Chapter Ten
PID Control

Based on a survey of over eleven thousand controllers in the refirfiegjicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

Desborough Honeywell, 2000 [58].

This chapter treats the basic properties of proportionaigiral-derivative (P1D)
control and the methods for choosing the parameters of thiailers. We also
analyze the effects of actuator saturation and time dedayjrhportant features of
many feedback systems, and methods for compensating fee tfeects. Finally,
we will discuss the implementation of PID controllers as aamegle of how to
implement feedback control systems using analog or digdaiputation.

10.1 BASIC CONTROL FUNCTIONS

PID control, which was introduced already in Section 1.5 ansllbeen used in
several examples, is by far the most common way of using feedin engineer-
ing systems. It appears in simple devices and in large f@stavith thousands
of controllers. PID controllers appear in many differentnfist as a standalone
controller, as part of hierarchical, distributed contrgdtems or built into embed-
ded components. Most PID controllers do not use derivatitieraso they should
strictly speaking be called PI controllers; we will howeveeWPID as a generic
term for this class of controller. There is also growing enickethat PID control
appears in biological systems [201].

Block diagrams of closed loop systems with PID controlleessdrown in Fig-
ure 10.1. The control signal for the system in Figure 10.1a is formed entirely
from the errore; there is no feedforward term (which would correspond;toin
the state feedback case). A common alternative in whichgstimmal and deriva-
tive action do not act on the reference is shown in Figure lébigbinations of
the schemes will be discussed in Section 10.5. The commanal siggcalled the
reference value in regulation problems, or sa¢pointin literature of PID control.
The input-output relation for an ideal PID controller witharfeedback is

t 1t de
U=kpe+ ki/o e(r)dr +ky fracdedt=ky(e-+ ﬁ/o (AT + Ty ). (10.0)
The control action is thus the sum of three terms: proportiteedback, the in-
tegral term, and derivative action. For this reason PID cdlers were originally
calledthree term controllers The controller parameters are the proportional gain
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Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con
troller have one output the control signal The controller in (a), which is based on error
feedback, has one input, the control eret r —y. For this controller proportional, integral
and derivative action acts on the erm& r —y. The two-degree-of-freedom controller in
(b), has two inputs, the referencand the process outpwut Integral action acts on the error,
but proportional and derivative action acts on the process oytput

kp, the integral gairk; and the derivative gaiky. The time constant$; and Ty,
called integral time (constant) and derivative time (cangt are sometimes used
instead of the integral and derivative gains.

The controller (10.1) represents an idealized controlleis & useful abstrac-
tion for understanding the PID controller, but several modifans must be made
in order to obtain a controller that is practically usefulef@re discussing these
practical issues we we will develop some intuition about PdDtool.

We start by considering pure proportional feedback. Fig@2d shows the
responses of the process output to a unit step in the refererioe for a system
with pure proportional control at different gain settingsl of the systems have
error feedback. In the absence of a feedforward term, theubaever reaches the
reference and hence we are left with nonzero steady state ketting the process
and the controller have transfer functids) andC(s), the transfer function from
reference to output is

PC

T 14+PC
and thus the steady state error for a unit step is

1
~ 11 kyP(0)’

For the system in Figure 10.2a with gaigs= 1, 2 and 5, the steady state error is
0.5, 0.33 and 0.17. The error decreases with increasing lgaiirthe system also
becomes more oscillatory. Notice in the figure that the inii&due of the control
signal equals the controller gain.

To avoid having a steady state error, the proportional texmbe changed to

u(t) = kpe(t) + ug, (10.3)

Gyr (10.2)

1-Gy(0)
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Figure 10.2: Responses to step changes in the reference value for system withoet jorogd
controller (a), PI controller (b) and PID controller (c). The process the transfer function
P(s) = 1/(s+1)3, the proportional controller (left) had parametkgs= 1, 2 and 5, the PI
controller has parameteks = 1,k =0, 0.2, 0.5 and 1, and the PID controller has parameters
arekp = 2.5,k = 1.5 andky =0, 1, 2 and 4.

whereug is a feedforward term that is adjusted to give the desireddstetate
value. If we choosexs = r/P(0) = k-, then the output will be exactly equal to
the reference value, as it was in the state space case, edothidt there are no
disturbances. However, this requires exact knowledge @fptiocess dynamics,
which is usually not available. The paramatgr calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Sections 6.4, integral action guarantees thatrtheess output
agrees with the reference in steady state and provides ematit/e to the feed-
forward term. Since this result is so important we will pravid general proof.
Consider the controller given by equation (10.1). Assunag ttiere exist a steady
state withu = up ande = g. It then follows from equation (10.1) that

Uo = Kpeo + kieot,

which is a contradiction unless or k; are zero. We can thus conclude that with
integral action the error will be zero if it reaches a steddyes Notice that we have
not made any assumptions about linearity of the processeadiiturbances. We
have, however assumed that an equilibrium exists. Usiegiat action to achieve
zero steady state error is much better than using feedfdywarich requires pre-
cise knowledge of process parameters.

The effect of integral action can also be understood fromueegy domain
analysis. The transfer function of the PID controller is

q9:m+%+ms (10.4)
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Figure 10.3: Implementation of Pl and PD controllers. The block diagram on the leftsho
how integral action is implemented usipgsitive feedbaclith a first order system, some-
times called automatic reset. The block diagram on the right shows hovatiegi action
can be implemented by taking differences between a static system artcbadfimssystem.

The controller has infinite gain at zero frequen€yf@) = «) and it then follows
from equation (10.2) thaBy,(0) = 1, which implies that there is no steady state
error for a step input.

Integral action can also be viewed as a method for genertiegeedforward
termug in the proportional controller (10.3) automatically. Onayato do this
is shown in Figure 10.3a, where the controller output is l@sspfiltered and fed
back with positive gain. This implementation, calladtomatic resetwas one
of the early inventions of integral control. The transferdtion of the system in
Figure 10.3a is obtained by block diagram algebra; we have

1+sT

Kp
Gue = kpsi_IT =kp+ ST
which is the transfer function for a PI controller.

The properties of integral action are illustrated in Figure2hGor a step input.
The proportional gain is constark, = 1, and the integral gains ake= 0, 0.2,
0.5and 1. The cade = 0 corresponds to pure proportional control, with a steady
state error of 50%. The steady state error is eliminated witegral gain action is
used. The response creeps slowly towards the reference &nsatues ofk; and
goes faster for larger integral gains, but the system alsorhes more oscillatory.

Integral gaink; is a useful measure for attenuation of load disturbances- Co
sider a closed loop system under PID control and assume #haygtem is stable
and initially at rest with all signals being zero. Apply a usiep disturbance at
the process input. After a transient the process output goesro and the con-
troller output settles at a value that compensates for theidiance. It follows
from (10.1) that

u(e) — k /0 " e(t)dt.

The integrated error is thus inversely proportional to ireégaink;. The integral
gain is thus a measure of the effectiveness of disturbabteelattion. A large gain
k; attenuates disturbances effectively but too large a gaesgiscillatory behavior,
poor robustness and possibly instability.

We now return to the general PID controller and consider thecebf the
derivative termky. Recall that the original motivation for derivative feedhavas
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to provide predictive action. Notice that the combinatidrihe proportional and
the derivative terms can be written as
de de
u=kpe+ kda = kp(e+Tda) = kp€p,

whereep(t) can be interpreted as a prediction of the error at tirrdy by linear
extrapolation. The prediction tim& = kq/kp is the derivative time constant of
the controller.

Derivative action can be implemented by taking the diffeeebetween the
signal and its low-pass filtered version as shown in FiguredlO:Bhe transfer
function for the system is

Gue(s) = kp(1

1 K STy

1+sTd) T P14sTy
The system thus has the transfer funct®fs) = sTy/(1+ sTy), which approxi-
mates a derivative for low frequencias| (< Ty).

Figure 10.2c illustrates the effect of derivative actiore flystem is oscillatory
when no derivative action is used and it becomes more dangerwative gain is
increased. Performance deteriorates if derivative gaimdasigh. When the input
is a step the controller output generated by the derivagiva will be an impulse.
This is clearly visible in Figure 10.2c. The impulse can be agdidy using the
controller configuration shown in Figure 10.1b.

Although PID control was developed in the context of engimegapplications,
it also appears in nature. Disturbance attenuation by fegdim biological sys-
tems is often called adaptation. A typical example is thealfzup reflex discussed
in Example 8.11 where it is said that the eye adapts to changjhgintensity.
Analogously, feedback with integral action is called petrf@daptation [201]. In
biological systems proportional, integral and derivatiggon is generated by com-
bining subsystems with dynamical behavior similar to wkatane in engineering
systems. For example, Pl action can be generated by the ahteraf several
hormones [69].

(10.5)

Example 10.1 PD action in theretina

The response of cone photo receptors in the retina is an eganipre propor-
tional and derivative action is generated by a combinatiocooes and horizon-
tal cells. The cones are the primary receptors stimulatedghy, Ithe cones in
turn stimulate the horizontal cells and the horizontalscgilve inhibitory (nega-
tive) feedback to the cones. A schematic diagram of the syseshown in Fig-
ure 10.4a. The system can be modeled by ordinary differestjiztions by repre-
senting neuron signals by continuous variables represgtite average pulse rate.
In [199] it is shown that the system can be represented byitteeehtial equations

dy 1 dx 1

E—i(—xl—kXZﬂLU), E:T*h(xl—XZ),

whereu is the light intensity anc; andx, are the average pulse rates from the
cones and the horizontal cells. A block diagram of the sysgeshown in Fig-
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Figure 10.4: Schematic diagram of cone photo receptors (C) and horizontal celia (H¢
retina. Excitatory feedback is indicated by arrows and inhibitory feddbgcircles in the
schematic diagram in (a). A block diagram is shown in (b) and the stepmsspn (c).

ure 10.4b. The step response of the system shown in Figure 4iotes that the
system has a large initial response followed by a lower emsteady state re-
sponse typical of proportional and derivative action. Theapeeters used in the
simulation ar&k = 4, T. = 0.025 andT; = 0.08. O

10.2 SIMPLE CONTROLLERS FOR COMPLEX SYSTEMS

Many of the design methods discussed in previous chapteses the property
that the complexity of the controller is directly reflectedthg complexity of the
model. When designing controllers by output feedback inpgidras we found for
single-input single-output systems that the order of therotler was the same as
the order of the model, possibly one order higher if integclon was required.
Applying similar design methods for PID control will requitieat we have have
low order models of the processes to be able to easily andigzeesults.

Low order models can be obtained from first principles. Any lstaystem
can be modeled by a static system if its inputs are sufficiesiw. Similarly
a first order model is sufficient if storage of mass, momentumnergy can be
captured by only one variable; typical examples are thecitylof a car on a road,
angular velocity of a stiff rotational systems, level in @akaand concentration
in a volume with good mixing. System dynamics are of secone@roifdstorage
of mass, energy and momentum can be captured by two statbhegriypical
examples are position of a car on the road, stabilizationitbkatellites, levels in
two connected tanks and two compartment models. A wide raftgehniques for
model reduction also available. In this chapter we will feam design techniques
were we simplify the models to capture the essential pragsetthat are needed for
PID design.

We begin by analyzing the case of integral control. A staip$esn can be con-
trolled by an integrating controller provided that the regoments on the closed
loop system are modest. To design the controller we assumhthiitransfer func-
tion of the process is a constdtit= P(0). The loop transfer function under integral
control then becomekk; /s and the closed loop characteristic polynomial is sim-
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ply s+ Kk;. Specifying performance by the desired time constgnf the closed
loop system we find that the integral gain is given by

ki = 1/(TeiP(0)).

The analysis requires th&} is large enough that the process transfer function can
be approximated by a constant.

For systems that are not well-represented by a constant gaather way to
find a suitable value of integral gain is to make a Taylor segiggansion of the
loop transfer function
_kiP(s) _ ki(P(0)+sP(0))

s~ S = kP’ (0)

L(s)

ChoosingkiP’(0) = —0.5 gives a system with good robustness as will be discussed
in Section??. The controller gain is then given by
1

ki = -0 (10.6)

L kP(O)
S

and the expected closed loop time constaftjisz —2P'(0)/P(0). This approach
is useful when the process has a pole at the origin, as @liestrin the following
example.

Example 10.2 Integrating control of AFM in tapping mode

A simplified model of the dynamics of the vertical motion of aoraic force
microscope in tapping mode was discussed in Exercise 9.5.rahsfér function
for the system dynamics is

_a(l-e )
P(s) = sT(s+a)

I

wherea = { wp, andt = 2rm/wyp and the gain has been normalized to 1. We have
P(0) =1 andP'(0) = —1/2—1/a, and it follows from (10.6) that the integral gain
is ki =a/(2+ar). A Nyquist plot and Bode plot for the resulting loop transfer
function are shown in Figure 10.5. O

A first order system has the transfer function

P(S) L

~sta
With a PI controller the closed loop system has the charatiegolynomial

S(s+ ) + bkps+ bks = §? + (a+ bky)s+ bk.

The closed loop poles can thus be assigned arbitrary valugsdper choice of
the controller gains. Requiring that the closed loop systesithe characteristic
polynomial

s +ajs+ a3,
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is design
based on the slope of the process transfer function at 0. The congielsrgood robustness
properties based on a very simple analysis.

we find that the controller parameters are
a—a

ko = 1b :

If we require a response of the closed loop system that isesltivan that of the

open loop system, a reasonable choicajiss a+ a anda, = aa. If a response

that is faster that the open loop system is required, it isoeable to choos® =

2{pup anday = wg wherewy and{p are undamped natural frequency and relative

damping of the dominant mode. These choices have significgradiron the

robustness of the system and will be discussed in Section ¥hdupper limit

to ay is given by the validity of the model. Large values®d will require fast

control actions and actuators may saturate if the valueddaime. A first order

model is unlikely to represent the true dynamics for higlgfiencies. We illustrate

the design by an example.

_ &
k=" (10.7)

Example 10.3 Cruise control using Pl feedback

Consider the problem of maintaining the speed of a car ases gp a hill. In
Example 5.14 we found that there was little difference betwike linear and non-
linear models when investigating Pl control provided thatttirottle did not reach
the saturation limits. A simple linear model of a car was giireExample 5.11:

d(v—Ve)
dt

wherev is the velocity of the can is the input from the engine arilis the slope
of the hill. The parameters weee= 0.0101,b = 1.3203,g = 9.8, v = 20, and
Ue = 0.1616. This model will be used to find suitable parameters of aclesh
speed controller. The transfer function from throttle tooedly is thus a first order
system. Since the open loop dynamics is so slow it is naturgpéeify a faster
closed loop system by requiring that the closed loop syssevfisecond order with
relative damping and undamped natural frequeney. The controller gains are
given by (10.7).

= —a(v—Ve) +b(u—ue) — g0, (10.8)
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Figure 10.6: Cruise control using Pl feedback. The step responses for theardoinput
illustrate the effect of parameteds = 1 anday on the response of a car with cruise control.
A change in road slope fronf@o 4° is applied betweeh=5 and 6 s. The plot on the left
shows the response fay = 0.5 and{p = 0.5, 1 and 2. Choosingy = 1 gives no overshoot.
The plot on the right shows the responsedge= 1 anday = 0.2, 0.5 and 1.0.

Figure 10.6 shows the velocity and the throttle for a car thaiaily moves
on a horizontal road and encounters a hill with slofeattitimet = 6 sec. To
design a PI controller we choogg= 1 to obtain a response without overshoot, as
shown in Figure 10.6a. The choiceaf is a compromise between response speed
and control actions: a large value gives a fast response tequires fast control
action. The trade-off is is illustrated in Figure 10.6b. Theyésmt velocity error
decreases with increasing, but the control signal also changes more rapidly. In
the simple model (10.8) it was assumed that the force resgposthntaneously to
throttle commands. For rapid changes there may be additignamics that have
to be accounted for. There are also physical limitationsec#te of change of the
force, which also restricts the admissible valuewpf A reasonable choice @l is
in the range of 0.5to 1.0. Notice in Figure 10.6 that even wiih= 0.2 the largest
velocity error is only 1 m/s.

0

A PI controller can also be used for a process with second alyieamics,
but there will be restrictions on possible locations of elb$oop poles, as shown
in Exercise 10.2. Using a PID controller it is possible to coh&r system of
second order in such a way that the closed loop poles haveaaydocations, see
Exercise 10.3.

Instead of finding a low order model and designing controlfersthem we
can also use a high order model and only attempt to place adewinént poles.
An integrating controller has one parameter and it is péss$doposition one pole.
Consider a process with the transfer functi®fs). The loop transfer function
with an integrating controller i&(s) = kiP(s)/s. The roots of the closed loop
characeristic polynomial are the rootsof kiP(s) = 0. Requiring thas = —ais
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Figure 10.7: lllustration of Ziegler-Nichols step and frequency response expetsndine
unit step response in (a) is characterized by the paramatansl Tye;. The frequency re-
sponse method characterizes process dynamics by the point of thesNggrve of the
process transfer function first intersects the negative real axis anfdettjuencyw, where
this occurs.

a root, we find that the controller gain should be chosen as

a
P
The poles= —awill be dominant ifais small. A similar approach can be applied
to Pl and PID controllers.

(10.9)

10.3 PID TUNING

Users of control systems are frequently faced with the tdsidsting the con-

troller parameters to obtain a desired behavior. There arey rddferent ways

to do this. One approach is to go through the conventionaissté modeling

and control design as described in the previous section.eShecPID controller

has so few parameters, a number of special empirical metimasalso been de-
veloped for direct adjustment of the controller parametditse first tuning rules

were developed by Ziegler and Nichols [204]. Their idea was &&era simple

experiment, extract some features of process dynamics tlhenexperiment and
determine controller parameters from the features.

Ziegler-Nichols’ Tuning

Ziegler and Nichols developed two methods for controllerirtgnin the 1940s
based on simple characterization of process dynamics itirtteeand frequency
domains.

The time domain method is based on a measurement of part optreloop
unit step response of the process, as shown in Figure 10.7ast@meesponse is
measured by applying a unit step input to the process anddiagathe response.
The response is characterized by parameiesd 1, which are the intercepts of
the steepest tangent of the step response with the coardimas. The parame-
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Table10.1: Ziegler-Nichols tuning rules. (a) The step response methods give thmpgers
in terms of the interce@ and the apparent time delay (b) The frequency response method
gives controller parameters in terms of critical glirand critical periodTc.

Type aky, T/t T4/t Type kp/ke Ti/Te Ta/Te
P 1 P 0.5
Pl 0.9 3 Pl 0.4 0.8
PID 1.2 2 0.5 PID 0.6 0.5 0.125
(a) Step response method (b) Frequency response method

ter T is an approximation of the time delay of the system ayd is the steepest

slope of the step response. Notice that it is not necessavgitaintil steady state

is reached to find the parameters, it suffices to wait until teparese has had an
inflection point. The controller parameters are given in Tdlflel. The parame-

ters were obtained by extensive simulation of a range oesaprtative processes.
A controller was tuned manually for each process and it was tittempted to

correlate the controller parameters wétlandr.

In the frequency domain method a controller is connectetiégprocess, the
integral and derivative gains are set to zero, and the ptigpai gain is increased
until the system starts to oscillate. The critical value @& groportional gairk;
is observed together with the period of oscillatign It follows from Nyquist's
stability criterion that the loop transfer functian= k:P(s) intersects the critical
point for the frequencyy. = 211/T.. The experiment thus gives the point on the
Nyquist curve of the process transfer function where thespHag is 180, as
shown in Figure 10.7b.

The Ziegler-Nichols methods had a huge impact when they wéaadinced in
the 1940s. The rules were simple to use and gave initial dondifor manual
tuning. The ideas were adopted by manufacturers of contsdite routine use.
The Ziegler-Nichols tuning rules have unfortunately two sewdrawbacks: too
little process information is used and the closed loop systthat are obtained
lack robustness.

The step response method can be improved significantly by atieaizang the
unit step response by parametkrst andT in the model

K
P(s) = 1osT

The parameters can be obtained by fitting the model to a meastagdesponse.
Notice that the experiment takes longer time than the ewypmari in Figure 10.7a
because to determinié it is necessary to wait until the steady state has been
reached. Also notice that the intercepin the Ziegler-Nichols rule is given by
a=Krt/T.

The frequency response method can be improved by measurirgy pomts

e s (10.10)
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on the Nyquist curve, for example the zero frequency ¢aior the point where
the process has 9(@hase lag. This latter point can be obtained by connecting an
integrating controller and increasing its gain until theteyn reaches the stability
limit. The experiment can also be automated by using relagifaek, as will be
discussed later in this section.

There are many versions of improved tuning rules. As an ithisin we give
the following rules for PI control from [18]:

ko — 0.17r;rro.28T (Okng)a = % (%f)
(10.11)
kp = 0.16k; (O.4kc), K = 0.16kc_?C 0.72K (O.TSCkC>

The values for the Ziegler-Nichols rule are given in parergbed\otice that the
improved formulas typically give lower controller gainsaththe Ziegler-Nichols
method. The integral gain is higher for systems whose dyraarie delay domi-
nated,r > T.

Example 10.4 PI control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of araic force
microscope in tapping mode was discussed in Example 10.2 rahsfer function
is normalized by choosing/a as the time unit. The normalized transfer function
is
—sTh

sTh(s+1)
whereT, = 2n1a/wp = 2n11. The Nyquist plot of the transfer function is shown
in Figure 10.8a foz = 0.002 andn = 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Re- —0.0461 forw = 13.1. The critical gain
is thusk. = 21.7 the critical period ig. = 0.48. Using Ziegler-Nichols tuning rule
we find the parametets, = 8.87 andk; = 22.6 (T; = 0.384) for a PI controller.
With this controller the stability margin is, = 0.31, which is quite small. The
step response of the controller is shown in Figure 10.8. Matigoarticular that
there is a large overshoot in the control signal.

The modified Ziegler-Nichols rule (10.11) gives the controfiarameter& =
3.47 andk; = 8.73 (T; = 0.459) and the stability margin becomgs= 0.61. The
step response with this controller is shown in Figure 10.8.oMgarison of the
responses obtained with the original Ziegler Nichols rulershthat the overshoot
has been reduced. Notice that the control signal reacheseitsly state value
almost instantaneously. It follows from Example 10.2 thatieepntegrating con-
troller has the normalized gala = 1/(2+ Tn) = 0.44. Comparing this with the
gains of a PI controller we can conclude that a Pl controlleegimuch better
performance than a pure integrating controller. O
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step reg®ns
(b) for PI control of the vertical motion of an atomic force microscop&jping mode. The
averaging parameter is= 20. Results with Ziegler-Nichols tuning are shown in dashed
lines, and modified Ziegler-Nichols tuning is shown in full lines. The Nyqgpist of the
process transfer function is shown in dotted lines.

Relay Feedback

The Ziegler-Nichols frequency response method increasegdimeof a propor-
tional controller until oscillation to determine the cciil gaink; and the corre-
sponding period, or equivalently the point where the Nyquist curve inters¢ioe
negative real axis. One way to obtain this information awttcally is to connect
the process in a feedback loop with a nonlinear element gawirelay function
as shown in Figure 10.9a. For many systems there will then lmseillation, as
shown in Figure 10.9b, where the relay outpus$ a square wave and the process
outputy is close to a sinusoid. Moreover the input and the output arefgpphase,
which means that the system oscillates with the criticalgoEf., where the pro-
cess has a phase lag of 28(Notice that an oscillation with constant period is
established quickly.

The critical period is simply the period of the oscillationo @etermine the
critical gain we expand the square wave relay output in aiEoseries. Notice

' e u NS T T
I =~ G(9) - 05 bbby : ool
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Figure 10.9: Block diagram of a process with relay feedback (left) and typical signals
(right). The process output is solid and the relay output is dashed. Notice that the

signalsu andy have opposite phase.
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in the figure that the process output is practically sinuddidaause the process
attenuates higher harmonics effectively. It is then sufficte consider only the
first harmonic component of the input. Lettidgoe the relay amplitude, the first
harmonic of the square wave input has amplitudé¢ If a is the amplitude
of the process output, the process gain at the critical &rouow. = 211/T; is
IP(iax)| = 75 and the critical gain is

4d
Cam
Having obtained the critical gaif; and the critical period, the controller param-
eters can then be determined using the Ziegler-Nichols.rigsroved tuning can
be obtained by fitting a model to the data obtained from the/retperiment.

The relay experiment can be automated. Since the amplitudie afscillation
is proportional to the relay output, it is easy to control yt ddjusting the relay
output. Automatic tuning based on relay feedback is usedimpmeommercial PID
controllers. Tuning is accomplished simply by pushing adsuthat activates relay
feedback. The relay amplitude is automatically adjustedepkthe oscillations
sufficiently small and the relay feedback is switched to a PIBtr@dler as soon as
the tuning is finished.

Ke (10.12)

10.4 INTEGRATOR WINDUP

Many aspects of a control system can be understood fromrlmedels. There
are, however, some nonlinear phenomena that must be talceadoount. These
are typically limitations in the actuators: a motor has tedispeed, a valve cannot
be more than fully opened or fully closed, etc. For a systeat tiperates over
a wide range of conditions, it may happen that the contralabée reaches the
actuator limits. When this happens the feedback loop isdir@nd the system
runs in open loop because the actuator will remain at itg imiependently of the
process output as long as the actuator remains saturatetégeal term will also
build up since the error is typically nonzero. The integraitend the controller
output may then become very large. The control signal wilhttemain saturated
even when the error changes and it may take a long time bdfer@ntegrator
and the controller output come inside the saturation rarigee consequence is
that there are large transients. This situation is refemeaktintegrator windup
illustrated in the following example.

Example 10.5 Cruise control

The windup effect is illustrated in Figure 10.10, which showsthhappens when
a car encounters a hill that is so stee}) that the throttle saturates when the cruise
controller attempts to maintain speed. When encountehaglope at timé¢ =5

the velocity decreases and the throttle increases to gemamae torque. However,
the torque required is so large that the throttle saturdtes.error decreases slowly
because the torque generated by the engine is just a literlghan the torque
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Figure 10.10: Simulation of PI cruise control with windup (left) and anti-windup (right).
The figure shows the speedand the throttleu for a car that encounters a slope that is so
steep that the throttle saturates. The controller output is dashed. Thellesrgarameters
arekp = 0.5 andk; = 0.1.

required to compensate for the gravity. The error is largeth@ihtegral continues
to build up until the error reaches zero at time 30, but therodier output is still
larger than the saturation limit and the actuator remaimsrated. The integral
term starts to decrease and at time 45 and the velocity sqtiiekly to the desired
value. Notice that it takes considerable time before thdrober output comes
into the range where it does not saturate, resulting in &lavgrshoot. O

There are many ways to avoid windup. One method is illustrateBig-
ure 10.11: the system has an extra feedback path that isageddry measuring
the actual actuator output, or the output of a mathematicalehof the saturating
actuator, and forming an error signal as the difference between the output of
the controllerv and the actuator output The signales is fed to the input of the
integrator through gaik. The signaks is zero when there is no saturation and the
extra feedback loop has no effect on the system. When thatactsaturates, the
signales is fed back to the integrator in such a way teagoes towards zero. This
implies that controller output is kept close to the satoratimit. The controller
output will then change as soon as the error changes sigméggtal windup is
avoided.

The rate at which the controller output is reset is governedhkyfeedback
gain,k;; a large value ok; gives a short reset time. The paramétarannot be too
large because measurement error can then cause an unidassaih. A reasonable
choice is to choosk as a fraction of 1T;. We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control
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Figure 10.11: PID controller with filtered derivative and anti-windup. The input to the
integrator (¥s) consists of the error term plus a “reset” based on input saturation.eIf th
actuator is not saturated then= u— v, otherwisees will decrease the integrator input to
prevent windup.

Figure 10.10b shows what happens when a controller withvaintlup is applied
to the system simulated in Figure 10.10a. Because of the &&dbom the ac-
tuator model, the output of the integrator is quickly reseatvalue such that the
controller output is at the saturation limit. The behaviodriastically different
from that in Figure 10.10a and the large overshoot is avoi@ibd.tracking gain is
ki = 2 in the simulation. O

10.5 IMPLEMENTATION

There are many practical issues that have to be consideradimpéementing PID
controllers. They have been developed over time based otigalaexperiences.
In this section we consider some of the most common. Similasiderations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivathas high gain for high
frequency signals. This means that high frequency measutemese will gener-
ate large variations of the control signal. The effect of measient noise may be
reduced by replacing the terkgs by kys/(1+ sTt), which can be interpreted as
an ideal derivative of a low-pass filtered signal. For sra#tle transfer function is
approximatelykgs and for largesit is equal toky / Ts. The approximation acts as a
derivative for low-frequency signals and as a constant fyaithe high frequency
signals. The filtering time is chosen &s= (ky/k)/N, with N in the range of 2 to
20. Filtering is obtained automatically if the derivativeingplemented by taking
the difference between the signal and its filtered versiomags in Figure 10.3b
(see equation (10.5)). Instead of filtering just the denaatii is also possible to
use an ideal controller and filter the measured signal. Thefgafunction of such
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a controller with a filter is then

1 1
ko (14 = 1 ST . 10.1
c p< +s‘ﬁ+sd> 14T+ (sT)2/2 (10.13)

where a second order filter is used.

Setpoint Weighting

Figure 10.1 on page 304 shows two configurations of a PID coatrdlhe system
in Figure 10.1a shows a controller wighror feedbackvhere proportional, integral
and derivative action acts on the error. In the simulatiodP controllers in
Figure 10.2 there is a large initial peak of the control sigwalich is caused by the
derivative of the reference signal. The peak can be avoidessiog the controller
in Figure 10.1b where proportional and derivative actiors actly on the process
output. An intermediate form is given by

dr dy

u=Kkp(Br—y)+Kk /Om(r(r) —y(1))dT + kg (ya — a), (10.14)

where the proportional and derivative actions act on foast3 andy of the ref-
erence. Integral action has to act on the error to make satetth error goes to
zero in steady state. The closed loop systems obtained fereatit values of3
andy respond to load disturbances and measurement noise inrtfeevgay. The
response to reference signals is different because it dsgamnthe values @8 and
y, which are calledeference weighter setpoint weightsWe illustrate the effect
of setpoint weighting by an example.

Example 10.7 Cruise control

Consider the PI controller for the cruise control systemwvéerin Example 10.3.
Figure 10.12 shows the effect of setpoint weighting on thpaese of the system
to a reference signal. Wit = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to thewration limit. There is no
overshoot with3 = 0 and the control signal is much smaller, clearly a much bette
drive comfort. The frequency responses gives another vigheosdame effect. The
parametef is typically in the range of 0 to 1 anglis normally zero to avoid large
transients in the control signal when the reference is obdng O

The controller given by equation (10.14) is a special caseuwfroller with two
degrees of freedom, which will be discussed in more det&idation 11.2.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different techgiel®. Figure 10.13
shows how Pl and PID controllers can be implemented by feeddacind oper-
ational amplifiers.

To show that the circuit in Figure 10.13b is a PID controller wk uge the the
approximate relation between the input voltagand the output voltage of an
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Figure 10.12: Time and frequency responses for Pl cruise control with setpointhtie@
Step responses are shown in (a) and the gain curves of the freqesponses in (b). The
controller gains ar&, = 0.74 andk; = 0.19. The setpoint weights afe= 0, 0.5 and 1 and

y=0.

operational amplifier derived in Example 8.3,

Z;
u=-—--e
Zy
In this equationZy is the impedance between the negative input of the amplifier
and the input voltage, andZ; is the impedance between the zero input of the
amplifier and the output voltage The impedances are given by

_ R .
= T7RCs A®=Rut

Zo(9) e
and we find the following relation between the input voltagend the output volt-

Co
|_
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(a) PI controller (b) PID controller

Figure 10.13: Schematic diagrams for Pl and PID controllers using op amps. Thet@rcu
the left uses a capacitor in the feedback path to store the integral of tie®ne circuit on
the right ads a filter on the input to provide derivative action.
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ageu:
21, Ri(1+RCos)(1+RCis)

Zo Ro R1Cis )
This is the input-output relation for a PID controller of therfo(10.1) with pa-
rameters

U=

R
k=0 T=RC Ty=RGCo.
Ro
The corresponding results for a Pl controller is obtained byngeCy = 0 (remov-

ing the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may bplemented using
a computer. The computer typically operates periodicaliyh wignals from the
sensors sampled and converted to digital form by the A/D eday, the control
signal computed and then converted to analog form for theasmts. The sequence
of operation is as follows:

1. Wait for clock interrupt 4. Send output to the actuator
2. Read input from sensor 5. Update controller variables
3. Compute control signal 6. Repeat

Notice that an output is sent to the actuators as soon asvhihle. The time
delay is minimized by making the calculations in Step 3 astsdwpossible and
performing all updates after the output is commanded. Thipla way of reduc-
ing the latency is, unfortunately, seldom used in commeésgistems.

As an illustration we consider the PID controller in Figure1llQ.which has
a filtered derivative, setpoint weighting and protectioniagfaintegral windup.
The controller is a continuous time dynamical system. To em@nt it using a
computer, the continuous time system has to be approxinigteddiscrete time
system.

A block diagram of a PID controller with anti-windup is showrRigure 10.11.
The signalv is the sum of the proportional, integral and derivative &rand the
controller output i1 = sa{v) where sat is the saturation function that models the
actuator. The proportional terky(Br —y) is implemented simply by replacing
the continuous variables with their sampled versions. denc

P(tk) = kp (Br(t) —y(t)) » (10.15)

where{tyx} denotes the sampling instants, i.e., the times when the emnpeads
its input. We leth represent the sampling time, so that; = tx + h. The integral
term is obtained by approximating the integral with a sum

(1) = 1)+ kheft) + 7 (5atv) ~). (10.16)
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whereT; = h/k; represents the anti-windup term. The filtered derivative tBris
given by the differential equation

dD

Approximating the derivative with a backward differencees

D(tk) —D(tk-1) Ky y(tk) —y(tk—1)

which can be rewritten as
Tt
D(tx) = Th D(tk—1) — T +h (Y(tx) = Y(tk-1)) - (10.17)

The advantage of using a backward difference is that the paea /(T; +h) is
non-negative and less than one forfalk 0, which guarantees that the difference
equation is stable. Reorganizing equations (10.15)-30the PID controller can
be described by the following pseudo code:

% Precomput e controller coefficients
bi =ki *h

ad=Tf/ ( Tf +h)

bd=kd/ ( Tf +h)

br=h/ Tt

% Control algorithm- nmain |oop
while (running) {

r=adi n(chl) % read setpoint fromchl

y=adi n(ch2) % read process variable fromch2
P=kp* (b*r-vy) % conput e proportional part

D=ad* D- bd* (y-yol d) % updat e derivative part

v=P+| +D % conput e tenporary out put

u=sat (v, ul ow, uhi gh) % si mul ate actuator saturation
daout (ch1l) % set anal og out put chl

I =l +bi *(r-y)+br*(u-v) % updat e i ntegral

yol d=y % updat e ol d process out put

sl eep(h) % wait until next update interval

Precomputation of the coefficiertt$ , ad, bd andbr saves computer time in
the main loop. These calculations have to be done only whetnadlem parameters
are changed. The main loop is executed once every samplifagip@he program
has three statey.ol d, | , andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analaigand setting the
analog output consists of 4 multiplications, 4 additiond amaluation of thes at
function. All computations can be done using fixed point dalttons if necessary.
Notice that the code computes the filtered derivative of thegss output, and that
it has set-point weighting and anti-windup protection.
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10.6 FURTHER READING

The history of PID control is very rich and stretches back to libginning of

the foundation of control theory. A very readable treatmisngiven by Ben-

nett [28, 29] and Mindel [148]. The Ziegler-Nichols rules faning PID con-

trollers, first presented in 1942 [204], were developed basedxtensive exper-
iments with pneumatic simulators and Vannevar Bush’s wifigal analyzer at
MIT. An interview with Nichols gives an interesting view dig¢ development of
the Ziegler-Nichols rules is given in an interview with Ziegjé0]. An industrial

perspective on PID control is given in [34], [176] and [200Han the paper [58]
cited in the beginning of this chapter. A comprehensive gmeion of PID con-
trol is given in [17] and [18]. Interactive learning toolsrfBID control can be
downloaded fronht t p: / / www. cal er ga. con cont ri b.

EXERCISES

10.1 Consider the systems represented by the block diagrams imeF?g. As-
sume that the process has the transfer funcli@s) = b/(s+ a) show that the
transfer functions from to y are

B blkgs? + bkps+ bk
(@GS = 5 bi) 2+ (a+ bka)s+ bk
_ bk
()G (8) = pi @+ (atbky)s £ bk
10.2 Consider a second order process with transfer function
b
P<S) - S+ a;s+ay

The closed loop system with a Pl controller is a third ordereyst Show that
it is possible to position the closed loop poles as long astime of the poles is
—a;. Give equations for the parameters that give the closed dbapacteristic
polynomial

(s+ Qo) ($* + 2{oanS+ ).

10.3 Consider a second order process with transfer function

b
P(s)=5———.
(S) S+as+ap
Find the gains for a PID controller that gives the closed lomtiesy the character-
istic polynomial
(s+ Qo) ($* + 20oanS+ ).

10.4 Consider a system with the transfer functiBfs) = (s+1)~2. Find an
integrating controller that gives a closed loop polesat —a and determine the
value ofa that maximizes integral gain. Determine the other polefhefdystem
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and judge if the pole can be considered to be dominant. Cawidhh the value
of the integral gain given by (10.6).

10.5 Compartment models and many systems encountered in igicheste the
property that their impulse responses are positive or etgritly that their step
responses are monotone. Consider such a system with tiséetréumnctionP(s).
Show that the impulse responisgt) of the normalized systefi(s) /P(0) has the
propertieshy(t) > 0 and fg” ha(t)dt = 1. The functiorhs(t) can be interpreted as a
probability density function - the probability that a paléi entering the system at
time O will exit at timet. Let

Tar :/ tha(t)dt
0

be the average residence time. Show fthat= —P’(0)/P(0) and that the tuning
formula (10.6) can be written &= 1/(T5P(0)).

10.6 Consider a system with the transfer functi®(s) = e °/s. Determine pa-
rameters of P,Pl and PID controllers using Ziegler-Nicholp-stand frequency
response methods. Compare the parameter values obtairtbd Hifferent rules
and discuss the results.

10.7 (Vehicle steering) Design a proportion-integral congplfor the vehicle
steering system that gives closed loop characteristictexua

$* 4 2008 + 2anS+ .

10.8 (Congestion control) A simplified flow model for TCP transmiss®derived
in [134, 101]. The linearized dynamics are modeled by thestearfunction

b -
— €
(s+a1)(s+ap)

which describes the dynamics relating expected queuehertgtexpected packet
drop p. The parameters are given by wherg= 2N?/(cr*?), a, = 1/1* and
b= c?/(2N). The parametet is the bottleneck capacit)y the number sources
feeding the link andr* is the round trip delay time. Use the parameter values
N = 75 sourcesC = 1250 packets/s antd = 0.15 and find parameters of a PI
controller using one of the Ziegler-Nichols rules and theesponding improved
rule. Simulate the responses of the closed loop systemsebtaiith the Pl con-
trollers.

Gyp(s) =



