe intuition
that we should move the position of the cart more slowly tharstabilize the pen-
dulum dynamics. Leaving the damping ratio for the slow dyraninchanged at
0.7 and changing the frequency to 1 (corresponding to a risediifapproximately
10 seconds), the desired eigenvalues become

A ={-0.334+0.66i, —0.175+0.18i}
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The performance of the resulting controller is shown in Figudeb. O

As we see from this example, it can be difficult to reason abdwgre/to place
the eigenvalues using state feedback. This is one of theipledonitations of this
approach, especially for systems of higher dimension.rfxgtcontrol techniques,
such as the linear quadratic regular problem discussed a@xbne approach that
is available. One can also focus on the frequency respomsegeforming the
design, which is the subject of Chapters 8-12.

Linear Quadratic Regulators

In addition to selecting the closed loop eigenvalue locestito accomplish a certain
objective, another way that the gains for a state feedbackater can be chosen
is by attempting to optimize a cost function. This can be paldirly useful in
helping balance the performance of the system with the madgmiof the inputs
required to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problemmone of the
most common optimal control problems. Given a multi-inpogeér system

X = Ax+ Bu xe R"ueRP,

we attempt to minimize the quadratic cost function
J= / (X" Qux+u"Quu) dt
0

whereQy > 0 andQy > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimension. This cost function representadeoff between the
distance of the state from the origin and the cost of the obimput. By choosing
the matriceQ, andQ, we can balance the rate of convergence of the solutions
with the cost of the control.

The solution to the LQR problem is given by a linear control ldwhe form

u=—Q,B"Px
whereP € R™" is a positive definite, symmetric matrix that satisfies the &gna
PA+ATP—PBQ;'B"P+Q,=0. (6.27)

Equation (6.27) is called thedgebraic Riccati equatioand can be solved numer-
ically (for example, using theqr command in MATLAB).

One of the key questions in LQR design is how to choose the wse@hand
Qu- To guarantee that a solution exists, we must h@ye> 0 andQ, > 0. In
addition, there are certain “observability” conditions Qp that limit its choice.
We assume her@, > 0 to ensure that solutions to the algebraic Riccati equation
always exist.

To choose specific values for the cost function weightsndQ,, we must use
our knowledge of the system we are trying to control. A pattidy simple choice
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is to use diagonal weights
01 0 ri 0

Q= Qu=p -
0 an 0 M

For this choice o)y andQ,, the individual diagonal elements describe how much
each state and input (squared) should contribute to thelbeest. Hence, we can
take states that should remain small and attach higher weddjies to them. Sim-
ilarly, we can penalize an input versus the states and otipeits through choice
of the corresponding input weigpt

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), writtestate space form as

r X4 0
X5 0
dx X6 0
dt | —gsin@—cxq | T | &cosb f1— Esinf f,
—gcosd —cy 1sin6 f1+ X cos f
\ 0 r/J f

The equilibrium point for the system is given liy= 0, f, = mgandxe = (&, e, 0,0,0,0).
To derive the linearized model near an equilibrium pointcempute the lineariza-
tion according to equation (5.33):

(0 O 0 1 0 0 0 0
00 0 0 1 0 0 0
A 00 0 0 0 1 B_ 0 0
~l0 0 -g -¢m 0 O 1/m O
00 0 0 —-c¢/moO 0 1/m
(0 0 —mgl/J O 0 O (. r/J 0
1 000000
C=lo100 0 o] D=0
Letting z= X — Xe andv = u— Ug, the linearized system is given by
z=Az+Bv
y=Cx

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the systemgwhie cost function
as

J= /m(zTszJr pVQuv)dt
0

wherez = X — Xe andv = u— U represent the local coordinates around the desired
equilibrium point(xe, Ue). We begin with diagonal matrices for the state and input
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Figure 6.13: Step response for vectored thrust aircraft. The plot on the left stiewsand

y positions of the aircraft when it is commanded to move 1 m in each diredtidhe right

figure thex motion is shown for several different control weiglptsA higher weight of the
input term in the cost function causes a more sluggish response.
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This gives a control law of the form= —Kz, which can then be used to derive the
control law in terms of the original variables:

U=V+U = —K(X—Xg) + Ue.

As computed in Example 5.4, the equilibrium points haye- (0,mg) andxe =
(&e,Ne,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 6.13a. The response can be tunedjbgted the
weights in the LQR cost. Figure 6.13b shows the response ié thieections for
different choices of the weigig. O

Linear quadratic regulators can also be designed for destiree systems, as il-
lustrated by the following example.

Example 6.9 Web server control

Consider the web server example given in Section 3.4, wheseeete time model
for the system was given. We wish to design a control law thtd the server
parameters so that average processor load of the serveiriamad at a desired
level. Since other processes may be running on the servewdheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6.1¥e focus

on the special case where we wish to control only the procdsad using both
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Figure 6.14: Feedback control of a web server. The controller sets the values ofehe
server parameters based on the difference between the nominalgters (determined by
krr) and the current loagepy. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdister so that we
measure the total load on the server.

theKeepAl i ve andMaxC i ent s parameters. We also include a “disturbance”
on the measured load that represents the usage of the pracegsles by other
processes running on the server. The system has the samestpasiare as the
generic control system in Figure 6.5, with the variation thatdisturbance enters
after the process dynamics.

The dynamics of the system are given by a set of differencetiemsaof the
form

X[k+ 1] = AXK] + BulK], YepulK] = CepuX[K] + depulK],

wherex = (Xepu, Xmem), U = (Uka, Umc), cpu is the processing load from other pro-
cesses on the computer aygy is the total processor load.
We choose our controller to be a state feedback controllgreoform

u=—-K [ Yepu ] +keTepu,
Xmem

wherercpy is the desired processor load. Note that we have used theuradas
processor loagkp, instead of the state to ensure that we adjust the systemtmpera
based on the measured load. (This modification is necessaayseof the non-
standard way in which the disturbance enters the processigs.)

The feedback gain matrix can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, @agh function given by

(5 0 ~ (1/5¢? 0
QX_[O 1]’ QU_[ 0 1/1000?]'

The cost function for the stat®y is chosen so that we place more emphasis on
the processor load versus the memory usage. The cost fufictitime inputsQ

is chosen so as to normalize the two inputs, witkesepAl i ve timeout of 50
seconds having the same weight dgbx Cl i ent s value of 1000. These values
are squared since the cost associated with the inputs is bive” Q,u. Using the
dynamics in Section 3.4, the resulting gains become

«_ (—223 101
~ 3827 777}



202 CHAPTER 6. STATE FEEDBACK

0.9 1500
—O&—Ccpu —*— mem
g 08 1 o 30 Q ] @
g 2 1000 £
o7 3 20 £
. O o
2 3 %
© 0.6, X 10 o) 1500 &
—o—ka(l) —<—mc(r)
0.5
20 40 60 8 G 46 68
time time
(a) System state (b) System inputs

Figure 6.15: Web server with LQR control. The plot on the left shows the state of the
system under a change in external load appliedd=atl0 s. The corresponding web server
parameters (system inputs) are shown on the right. The controller is akléuce the effect

of the disturbance by approximately 40%.

As in the case of a continuous time control system, the retergaink; is
chosen to yield the desired equilibrium point for the systedettingxk + 1] =
x[k] = xe, the steady state equilibrium point and output for a givéeresce input
r is given by

Xe = (A—BK)xe+ Bk, Ye = CXe.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we tekddsired output to
be of the formye = (r,0), then we must solve

[(1)] =C(A—BK—1)"Bk

Solving this equation fok;, we obtain

K — ((C(A—BK—I)*lB))_l [é] = [:9?9.3;3] '

The dynamics of the closed loop system are illustrated in EBigut5. We apply
a change in load ad.p, = 0.3 at timet = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desirad bt 057. Note that
both theKeepAl i ve andMaxCl i ent s parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above thigedesteady state.
(Better results can be obtained using the techniques ofeakiesection.) O

6.4 INTEGRAL ACTION

Controllers based on state feedback achieve the correadysttate response to
reference signals by careful calibration of the gainrHowever, one of the primary
uses of feedback is to allow good performance in the presefinaecertainty, and
hence requiring that we have amactmodel of the process is undesirable. An
alternative to calibration is to make use of integral featthan which the controller
uses an integrator to provide zero steady state error. The ¢@scept of integral
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feedback was already given in Section 1.5 and in Section 3r&;Wwe provide a
more complete description and analysis.

The basic approach in integral feedback is to create a stdtewhe controller
that computes the integral of the error signal, which is theed as a feedback
term. We do this by augmenting the description of the systéimanew state:

d (x] _ (Ax+Bu)] _ (Ax+Bu

dtlz) | y-r J (Cx—r )"
The statez is seen to be the integral of the error between the desirguibuand
the actual outpuy. Note that if we find a compensator that stabilizes the system
then we will necessarily have= 0 in steady state and henge- r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

U= —Kx—kiz+kr,

whereK is the usual state feedback terknjs the integral term an§; is used to
set the nominal input for the desired steady state. The negwdtuilibrium point
for the system is given as

¥e = —(A—BK) 'B(kr —kize)

Note that the value df; is not specified, but rather will automatically settle to the
value that makeg =y —r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeip values ofA,
B andK, as long as the system is stable (which can be done througb@fie
choice ofK andk;).

The final compensator is given by

u=—Kx—kiz+kr

z=y-—r,
where we have now included the dynamics of the integratoaasgb the specifi-
cation of the controller. This type of compensator is knowa dgnamic compen-

satorsince it has its own internal dynamics. The following exanililistrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in SectitraBd considered fur-
ther in Example 5.11. The linearized dynamics of the procemsnar an equilib-
rium pointve, Ue are given by

X = ax— bg6 + bw
Y=V=X+Ve,

wherex =v— Ve, W= U— Ug, Mis the mass of the car arftlis the angle of the road.
The constand depends on the throttle characteristic and is given in Exarmll.
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If we augment the system with an integrator, the processrdigsabecome

X = ax—by6 + bw
Z=Y—Vy =Ve+X—V,

or, in state space form,

a0 e ()0 (0)

Note that when the system is at equilibrium we have #ha0, which implies that
the vehicle speed; = ve + X, should be equal to the desired reference speged,
Our controller will be of the form

Z=Y—V,

U= —Kkpx—kiz+k-v
and the gaing,, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to haaeacteristic
polynomial

A(S) =S +ais+ap.

Setting the disturbancé = 0, the characteristic polynomial of the closed loop
system is given by

det(sl — (A—BK)) = s* + (bk, — &)s+ bk

and hence we set

ar+a ap a
“="p K=p K=y

The resulting controller stabilizes the system and henecgbd=y — v; to zero,
resulting in perfect tracking. Notice that even if we havenzab error in the
values of the parameters defining the system, as long as thedcloop poles are
still stable then the tracking error will approach zero. Tthesexact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choosk = 0 and let the feedback controller do all of the work (Exerci$d.6
Integral feedback can also be used to compensate for comsamrbances.
Figure 6.16 shows the results of a simulation in which the caoenters a hill
with angle8 = 4° att = 8 s. The stability of the system is not affected by this
external disturbance and so we once again see that the edosity converges
to the reference speed. This ability to handle constanthiafices is a general
property of controllers with integral feedback and is exetbin more detail in
Exercise 6.6. O
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Figure 6.16: Velocity and throttle for car with cruise control based on proportionaditdd)

and PI control (full). The PI controller is able to adjust the throttle to corsptnfor the
effect of the hill and maintain the speed at the reference valug-6f25 m/s.

6.5 FURTHER READING

The importance of state models and state feedback was distursthe seminal
paper by Kalman [111], where the state feedback gain wasnaatdy solving

an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (next chapter) are algse th Kalman [113] (see
also [83, 116]). Kalman defines controllability and reachigbas the ability to

reach the origin and an arbitrary state, respectively [118¢ note that in most
textbooks the term “controllability” is used instead of dahability”, but we pre-
fer the latter term because it is more descriptive of the &mnental property of
being able to reach arbitrary states. Most undergradugitieaeks on control will

contain material on state space systems, including, fanpie Franklin, Powell
and Emami-Naeini [80] and Ogata [158]. Friedland’s textb&®{ fovers the ma-
terial in the previous, current and next chapter in consiblerdetail, including the
topic of optimal control.

EXERCISES

6.1 Extend the argument in Section 6.1 to show that if a system @hedde from
an initial state of zero, it is reachable from a nonzeroahgtate.

6.2 Consider the system shown in Figure 6.3. Write the dynamigheftwo

systems as

dx dz
— = Ax+Bu — = Az+ Bu.
gt OB g = At

Observe that ik andz have the same initial condition, they will always have the
same state, regardless of the input that is applied. Showthisaviolates the
definition of reachability and further show that the reacligbinatrix W; is not
full rank.

6.3 Show that the characteristic polynomial for a system in raebhcanonical
form is given by equation (6.7) and that

n—1 n—k
Zx dz _d™fu
g1 +~-—|—an_1—dt +anz = TS

d"z,
a
g + a1
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6.4 Consider a system in reachable canonical form. Show thanhtteege of the
reachability matrix is given by

1 a a - an
~ 0 1 a -+ a1
=, (6.28)
0O 0 0 - 1

6.5 Build a simulation for the speed controller designed in Exkengal0 and show
that withk, = 0, the system still achieves zero steady state error.

6.6 Show that integral feedback can be used to compensate forstacomlistur-
bance by giving zero steady state error even whenO.

6.7 (Rear steered bicycle) A simple model for a bicycle was gikgn(3.5) in
Section 3.2. A model for a bicycle with rear-wheel steeringbitained simply by
reversing the sign of the velocity in the model. Determine ¢onditions under
which this systems is reachable and explain any situatiomghich the system is
not reachable.

6.8 Equation (6.13) gives the gain required to maintain a givéreace value for
a system with no direct term. Compute the reference gaireicéise wher® # 0.

6.9 (An unreachable system) Consider the system
dx (0 1 Xt 1 u
d~ |0 O 0
y= (l 0) X

with the control law
U= —kix1 —koxo +kir.

Show that eigenvalues of the system cannot be assigned taayhbialues.

6.10 Show that ify(t) is the output of a linear system corresponding to ingti,
then the output corresponding to an inut) is given byy(t). (Hint: use the
definition of the derivativey(t) = lim_o(y(t+ &) — y(t)) /€.)

6.11 Prove the Cayley-Hamilton theorem



