Chapter Two
System Modeling

. | asked Fermi whether he was not impressed by the agreemewtdye our calculated
numbers and his measured numbers. He replied, “How many arbippargmeters did you
use for your calculations?” | thought for a moment about our cut-offgedures and said,
“Four” He said, “l remember my friend Johnny von Neumann usedap svith four param-
eters | can fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamied ts answer
guestions via analysis and simulation. The model we chogsendks on the ques-
tions we wish to answer, and so there may be multiple models f&ingle dy-
namical system, with different levels of fidelity dependingtbe phenomena of
interest. In this chapter we provide an introduction to thacept of modeling,
and provide some basic material on two specific methods teatanmonly used
in feedback and control systems: differential equatiortsdifierence equations.

2.1 MODELING CONCEPTS

A model is a mathematical representation of a physicalplickl or information
system. Models allow us to reason about a system and mak&twad about
how a system will behave. In this text, we will mainly be irsted in models of
dynamical systems describing the input/output behaviagystems and we will
often work in so-called “state space” form.

Roughly speaking, a dynamical system is one in which thecesffef actions
do not occur immediately. For example, the velocity of a caesdinot change
immediately when the gas pedal is pushed nor does the tetupeia a room
rise instantaneously when a heater is switched on. Similarlyeadache does
not vanish right after an aspirin is taken, requiring timeatice effect. In business
systems, increased funding for a development project dotdagrease revenues in
the short term, although it may do so in the long term (if it wapod investment).
All of these are examples of dynamical systems, in which thlealsior of the
system evolves with time.

In the remainder of this section we provide an overview of safithe key
concepts in modeling. The mathematical details introdueed are explored more
fully in the remainder of the chapter.



30 CHAPTER 2. SYSTEM MODELING

(@]
~—~
Q-
=

ALV VAN

Figure 2.1: Spring-mass system, with nonlinear damping. The position of the mass is de
noted byq, with g = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring conktamdl a damper with force depen-
dent on the velocity.”

The Heritage of Mechanics

The study of dynamics originated in the attempts to desctéoegpary motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plan&isild be well described
by ellipses. Newton embarked on an ambitious program tmtexplain why the
planets move in ellipses and he found that the motion coulexpéained by his
law of gravitation and the formula that force equals mas®siracceleration. In
the process he also invented calculus and differentialtemnsa

One of the triumphs of Newton’s mechanics was the observéliat the mo-
tion of the planets could be predicted based on the curresitiges and velocities
of all planets. It was not necessary to know the past motioe.stdteof a dynam-
ical system is a collection of variables that characterthesmotion of a system
completely for the purpose of predicting future motion. Bosystem of planets
the state is simply the positions and the velocities of tha@is. We call the set of
all possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the &@stsuch differential
equation is that of a spring-mass system, with damping:

mg+c(q) +kg= 0. (2.1)

This system is illustrated in Figure 2.1. The variafjle R represents the position
of the massn with respect to its rest position. We use the notatjda denote the
derivative ofg with respect to time (i.e., the velocity of the mass) grtd represent
the second derivative (acceleration). The spring is asstoneatisfy Hooke's law,
which says that the force is proportional to the displacdmieme friction element
(damper) is taken as a nonlinear functiafq), which can model effects such as
stiction and viscous drag. The positigand velocityg represent the instantaneous
“state” of the system. We say that this system seaond order systesince the
dynamics depend on the second derivative.of

The evolution of the position and velocity can be describadgusither a time
plot or a phase plot, both of which are shown in Figure 2.2. Tine {plot, on the
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statéuaction

of time. The plot on the right shows the evolution of the states relative to @heln, with

the velocity of the state denoted by arrows.

left, shows the values of the individual states as a funaifidime. The phase plot,
on the right, shows theector fieldfor the system, which gives the state velocity
(represented as an arrow) at every point in the state spacaddition, we have
superimposed the traces of some of the states from diffecgmitions. The phase
plot gives a strong intuitive representation of the equmts a vector field or a
flow. While systems of second order (two states) can be repiega this way, it
is unfortunately difficult to visualize equations of higheder using this approach.

The differential equation (2.1) is called amntonomousystem because there
are no external influences. Such a model is natural to use festcal mechanics,
because it is difficult to influence the motion of the planetsmbny examples, it
is useful to model the effects of external disturbances atroied forces on the
system. One way to capture this is to replace equation (%.1) b

m4+c(q) +kg=u (2.2)

whereu represents the effect of external inputs. The model (2.2)llsa aforced
or controlleddifferential equation. The model implies that the rate ofrgfeof
the state can be influenced by the input). Adding the input makes the model
richer and allows new questions to be posed. For exampleawexamine what
influence external disturbances have on the trajectoriesydtam. Or, in the case
when the input variable is something that can be modulateddantrolled way,
we can analyze whether it is possible to “steer” the system fone point in the
state space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the de-
sign of electronic amplifiers led to a focus on input/outpubdagor. A system
was considered as a device that transformed inputs to @ tpatillustrated in
Figure 2.3. Conceptually an input/output model can be vieaga giant table
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthefright its
representation as a block diagram.

of inputs and outputs. Given an input signgl) over some interval of time, the
model should produce the resulting outg(it).

The input/output framework is used in many engineering systsince it al-
lows us to decompose a problem into individual componemtsnected through
their inputs and outputs. Thus, we can take a complicate@mystich as a radio
or a television and break it down into manageable pieced) aadhe receiver,
demodulator, amplifier and speakers. Each of these piecesse®oainputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikss oflinear time-
invariant systems. This term will be defined more carefully later in thiapter,
but roughly speaking a system is linear if the superposifaatdition) of two in-
puts yields an output which is the sum of the outputs that daarrespond to
individual inputs being applied separately. A system istimvariant if the output
response for a given input does not depend on when that ispyiglied.

Many electrical engineering systems can be modeled byrlitieze-invariant
systems and hence a large number of tools have been devatpagrdlyze them.
One such tool is thetep responsewhich describes the relationship between an
input that changes from zero to a constant value abruptlys{@p” input) and
the corresponding output. As we shall see in the latter fattteotext, the step
response is very useful in characterizing the performaf@dynamical system
and it is often used to specify the desired dynamics. A sarsiigle response is
shown in Figure 2.4a.

Another possibility to describe a linear, time-invariagstem is to represent
the system by its response to sinusoidal input signals. Shialled theérequency
responseand a rich, powerful theory with many concepts and strongfulsesults
has emerged. The results are based on the theory of compiaklearand Laplace
transforms. The basic idea behind frequency response isvihaan completely
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Figure 2.4: Input/output response of a linear system. The step response (a3 #i@autput
of the system due to an input that changes from O to 1 at timeb s. The frequency
response (b) shows the amplitude gain and phase change due to é&sihngait at different
frequencies.

characterize the behavior of a system by its steady stapomes to sinusoidal
inputs. Roughly speaking, this is done by decomposing abigrary signal into
a linear combination of sinusoids (e.g., by using the Fouransform) and then
using linearity to compute the output by combining the reseato the individual
frequencies. A sample frequency response is shown in Figdbe 2

The input/output view lends itself naturally to experimémeatermination of
system dynamics, where a system is characterized by recpitdi response to a
particular input, e.g. a step or a sweep across a range afdneies.

The Control View

When control theory emerged as a discipline in the 1940sppeoach to dynam-
ics was strongly influenced by the electrical engineeringuifoutput) view. A
second wave of developments in control, starting in the 18&0s, was inspired
by mechanics, where the state space perspective was useein€ngence of space
flight is a typical example, where precise control of the oobid spacecraft is es-
sential. These two points of view gradually merged into wkabiday the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors, dizéhgtmore general
forms of equations. In control, the model given by equat@) was replaced by

dx

a = f(X7 U), y: h(X,U), (23)
wherex is a vector of state variablesjs a vector of control signals, aryh vector
of measurements. The terdx/dt represents the derivative gfwith respect to
time, now considered as a vector, ahdndh are mappings of their arguments to
vectors of the appropriate dimension. For mechanical systthe state consists of
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the position and velocity of the system, so tkat (q,q) in the case of a damped
spring-mass system. Note that in the control formulationnveglel dynamics as
first order differential equations, but we will see that tras capture the dynamics
of higher order differential equations by appropriate débiniof the state and the
mapsf andh.

Adding inputs and outputs has added to the richness of tissickd problems
and led to many new concepts. For example it is natural tofgsissible states
can be reached with the proper choicaigfeachability) and if the measurement
contains enough information to reconstruct the state fohbdity). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view wag ttmergence of
disturbance and model uncertainty as critical elementharthieory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals can be predicted preciseljnore realistic ap-
proach is to model disturbances as random signals. This vieivgives a natural
connection between prediction and control. The dual viewsdit/output rep-
resentations and state space representations are attiaideful when modeling
uncertainty, since state models are convenient to desamioeninal model but un-
certainties are easier to describe using input/output leddéen via a frequency
response description). Uncertainty will be a constant gnémnoughout the text
and will be studied in particular detail in Chapter 12.

An interesting experience in design of control systemsasfiredback systems
can often be analyzed and designed based on comparativghjesinodels. The
reason for this is the inherent robustness of feedbackragstdowever, other uses
of models may require more complexity and more accuracy.&aeple is feed-
forward control strategies, where one uses a model to prneatmihe inputs that
will cause the system to respond in a certain way. Anothex iari system valida-
tion, where one wishes to verify that the detailed respoih#eeosystem performs
as it was designed. Because of these different uses of madslsommon to use
a hierarchy of models having different complexity and figelit

Multi-Domain Modeling

Modeling is an essential element of many disciplines, baditions and meth-
ods from individual disciplines can be different from eathe, as illustrated by
the previous discussion of mechanical and electrical e®ging. A difficulty in
systems engineering is that it is frequently necessary abwlith heterogeneous
systems from many different domains, including chemidaicteical, mechanical
and information systems.

To model such multi-domain systems, we start by partitigransystem into
smaller subsystems. Each subsystem is represented by éalgunations for mass,
energy and momentum, or by appropriate descriptions ofifleernation process-
ing in the subsystem. The behavior at the interfaces is caghtoy describing how
the variables of the subsystem behave when the subsystenistenrconnected.
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These interfaces act by constraining variables within thé&idual subsystems to
be equal (such as mass, energy or momentum fluxes). The compuded is then
obtained by combining the descriptions of the subsysterdgtaninterfaces.

Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational coneptst The procedure
mimics the engineering approach where systems are built$rdosystems that are
themselves built from smaller components. As experiencgiised, the compo-
nents and their interfaces can be standardized and callectaodel libraries. In
practice, it takes several iterations to obtain a good fibthat can be reused for
many applications.

State models or ordinary differential equations are noabigtfor component
based modeling of this form because states may disappear eameponents are
connected. This implies that the internal description of @mponent may change
when it is connected to other components. As an illustratienconsider two
capacitors in an electrical circuit. Each capacitor has & st@rresponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens Wwith rotating inertias,
each of which are individually modeled using the angle adition and the angular
velocity. Two states will disappear when the inertias amegd by a rigid shaft.

This difficulty can be avoided by replacing differential edoas bydifferential
algebraic equationswhich have the form

F(z,z) =0,
wherez € R". A simple special case is

X= f(X, y) g(X7 y) =0, (24)

wherez = (x,y) andF = (x— f(x,y),9(x,y)). The key property is that the deriva-
tive zis not given explicitly and there may be pure algebraic iefst between the
components of the vectar

The model (2.4) captures the examples of the parallel capa@nd the linked
rotating inertias. For example, when two capacitors areeoted we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used ad#wc description and
object-oriented programming is used to structure the nsodébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermo-fluid and control subsystelodelica is intended
to serve as a standard format so that models arising in @iffefomains can be ex-
changed between tools and users. A large set of free and camahidodelica
component libraries are available and are used by a growimgper of people
in industry, research and academia. For further informmagiboutModelicg see
http://ww. nodel i ca. org.
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2.2 STATE SPACE MODELS

In this section we introduce the two primary forms of modélsttwe use in this
text: differential equations and difference equationsthBoake use of the notions
of state, inputs, outputs and dynamics to describe the ahafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunmmahie past of a
system for the purpose of predicting the future. For a playsgstem the state
is composed of the variables required to account for stoodgeass, momentum
and energy. A key issue in modeling is to decide how accyréiés storage has
to be represented. The state variables are gathered in a,vect®", called the
state vector The control variables are represented by another vectoRP and
the measured signal by the vecyor R9. A system can then be represented by the
differential equation

Zlf[( = f(x,u), y =h(x,u), (2.5)
wheref : R" x RP — R" andh: R" x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called thder of the system. The sys-
tem (2.5) is calledime-invariantbecause the functions andg do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of gtatel controlu, and the
functiong gives the measured values as functions of staed controlu.

A system is called &near state space system if the functiohandg are linear
in x andu. A linear state space system can thus be represented by

dx

pri Ax+ Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tombar and
time-invariant or LTI for short. The matriXA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influeneedhtput directly.
A different form of linear differential equations, generalg the second order
dynamics from mechanics, is an equation of the form
dn dnfl
dT'): A dtn—i/
wheret is the independent (time) variablg}) is the dependent (output) variable,
andu(t) is the input. The notatiod“y/dt* is used to denote theh derivative ofy
with respect td, sometimes also written 8. The system (2.7) is said to be an

+ - +apy =U, (2.7)
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nth order system. This system can be converted into state §pacdy defining

dn- 1y/dtn 1
dn- 2y/dt” 2
dy/dt

and the state space equations become

X1 —aiXy — - —anXp u
X X 0
g 2 B 2 . . .
dt . - . . ) y_ n
Xn-1 Xn-2 0
Xn Xn—1 0

With the appropriate definition o4, B, C andD, this equation is in linear state
space form.
An even more general system is obtained by letting the olpuatlinear com-
bination of the states of the system, i.e.
y = bixg +boxo+ - - + baXy +du

This system can be modeled in state space as

X1 —a; —a2 ... —apn-1 —an 1
X2 1 0 ... 0 0 0
dlx|_| o 1 0 0 |xs|0]y
- 5 5 5 (2.8)
Xn 0 o0 10 0
y= (bl b ... bn]x+du.

This particular form of a linear state space system is catbedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a class of systems that can be modeled usingawyddifferential
equations is the class of “balance systems.” A balance mystea mechanical
system in which the center of mass is balanced above a pivot. pgpome com-
mon examples of balance systems are shown in Figure 2.5. Thea@dgunan
transportation system (Figure 2.5a) uses a motorized ptatfo stabilize a per-
son standing on top of it. When the rider leans forward, thacke propels itself
along the ground, but maintains its upright position. Amotxample is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of theket is used to
stabilize the body of the rocket above it. Other examplesatdirice systems in-
clude humans or other animals standing upright or a perslamt&iag a stick on
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Figure 2.5: Balance systems. (a) Segway human transportation system, (b) Satket
and (c) inverted pendulum on a cart. Each of these examples uses &ritie bottom of the
system to keep it upright.

their hand.
Balance systems are a generalization of the spring-matnsyge saw earlier.
We can write the dynamics for a mechanical system in the géf@m

M(a)d+C(a,q) +K(a) =B(q)u,

whereM(q) is the inertia matrix for the systen@(q,q) represents the Coriolis
forces as well as the dampini§(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into themaycs. The
specific form of the equations can be derived using Newtoniaohanics. Note
that each of the terms depends on the configuration of thersysé@d these terms
are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance system. daefrthis
system, we choose state variables that represent thegooaitid velocity of the
base of the systenp andp, and the angle and angular rate of the structure above
the basef andf. We letF represent the force applied at the base of the system,
assumed to be in the horizontal direction (aligned vpithand choose the position
and angle of the system as outputs. With this set of definititresdynamics of
the system can be computed using Newtonian mechanics arnldenfmsm

(M+m) —mlcosB) (p cp+mising82)  (F )9
—mlcos® (J+mli?) ) (6 vo—mglsing | = (0] (2.9)

whereM is the mass of the bas®,andJ are the mass and moment of inertia of the
system to be balancelis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction, aids the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the
state ax = (p, 0, p, 0), the input asu = F and the output ag = (p,0). If we
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define the total mass and total inertia as
M=M+m  J=J+ml

the equations of motion then become

p
p . 6 _
d e —mlsg82 +mgml?/J)sgcg — cp— yYimcgB +-u
de [ p]| ~ M—m(mR/%)c3 .
0 —ml?sgcg 82 + Miglsg — clcgp— y(M/m)6 + Icgu
\ J(M/m) —m(Icg)?
y: g] b

where we have used the shorthanpd= cosf andsg = sinf.

In many cases, the angwill be very close to 0 and hence we can use the
approximations sifl ~ 6 and co$ ~ 1. Furthermore, if9 is small, we can ig-
nore quadratic and higher termsén Substituting these approximations into our
equations, we see that we are left witlireear state space equation

oy (O 0 1 0 D 0
dle 0 0 0 1 0 0
at || = [0 mPrg/u —ca/p —yaimp| | o | a/m |t
6 0 Mmgl/u —clm/u —yMy/u J \O Im/u
_(r 000,
Y=o 100"
whereu = MyJ — Al 0

Example 2.2 Inverted pendulum

A variation of this example is one in which the location of tiese,p, does not
need to be controlled. This happens, for example, if we arg iotérested in
stabilizing a rocket's upright orientation, without woimyg about the location of
base of the rocket. The dynamics of this simplified system aenddy

d [‘-9] _ [mgl o ] y—0 (2.10)
dt |6) sind— -6+ —cosbu |’ R '
J Joo%
wherey is the coefficient of rotational friction} = J+ ml? andu is the force
applied at the base. This system is referred to asarted pendulum O

Difference Equations

In some circumstances, it is more natural to describe thugen of a system
at discrete instants of time rather than continuously iretintf we refer to each
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of these times by an integ&r=0,1,2, ..., then we can ask how the state of the
system changes for ea&h Just as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in traamer are referred to
asdiscrete time systems

The evolution of a discrete time system can written in the form

X[k+ 1] = f(x[K],ulk]), y[K] = h(x[k],u[k]) (2.11)

wherex[k] € R" is the state of the system at “timk’(an integer)u[k] € RP is the
input andy[k] € R%is the output. As beforef, andh are smooth mappings of the
appropriate dimension. We call equation (2.14jféerence equatiosince it tells
us nowx[k+ 1] differs fromx[k]. The statex[k] can either be a scalar or a vector
valued quantity; in the case of the latter we wjék] for the value of thgth state
at timek.

Just as in the case of differential equations, it will oftentbe case that the
equations are linear in the state and input, in which caseanencite the system
as

x[k+ 1] = Axk] + BulK], y[K] = Cx[k] + DulK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. Theitsm of a linear
difference equation with initial conditiox]0] and inputu[0],...,u[T] is given by

k—1 _
X[k = Afxo + ZOA"‘J‘lBu[ i]
‘:k_l k> 0. (2.12)
y[k] = CA%o+ Z)CAK—J—lsu[ j] -+ DulK]
J:

Difference equations are also useful as an approximatiafifieirential equa-
tions, as we will show later.

Example 2.3 Predator-prey

As an example of a discrete time system, consider a simplehfioda predator-
prey system. The predator-prey problem refers to an ecabgystem in which
we have two species, one of which feeds on the other. This tyggstem has
been studied for decades and is known to exhibit interesitymgmics. Figure 2.6
shows a historical record taken over 50 years in a populaifdgnxes versus
hares [Mac37]. As can been seen from the graph, the annuabiseeof the popu-
lations of each species are oscillatory in nature.

A simple model for this situation can be constructed usinigerdte time model
by keeping track of the rate of births and deaths of each spedtiettingH rep-
resent the population of hares abhdepresent the population of lynxes, we can
describe the state in terms of the populations at discretedseof time. Lettingk
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadaaryl
a snowshoe hare, the lynx’s primary prey. The graph on the righwslioe populations
of hares and lynxes between 1845 and 1935 in a section of the CanautthieR[Mac37,
MS93]. The data were collected on an annual basis over a period ad#8.yPhotograph
courtesy Rudolfo’s Usenet Animal Pictures Gallery.

be the discrete time index (e.qg., the day number), we cam writ
Hk+ 1] = H[k] + by (u)H [K] — aL[kH[K]
L[k+ 1] = L[k] —d¢L[K] +cL[k]H k],

whereby (u) is the hare birth rate per unit period and as a function of tuel f
supplyu, ds is the lynx death rate, ang andc are the interaction coefficients.
The interaction ternaL[k|H[K] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey megttisshence given
by the product of the population sizes. The interaction tekfi]H[K] in the lynx
dynamics has a similar form and represents the rate of grofitie lynx popula-
tion. This model makes many simplifying assumptions—sudhafact that hares
only decrease in numbers through predation by lynxes—Iluotfitah is sufficient to
answer basic questions about the system.

To illustrate the usage of this system, we can compute thebruwf lynxes
and hares at each time point from some initial populations ©done by starting
with x[0] = (Ho, Lo) and then using equation (2.13) to compute the populations in
the following period. By iterating this procedure, we camgete the population
over time. The output of this process for a specific choice cipaters and initial
conditions is shown in Figure 2.7. While the details of theldation are different
from the experimental data (to be expected given the siitylad our assump-
tions), we see qualitatively similar trends and hence weusanthe model to help
explore the dynamics of the system. O

(2.13)

Example 2.4 Email Server
The IBM Lotus server is an collaborative software system thatinisters users’
e-mail, documents and notes. Client machines interactevithusers to provide
access to data and applications. The server also handlesdth@istrative tasks.
In the early development of the system it was observed tlegpénformance was
poor when the CPU was overloaded because of too many sergoests and
mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in thra fifremote proce-
dure calls (RPCs). The server maintains a log of statisticewipteted requests.
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Figure 2.7: Discrete time simulation of the predator-prey model (2.13). Using thenpar
tersa= c=0.007,b;(u) = 0.7 andd = 0.5 in equation (2.13), the period and magnitude of
the lynx and hare population cycles approximately match the data in Fighre 2.

The total number of requests being served, caitel (RPCs in server), is also
measured. The load on the server is controlled by a paramated ¥axUser s,
which sets the total number of client connections to theeserhis parameter is
controlled by the system administrator. The server can berdegl as a dynamical
system withMaxUser s as input andRl S as the output. The relationship between
input and output was first investigated by exploring the stestdte performance
and was found to be linear.

In [HDPTO04] a dynamic model in the form of a first order differemzpiation
is used to capture the dynamic behavior of this system. Usiagem identification
technigues they construct a model of the form

ylk+ 1] = ay[k] + bulk],

whereu = MaxUser s — MaxUser s andy = Rl S— RI'S. The parametera = 0.43
andb = 0.47 are parameters that describe the dynamics of the systamdathe
operating point an@xUser s = 165 andRI'S = 135 represent the nominal oper-
ating point of the system. The number of requests was aveigigthe sampling
period which was 60 s. O

Simulation and Analysis

State space models can be used to answer many questions. Beentdst com-
mon, as we have seen in the previous examples, is to predi@vitiution of the
system state from a given initial condition. While for simphodels this can be
done in closed form, more often it is accomplished throughmater simulation.
One can also use state space models to analyze the overalidedf the system,
without making direct use of simulation.

Consider again the damped spring-mass system from Secliph2 this time
with an external force applied, as shown in Figure 2.8. We waspredict the
motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oégudting motion.
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m |—— = Uult)=Asinwt

ALV VAN
f|

Figure 2.8: A driven spring-mass system, with damping. Here we use a linear dgmpin
element with coefficient of viscous frictiom The mass is driven with a sinusoidal force of
amplitudeA.

We choose to model the system with a linear ordinary difféaéequation.
Using Hooke’s law to model the spring and assuming that thepda exerts a
force that is proportional to the velocity of the system, egdn

mg+ cq+kg=u, (2.14)

wherem is the massq is the displacement of the massjs the coefficient of
viscous friction k is the spring constant andis the applied force. In state space
form, usingx = (q, ) as the state and choosigg- g as the output, we have

dx X2
T C k ul: y =X
dt | =2 — —x+

m- m- m

We see that this is a linear, second order differential éguatith one input and
one output.

We now wish to compute the response of the system to an inpihiecform
u = Asinwt. Although it is possible to solve for the response analilicave
instead make use of a computational approach that does Igairréhe specific
form of this system. Consider the general state space system

dx

i f(x,u).

Given the state at timet, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of changé ©f u) is constant over the
intervalt tot + h. This gives

X(t+h) =x(t) +hf(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve a&s a function of time. This approxi-
mation is known as Euler integration, and is in fact a diffeesaquation if we leh
represent the time increment and weitk] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, it still illustrates some of the basic tradeof

Returning to our specific example, Figure 2.9 shows the restitemputing
X(t) using equation (2.15), along with the analytical compotatiWe see that as
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Figure 2.9: Simulation of the forced spring-mass system with different simulation time co
stants. The darker dashed line represents that analytical solution olidhéirees represent
the approximate solution via the method of Euler integration, using decgesteip sizes.

h gets smaller, the computed solution converges to the exadian. The form
of the solution is also worth noticing: after an initial tea@nt, the system settles
into a periodic motion. The portion of the response after thesient is called the
steady state responsethe input.

In addition to generating simulations, models can also el us answer other
types of questions. Two that are central to the methods itestin this text are
stability of an equilibrium point and the input/output freency response. We illus-
trate these two computations through the examples belaedarn to the general
computations in later chapters.

Returning to the damped spring-mass system, the equationstin with no

input forcing are given by
dx X2

mX2 le

wherex; is the position of the mass (relative to the rest position)»arits veloc-
ity. We wish to show that if the initial state of the system vgag from the rest
position, the system will return to the rest position evatiju(we will later define
this situation to mean that the rest positiorasymptotically stable While we
could heuristically show this by simulating many, manyialitconditions, we seek
instead to prove that this is true fanyinitial condition.

To do so, we construct a functidh: R" — R that maps the system state to a
positive real number. For mechanical systems, a conveniaice is the energy
of the system,

V(X) = %kx%%—%mx%. (2.17)
If we look at the time derivative of the energy function, we seat

dv ) . c k
e kxaXa 4+ mMxexo = kxqXo + mxz(—ﬁxz — ﬁxl) = 0%,
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which is always either negative or zero. Hentg(t)) is never increasing and,
using a bit of analysis that we will see formally later, thdiindual states must
remain bounded.

If we wish to show that the states eventually return to thginyiwe must
use a more slightly more detailed analysis. Intuitively,sca® reason as follows:
suppose that for some period of timé(x(t)) stops decreasing. Then it must be
true thatv (x(t)) = 0, which in turn implies thak,(t) = O for that same period. In
that casexy(t) = 0 and we can substitute into the second line of equation 2016

obtain:
c k k

0= Xo = sz mX1 = mX1.

Thus we must have thag also equals zero and so the only time thdk(t))
can stop decreasing is if the state is at the origin (and htmseystem is at its
rest position). Since we know th¥t(x(t)) is never increasing (sincé < 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov analysis, is considémn detail in Chap-
ter 4 but shows some of the power of using models for analysigsiem proper-
ties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesphing-mass system,
but this time keeping the input and leaving the system inrigireal form:

m4+ cq+kg=u. (2.18)

We wish to understand what the response of the system is tmaadal input of
the form

u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but fomnee make use of
simulations to compute the answer.

We first begin with the observation thatjft) is the solution to equation (2.18)
with input u(t), then applying an input®t) will give a solution 2j(t) (this is
easily verified by substitution). Hence it suffices to look atannput with unit
magnitudeA = 1. A second observation, which we will prove in Chapter Shatt
the long term response of the system to a sinusoidal inptggl & sinusoid at the
same frequency and so the output has the form

q(t) = g(w) sin(wt + ¢ (w)),

whereg(w) is called thegain of the system and (w) is called thephase(or phase
offset).

To compute the frequency response numerically, we can gisipiulate the
system at a set of frequencies, ..., wy and plot the gain and phase at each of
these frequencies. An example of this type of computatishasvn in Figure 2.10.
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Figure 2.10: A frequency response (magnitude only) computed by measuring shense
of individual sinusoids. The figure on the left shows the responsesafititem as a function
of time to a number of different unit magnitude inputs (at differentdietgies). The figure
on the right shows this same data in a different way, with the magnitude oktiponse
plotted as a function of the input frequency. The filled circles corregporihe particular
frequencies shown in the time responses.

2.3 MODELING METHODOLOGY

To deal with large complex systems, it is useful to have dkffé representations
of the system that capture the essential features and haleviant details. In all
branches of science and engineering it is common practinosdsome graphical
description of systems. They can range from stylistic peguo drastically simpli-
fied standard symbols. These pictures make it possible to geteall view of the
system and to identify the individual components. Exampfesioh diagrams are
shown in Figure 2.11. Schematic diagrams are useful becagg@itre an overall
picture of a system, showing different subprocesses arnditierconnection, and
indicating variables that can be manipulated and signalsctiin be measured.

Block Diagrams

A special graphical representation calletlack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigle the informa-
tion flow and to hide details of the system. In a block diagraiffierent process
elements are shown as boxes and each box has inputs dendiseshyith arrows
pointing toward the box and outputs denoted by lines witlowasrgoing out of
the box. The inputs denote the variables that influence a pa@resthe outputs
denote signals that we are interested in or signals that mfkiether subsystems.
Block diagrams can also be organized in hierarchies, winelieidual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for bloakaias. Signals
are represented as lines, with arrows to indicate inputsoatglits. The first di-
agram is the representation for a summation of two signafsinfiut/output re-
sponse is represented as a rectangle with the system nam®iloematical de-
scription) in the block. Two special cases are a proportigaa, which scales the
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Figure 2.11: Schematic diagrams in different disciplines. Each diagram is used to itkistra
the dynamics of a feedback system: (a) electrical schematics for armystem, (b) a
biological circuit diagram for a synthetic clock circuit [ASMNO3], (c)ogess diagram for a
distillation column and (d) Petri net description of a communication protdgol
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Figure 2.12: Standard block diagram elements. The arrows indicate the the inputs &nd ou
puts of each element, with the mathematical operation corresponding tiothet labeled

at the output. The system block (e) represents the full input/outputmespd a dynamical
system.
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Figure 2.13: A block diagram representation of the flight control system for an irfggnt
against the wind. The mechanical portion of the model consists of thelraglg dynamics
of the fly, the drag due to flying through the air and the forces genergtételwings. The
motion of the body causes the visual environment of the fly to changethaminformation
is then used to control the motion of the wings (through the sensory mattarsy, closing
the loop.

input by a multiplicative factor, and an integrator, whialtguts the integral of the
input signal.

Figure 2.13 illustrates the use of a block diagram, in thig dasmodeling the
flight response of a fly. The flight dynamics of an insect are inbtgdntricate,
involving a careful coordination of the muscles within the tibymaintain stable
flight in response to external stimuli. One known charadierisf flies is their
ability to fly upwind by making use of the optical flow in their cpound eyes as
a feedback mechanism. Roughly speaking, the fly controlgigstation so that
the point of contraction of the visual field is centered in il field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsysterfislgmks”). Referring to
Figure 2.13, we can model the insect navigation system tirangnterconnection
of five blocks. The sensory motor system (a) takes the infaamditom the visual
system (e) and generates muscle commands that attempetatstefly so that
the point of contraction is centered. These muscle commamdscaverted into
forces through the flapping of the wings (b) and the resulter@a@dynamic forces
that are produced. The forces from the wings are combinedtivildrag on the
fly (d) to produce a net force on the body of the fly. The wind veloeihters
through the drag aerodynamics. Finally, the body dynamicdéscribe how the
fly translates and rotates as a function of the net forces tea@plied to it. The
insect position, speed and orientation is fed back to thg dexodynamics and
vision system blocks as inputs.

Each of the blocks in the diagram can itself be a complicatbdysiem. For
example, the fly visual system of a fruit fly consists of two casgied compound
eyes (with about 700 elements per eye) and the sensory mi@ns has about
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200,000 neurons that are used to process that informationor& detailed block
diagram of the insect flight control system would show thergdgenections be-
tween these elements, but here we have used one block tseapr®w the motion
of the fly affects the output of the visual system and a secoockitb represent
how the visual field is processed by the fly’s brain to generatecte.commands.
The choice of the level of detail of the blocks and what elemémiseparate into
different blocks often depends on experience and the qumessthat one wants to
answer using the model. One of the powerful features of btbagrams is their
ability to hide information about the details of a systent thay not be needed to
gain an understanding of the essential dynamics of thersyste

Modeling from Experiments

Since control systems are provided with sensors and acsliaiteralso possible to
obtain models of system dynamics from experiments on thegso The models
are restricted to input/output models since only theseadégare accessible to ex-
periments, but modeling from experiments can also be coedbivith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begisstting the control
signal to a constant value, then when steady state is estelllthe control signal
is changed quickly to a new level and the output is observede eéXperiment
will give the step response of the system and the shape oéipense gives useful
information about the dynamics. It immediately gives aridgation of the response
time and it tells if the system is oscillatory or if the resperin monotone. By
repeating the experiment for different steady state vadnesdifferent amplitudes
of the change of the control signal we can also determineasanipere the process
can be approximated by a linear system.

Example 2.5 Identification of a spring-mass system
Consider the spring-mass system from Section 2.1, whoserdgsare given by

md+ cq+ kg = u. (2.19)

We wish to determine the constamis c andk by measuring the response of the
system to a step input of magnituBg

We will show in Chapter 5 that whee? < 4km the step response for this
system from the rest configuration is given by

q(t) = % (1—exp(—%) sin(oqjt+¢)> 2m

¢ =tan?! (\/ Akm— 02> .

From the form of the solution, we see that the form of the respas determined
by the parameters of the system. Hence, by measuring cétures of the step
response we can determine the parameter values.
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Figure 2.14: Step response for a spring-mass system. The magnitude of the stéjsinpu
Fo = 20 N. The period of oscillation] is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittetity state value
g(e) and the relative decrease between local maxima can be used to estingeateters

in a model of the system.

Figure 2.14 shows the response of the system to a step of mdgRit= 20 N,
along with some measurements. We start by noting that tlaelgtstate position
of the mass (after the oscillations die down) is a functiothefspring constank:

q(e) = %, (2.20)

whereFy is the magnitude of the applied fordé (= 1 for a unit step input). The
parameter 1k is called thegain of the system. The period of the oscillation can
be measured between two peaks and must satisfy

2m  /4km—c?

Finally, the rate of decay of the oscillations is given by tlpanential factor in
the solution. Measuring the amount of decay between twogeed have (using
Exercise 2.5)

log(a(t2) — Fo/K) —log(cl(t2) — Fo/K) = 5= (t— ). (2.22)

Using this set of three equations, we can solve for the pamsand determine
that for the step response in Figure 2.14 we have 250 kg,c ~ 60 N s/m and
k~ 40 N/m. O

Modeling from experiments can also be done using many oigeals. Si-
nusoidal signals are commonly used (particularly for systavith fast dynamics)
and precise measurements can be obtained by exploitinglaton techniques.
An indication of nonlinearities can be obtained by repeagrperiments with in-
put signals having different amplitudes.
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Normalization and Scaling

Having obtained a model, it is often useful to scale the e by introducing
dimension free variables. Such a procedure can often sirtpif equations for a
system by reducing the number of parameters and reveaéstieg properties of
the model. Scaling can also improve the numerical conditigmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: simply choosisuor each in-
dependent variable and introduce new variables by divittiegrariables with the
chosen normalization unit. We illustrate the procedurd wito examples.

Example 2.6 Spring-mass system
Consider again the spring-mass system introduced eaNieglecting the damp-
ing, the system is described by

mg-+kg=u.

The model has two parametarsandk. To normalize the model we introduce
dimension free variables = q/I and 1 = wot, wherean = /k/m and| is the
chosen length scale. We scale forcerbl and introduces = u(mlag). The
scaled equation then becomes

> dg/l 1
dr2  d(aot)?  wflm

which is the normalized undamped spring-mass system. &tiat the normal-
ized model has no parameters while the original model hadgarametersn
andk. Introducing the scaled, dimension-free state variabjes x = g/ and
2, = dx/dt = g/(lwp) the model can be written as

a(2)= (5o () (0)

This simple linear equation describes the dynamics of anpn@mnass system,
independent of the particular parameters, and hence gs#/essight into the fun-
damental dynamics of this oscillatory system. To recoverphysical frequency
of oscillation or its magnitude, we must invert the scaling lvave applied. [

(_kq+ U) = _X+V7

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Negjetamping by
puttingc = 0 andy = 0 in equation (2.9) the model can be written as

d?q d?e . .dg,2
(M+m)@—mlcosew+mlsme(a) =F
d%q ,. d%6 :
—mlcoseﬁJr(Jerl )W—mglsme_o

Let wp = /mgl/(J+ ml?), choose the length scale Bghe time scale as/lw,
the force scale a@vl +m)l w and introduce the scaled variables- aot, x = g/
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a). The uncertainty lemon in (b) is one way to capture uncertairttyriamical
systems emphasizing that a model is only valid in some amplitude and fregrenges. In

(c) a model is represented by a nominal modi¢) and another modéiM representing the
uncertainty analogous to representation of parameter uncertainty.

andu = F/((M+m)l«g). The equations then become

d?x d2e do\2
—z—acose—+a<—) =u

dr dr2 dr
d’x  d%6 .
—pB coseﬁ + az - sin6 =0,

wherea = m/(M+m) andB = mI?/(J+ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
a andB. If M >> mandml? > J we geta ~ 0 andf3 ~ 1 and the model can be
approximated by

d?x d?6

drz ~ " ar2
The model can be interpreted as a mass combined with an idveetledulum
driven by the same input. O

—Sin@ = ucosoh.

Model Uncertainty

Reducing uncertainty is one of the main reasons for usindjd@ek and it is there-
fore important to characterize uncertainty. When makingsneements there is a
good tradition to assign both a nominal value and a measwecddrtainty. It is
useful to apply same principle to modeling, but unfortulyaités often difficult to
express the uncertainty of a model quantitatively.

For a static system whose input-output relation can be cteniaed by a func-
tion, uncertainty can be expressed by an uncertainty bailisisated in In Fig-
ure 2.15a. At low signal levels there are uncertainties dugensor resolution,
friction and quantization. Some models for queuing systemsetls are based
on averages that exhibit significant variations for smallyjations. At large sig-
nal levels there are saturations or even system failures.sijmal ranges where
a model is reasonably accurate varies dramatically betwpphcations but it is
rare to find models that are accurate for signal ranges langertd.
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Characterization of uncertainty of dynamic model is muchrendifficult. We
can try to capture uncertainties by assigning uncertattieparameters of the
model but this is often not sufficient. There may be errors dyghtmmomena that
have been neglected, for example small time delays. In cbthite ultimate test
is how well a control system based on the model performs amel delays can be
important. There is also a frequency aspect. There are slomopiena, such as
aging, that can cause changes or drift in the systems. Theesdsarhigh frequency
effects: a resistor will no longer be a pure resistance at kiggh frequencies and
a beam has stiffness and will exhibit additional dynamicemvBubject to high
frequency excitation. Thencertainty lemorshown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. It illustrakeg & model is only valid
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaietty in Chapter 12
using figures such as the one shown in Figure 2.15c. These todks ns& of
the concept of a transfer function, which describes theuagy response of an
input/output system. For now, we simply note that one shalvi@ys be careful to
recognize the limits of a model and not to make use of moddkdaritheir range
of applicability. For example, one can describe the una#gtdemon and then
check to make sure that signals remain in this region.

2.4 MODELING EXAMPLES

In this section we introduce additional examples thatitiate some of the differ-
ent types of systems for which one can develop differentjah#ion and difference
equation models. These examples are specifically chosen framga of differ-
ent fields to highlight the broad variety of systems to whictdigack and control
concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiack to control the
movement of a mechanical system. Motion control systemgedrom nanopo-

sitioning systems (atomic force microscopes, adaptiveEgptto control systems
for the read/write heads in a disk drive of CD player, to maotiring systems
(transfer machines and industrial robots), to automotrgrol systems (anti-lock
brakes, suspension control, traction control), to air guats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model

A common problem in motion control is to control the trajegt@f a vehicle
through an actuator that causes a change in the orientétisteering wheel on an
automobile or the front wheel of a bicycle are two examplessbmilar dynamics
occur in steering of ships or control of the pitch dynamicswfaircraft. In many
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewdlfiale
with four wheels. By approximating the motion of the front and rear pdimsteels by a
single front and rear wheel, we obtain an abstraction called the “bicycteethshown on
the right. The wheel base sand the center of mass at a distarctrward of the rear
wheels. The steering angle & and the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxly and the
orientation (heading) bg.

cases, we can understand the basic behavior of these sybt®mgh the use of a
simple model that captures the basic geometry of the system.

Consider a vehicle with two wheels as shown in Figure 2.16.tfk@purpose
of steering we are interested in a model that describes hewsdlocity of the
vehicle depends on the steering angjleTo be specific, consider the velocityat
the center of mass, a distarecéom the rear wheel, and letbe the wheel base, as
shown in Figure 2.16. Let andy be the coordinates of the center of ma$she
heading angle and the angle between the velocity vectoand the centerline of
the vehicle. Sincé = ratand anda = ratana it follows that tanx = (a/b) tanf
and we get the following relation betweemand the steering angl®

atand
b )
Assume that the wheels are rolling without slip and that thleaity of the rear

wheel isvg. The vehicle speed at its center of mass is v/ cosa and we find
that the motion of this point is given by

a(d) = arctar( (2.23)

% =vcos(a +0) = vomsc(gs;re)

(@1 6) (2.24)
dy . __sin(a+
dt_vsm(a+9)_voicosa .

To see how the angl@ is influenced by the steering angle we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velogjtyr, around the point
O. Hence 40 ve v
0 0
— = — = —tand. 2.25
dt ra b ( )
Equations (2.23)—(2.25) can be used to model an automokilertine assump-
tions that there is no slip between the wheels and the roadhatdhe two front
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(b)

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) resdits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bnehéhrust on
the aircraft can be decomposed into a horizontal fé#cand a vertical forcé, acting at a
distancer from the center of mass.

wheels can be a approximated by a single wheel at the centbe @far. The as-
sumption of no slip can be relaxed by adding an extra statahlar giving a more
realistic model. Such a model also describes the steeringndigs of ships as
well as the pitch dynamics of aircraft and missiles. It iogiessible to place the
coordinates of the car at the rear wheels (correspondingttioga = 0), a model
which is often referred to as thgubins car[Dub57].

The situation in Figure 2.16 represents the situation whervehécle moves
forward and has front-wheel steering. The case when the leet@gerses is ob-
tained simply by changing the sign of the velocity, whichdsigalent to a vehicle
with rear-wheel steering.

[l

Example 2.9 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such asHheier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takbpffedirecting its
thrust downward and through the use of smaller maneuvehingters located on
its wings. A simplified model of the Harrier is shown in Figurd2b, where we
focus on the motion of the vehicle in a vertical plane throtigd wings of the
aircraft. We resolve the forces generated by the main dowdhtauster and the
maneuvering thrusters as a pair of forég®ndF, acting at a distancebelow the
aircraft (determined by the geometry of the thrusters).

Let (x,y, 8) denote the position and orientation of the center of massad.
Let m be the mass of the vehicld,the moment of inertiag the gravitational
constant, and the damping coefficient. Then the equations of motion for the
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive ak rael are
stored in a queue. Messages are processed and removed fromethe ajurateu. The
average size of the queue is givemby R.

vehicle are given by
mMX = F1 cosO — Fsinf — cx
my = F1Sin@ 4+ F,cosé —mg— cy (2.26)
JO =rFy.

It is convenient to redefine the inputs so that the origin is quldérium point

of the system with zero input. Lettingg = F; andu; = F, — mg, the equations

become . : : .
MX = —mgsin® — cx+ u; cosO — U, sinf

my = mg(cosO — 1) — cy+ u; Sin6 + up coso (2.27)
Jé =Truj.
These equations described the motion of the vehicle as a #ateef coupled sec-
ond order differential equations. O

Information Systems

Information systems range from communication systemsthkenternet to soft-
ware systems that manipulate data or manage enterpriseegderces. Feedback
is present in all these systems, and design of strategiesufting, flow control and
buffer management are typical problems. Many results iupgetheory emerged
from design of telecommunication systems and later fronelbg@ment of the In-
ternet and computer communication systems [BG87, Kle753BciManagement
of queues to avoid congestion is a central problem and wethélefore start by
discussing modeling of queuing systems.

Example 2.10 Queuing systems
A schematic picture of a simple queue is shown in Figure 2.18qugsts arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates and the queue length builds up when thealaaie is larger than
the service rate. When the queue becomes too large, sesvimnied using an
admission control policy.

The system can be modeled in many different ways. One way isoidem
each incoming request, which leads to an event-based mdusievihe state is
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an integer that represents the queue length. The queue chamge a request
arrives or a request is serviced. The statistics of arrivdlsamvicing are typically
modeled as random processes. In many cases it is possita¢etonine statistics
of quantities like queue length and service time but the adatjpns can be quite
complicated.

A significant simplification can be obtained by usindl@av model Instead
of keeping track of each request we instead view service aqdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
fluids. Assuming that the average queue lengtha continuous variable and that
arrivals and services are flows with ratesand 1, the system can be modeled by
the first order differential equation

KA H= A pnad (9, x>0 (2.28)
where timax is the maximum service rate arfdx) is a number between 0 and 1
that describes the effective service rate as a functioneofitteue length.

It is natural to assume that the effective service rate dipem the queue
length because larger queues require more resources. ddysstate we have
f(X) = A /Umax @nd we assume that the queue length goes to zero W)igRax
goes to zero and that it goes to infinity when umax goes to 1. This implies
that f (0) = 0 and thatf () = 1. In addition if we assume that the effective ser-
vice rate deteriorates monotonically with queue lengtmttiee functionf (x) is
monotone and concave. A simple function that satisfies thie baguirements is
f(x) = x/(1+x), which gives the model

dx A X

a - Umaxx+ 1
This model was proposed by Agnew [Agn76]. It can be shown thatrival
and service processes are Poisson processes the averagdequgh is given by
equation (2.29) and that equation (2.29) is a good apprdiomaven for short
gueue lengths; see Tipper [TS90].

To explore the properties of the model (2.29) we will first istigate the equi-
librium value of the queue length when the arrival rates constant. Setting the
derivativedx/dt to zero in equation (2.29) and solving fowe find that the queue
lengthx approaches the steady state value

A
HUmax— A~
Figure 2.19a shows the steady state queue length as a furdtibfmay, the
effective service rate excess. Notice that the queue langtbases rapidly as
approachegimax. To have a queue length less than 20 requifamax < 0.95.
The average time to service a requestds= (X+ 1)/Umax and it also increases
dramatically as\ approachegimax.

Figure 2.19b illustrates the behavior of the server in a gimeerload situation.
The maximum service rate [$max = 1, and the arrival rate starts &t= 0.5. The

(2.29)

Xe = (2.30)
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Figure 2.19: Queuing dynamics. The figure on the left shows steady state queue &ngth
function of A / umax, and the figure on the right shows the behavior of the queue length when
there is a temporary overload in the system. The full line shows a realizaftian event
based simulation and the dashed line shows the behavior of the flow n2a2i@). (

arrival rate is increased t = 4 at time 20, and it returns td = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearssiewty. Since the
response time is proportional to queue length, it meanshieaquality of service
is poor for a long period after an overload. This behavior Iedaherush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow mathéch
describes the average queue length. The simple model cafteihavior qualita-
tively, but there are significant variations from sample tmgke when the queue
length is short.

|

Queuing problems of the type illustrated in Example 2.10 Hmeen observed
in many different situations. The following example illietiEs an early example
of the difficulty and it also describes how it can be avoided bing a simple
feedback scheme.

Example 2.11 Virtual memory paging control

An early example of use of feedback in computer systems wpkedpin oper-
ating system OS/VS for the IBM 370 [BG68, Cro75]. The systendusgual
memory, which allows programs to address more memory thainyisically avail-
able as fast memory. Data in current fast memory (RAM) is s®ee directly but
data that resides in slower memory (disk) is automaticalded into fast mem-
ory. The system is implemented in such a way that it appeatsetprtogrammer
as a single large section of memory. The system performedwelyin many
situations but very long execution times were encountanaavérload situations,
as shown in Figure 2.20a. The difficulty was resolved with a stnddcrete feed-
back system. The load of the central processing unit (CPU) veasuared together
with the number of page swaps between fast memory and slowonyerfihe op-
erating region was classified as being in one of three stat@snai, underload
or overload. The normal state is characterized by high CPWiggtihe under-
load state is characterized by low CPU activity and few pagéaoements, the
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Figure 2.20: lllustration of feedback in the virtual memory system of IBM/370. The left
figure (a) shows the effect of feedback on execution times in a simuj&ibowing [BG68].
Results with no feedback are shown witland with feedback witlx. Notice the dramatic
decrease in execution time for the system with feedback. The right figuiustrates how
the three states were obtained based on process measurements.

overload state has moderate to low CPU load but many pagecespénts, see
Figure 2.20a. The boundaries between the regions and thedimesfasuring the
load were determined from simulations using typical loatise control strategy
was to do nothing in the normal load condition, to exclude@ess from mem-
ory in an overload condition and to allow a new process or gipusly excluded

process in the underload condition. Figure 2.20a shows feetkeness of the
simple feedback system in simulated loads. Similar priesigre used in many
other situations, for example in fast, on-chip cache memory O

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvare to collect
and aggregate information over a region of space using pieilsiensors that are
connected together via a communications network. Exampt#sde monitoring
environmental conditions in a geographical area (or inaitlailding), monitoring
movement of animals or vehicles, or monitoring the resoloegling across a
group of computers. In many sensor networks the computtresources for the
system are distributed along with the sensors and it can periant for the set
of distributed agents to reach a consensus about a cer@peny, such as the
average temperature in a region or the average computhlimthamongst a set
of computers.

To illustrate how such a consensus might be achieved, wedsaribe problem
of computing the average value of a set of numbers that aadlyavailable to the
individual agents. We wish to design a “protocol” (algonithsuch that all agents
will agree on the average value. We consider the case in vdli@dgents cannot
necessarily communicate with each other directly, altthowe will assume that
the communications network is connected (meaning that ngyteups of agents
are completely isolated from each other). Figure 2.21a slaosimple situation of
this type.

We model the connectivity of the sensor network using a grapth nodes
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Figure 2.21: Consensus protocols for sensor networks. A simple sensor netvtbriive
nodes is shown on the left. In this network, node 1 communicates with noded2 2
communicates with notes 1, 3, 4 and 5, etc. A simulation demonstrating tkiergence of
the consensus protocol (2.31) to the average value of the initial corslisshown on the
right.

corresponding to the sensors and edges corresponding ¢xiitence of a direct
communications link between two nodes. For any such gragh¢cam build an
adjacency matrixwhere each row and column of the matrix corresponds to a
node and a 1 in the respective row and column indicates tleatvtb nodes are
connected. For the network shown in Figure 2.21a, the carrepg adjacency
matrix is

>

Il
oOoor o

=

o
OORrR RO
OO0 ORrQ

We also use the notation¥ to represent the set of neighbors of a nadd-or
example, 12 = {1,3,4,5} and.#53 = {2,4}.

To solve the consensus problem, weXebe the state of thegh sensor, corre-
sponding to that sensor’s estimate of the average valuevinate trying to com-
pute. We initialize the state to the value of the quantity soeed by the individual
sensor. Our consensus protocol can now be realized as aulodate law of the
form

Xik+ 1 =x[kl+y S (XK —xk]). (2.31)
jeM
This protocol attempts to compute the average by updatintptad state of each
agent based on the value of its neighbors. The combined dgsashall agents
can be written in the form

X[k+ 1] = x[k] — y(D — A)x[K] (2.32)

whereA is the adjacency matrix and is a diagonal matrix whose entries cor-
respond to the number of neighbors of the corresponding.n®te constany
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describes the rate at which we update our own estimate ofvétrage based on
the information from our neighbors. The mattix= D — Ais called the_aplacian
of the graph.

The equilibrium points of equation (2.32) are the set of statech thake[k +
1] = xg[K]. It is easy to show thate = (a,q,...,a) is an equilibrium state for
the system, corresponding to each sensor having an ideasitmatea for the
average. Furthermore, we can show ttnas the precisely the average value of the
initial states. To see this, let

WK = ﬁ,_im[k}

whereN is the number of nodes in the sensor netwd0| is the average of the
initial states of the network, which is the quantity we agérng to compute W|K]
is given by the difference equation
12 12
Wlk+1] = N lei k+1] = N Zl(xi[k] +y Y (%K —x[K])).
i= i= e
Sincei € .4} implies thatj € .4{, it follows that each term in the second summation
occurs twice with opposite sign. Thus we can conclude g+ 1] = WI[K]
and henc&V[k] = WI0] for all k, which implies that at the equilibrium poimt
must beWy, the average of the initial state$V is called aninvariant and the
use of invariants is an important technique for verifyingreotness of computer
programs.

Having shown that the desired consensus state is an edquitilroint for our
protocol, we still must show that the algorithm actually wenges to this state.
Since there can be cycles in the graph, it is possible thatt#te of the system
could get into an “infinite loop” and never converge to the debtonsensus state.
A formal analysis requires tools that will be introducecetan the text, but it can
be shown that for any connected graph, we can always finsugh that the states
of the individual agents converge to the average. A simutatiemonstrating this
property is shown in Figure 2.21b.

Although we have focused here on consensus to the average ok set of
measurements, other consensus states can be achieveghtbhmice of appropri-
ate feedback laws. Examples include finding the maximum orrmim value in
a network, counting the number of nodes in a network or comgutigher order
statistical moments of a distributed quantity [OSFMO7]. O

Biological Systems

Biological systems provide perhaps the richest sourceemftiack and control ex-
amples. The basic problem of homeostasis, in which a quasitiz as tempera-
ture or blood sugar level is regulated to a fixed value, is betafrthe many types
of complex feedback interactions that can occur in moleaukachines, cells, or-
ganisms and ecosystems.
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1. Transcription

mernbrane

Protein synthesis

Figure 2.22: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained
so that the the nucleus, actin and chromatin are visible. The figure on titegii@s an
overview of the process by which proteins in the cell are made. RNA isd¢rdoed from
DNA by an RNA polymerase enzyme. The RNA is then translated into a protein
organelle called the ribosome.

Example 2.13 Transcriptional regulation

Transcription is the process by which mRNA is generated fasagment of DNA.
The promoter region of a gene allows transcription to be otlett by the pres-
ence of other proteins, which bind to the promoter region eititer repress or
activate RNA polymerase (RNAP), the enzyme that producesRiNAtranscript

from DNA. The mRNA is then translated into a protein accordimds nucleotide

sequence. This process is illustrated in Figure 2.22.

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJO2, Mur04]. Consider the regulation afprotein A with
concentration given bpa and corresponding mRNA concentration. Let B be
a second protein with concentratipg that represses the production of protein A
through transcriptional regulation. The resulting dyna€pa andma can be
written as
dpa

+ ao, dt = Bma—Opa, (2.33)

dma

A o™

a
1+ kgpd
wherea + ag is the unregulated transcription raterepresents the rate of degra-
dation of mMRNA,a andn are parameters that describe how B represseg A,
represents the rate of production of the protein from itsesponding mRNA and
0 represents the rate of degradation of the protein A. The peteximg describes
the “leakiness” of the promoter antis called the Hill coefficient and relates to
the cooperativity of the promoter.

A similar model can be used when a protein activates the ptamuof another
protein, rather than repressing it. In this case, the egustiave the form

dma  akspp
dt — 1+kgph

d
+ ag — yma, % = Bma—Opa, (2.34)
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Figure 2.23: The repressilator genetic regulatory network. A schematic diagram oéthe
pressilator is given on the left, showing the layout of the genes in the plabatitiolds the
circuit as well as the circuit diagram (center). A simulation of a simple rhfodéhe repres-
silator is shown on the right, showing the oscillation of the individual proteirceatrations.
Parameter values taken from [ELOQQ].

where the variables are the same as described previoustg.thét in the case of
the activator, ifpg is zero then the production rate dg (versusa + ag for the
repressor). Agg gets large, the first term in the expressionigy approaches 1
and the transcription rate becomes- ag (versusag for the repressor). Thus we
see that the activator and repressor act in opposite fagtuioneach other.

As an example of how these models can be used, we consideraithel of a
“repressilator”, originally due to Elowitz and Leibler [ELOOThe repressilator is
a synthetic circuit in which three proteins each represstemon a cycle. This is
shown schematically in Figure 2.23a, where the three protia TetRA cl and
Lacl. The basic idea of the repressilator is that if TetR is @néshen it represses
the production ofA cl. If A cl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed thehcl
is no longer repressed and so on. If the dynamics of the tiaceidesigned prop-
erly, the resulting protein concentrations will oscillate

We can model this system using three copies of equation 2.8t A and
B replaced by the appropriate combination of TetR, cl and L&leé state of the
system is then given by= (Mreg, Pretr, Ml, Pel, Meaci, PLaci)- Figure 2.23b shows
the traces of the three protein concentrations for parasete 2, a = 0.5, k =
6.25x 104, ag=5x10"% y=58x10"3 B =0.12 andd = 1.2 x 103 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [EL0O]). O

Example 2.14 Wave propagation in neuronal networks

The dynamics of the membrane potential in a cell are a fundeherechanism

in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin-Huxley equations give a simple model for studyinggagation waves in

networks of neurons. The model for a single neuron has the form

av
Ca = —|Na_ IK — ||eak+ |input7
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whereV is the membrane potential; the capacitancelna and I the current
caused by transport of sodium and potassium across the eefibnane ljqax a
leakage current anighp,t the external stimulation of the cell. Each current obeys
Ohm’s law, i.e.

I :g(V_E)7

whereg is the conductance arifithe equilibrium voltage. The equilibrium voltage
is given by Nernst's law

RT
E= E IOg(Ce/Ci)7

whereR is Boltzmann’s constanil the absolute temperaturg, Faraday’s con-
stant,nis the charge (or valence) of the ion, an@ndc, are the ion concentrations
inside the cell and in the external fluid. At 2 we haveRT/F =20 mV.

The Hodgkin-Huxley model was originally developed as a maarngredict
the quantitative behavior of the squid giant axon [HH52].dgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Egdta analysis
of the electrical and chemical events in nerve cell disobafde voltage clamp de-
scribed in Section 1.3 (see Figure 1.8) was a key element in kiodgd Huxley’s
experiments. O

2.5 FURTHER READING

Modeling is ubiquitous in engineering and science and hasmg@ history in ap-
plied mathematics. For example, the Fourier series wasdoted by Fourier
when he modeled heat conduction in solids [Fou07]. Modeldyofamics have
been developed in many different fields, including mechafieca78, Gol53],

heat conduction [CJ59], fluids [BRS60], vehicles [Abk69, Blag&ll94], circuit

theory [Gui63], acoustics [Ber54] and micromechanicateys [Sen01]. Control
theory requires modeling from many different domains andteontrol theory
texts contain several chapters on modeling using ordindfgrential equations
and difference equations (see, for example, [FPENO05]). A iddmsok on mod-

eling of physical systems, especially mechanical, elegltand thermo-fluid sys-
tems, is Cannon [Can03]. The book by Aris [Ari94] is highlyginal and has
a detailed discussion of the use of dimension free variabie® of the authors’
favorite books on modeling of biological systems are J. Dristy [Mur04] and

Wilson [Wil99]. For readers interested in learning more @hobject oriented
modeling and Modelica, Tiller [Til01] provides an excellemtroduction.
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EXERCISES

2.1 Consider the linear ordinary differential equation (2 Show that by choosing
a state space representation with=y, the dynamics can be written as

0 1 0 0
. . 0
A 0 . . 0 B— |
o .. 0 1 .
—ap —an-1 —a1 1
C= [1 .0 0].

This canonical form is calledhain of integratordorm.

2.2 Use the equations of motion for a balance system to derivenardic model
for the inverted pendulum described in Example 2.2 and véndyfor smallf the
dynamics are approximated by equation (2.10).

2.3 Consider the following discrete time system
X[k+ 1] = AXK] + BulK]
ylk] = CxK]
where
x— [2] A= [agl g;;] B— [2] c=(1 0)
In this problem, we will explore some of the properties o$ttliscrete time system
as a function of the parameters, the initial conditions, tiednputs.

(a) For the case wheam > = 0 andu = 0, give a closed for expression for the
output of the system.

(b) A discrete system is irquilibriumwhenxk+ 1] = x[k] for all k. Letu=
r be a constant input and compute the resulting equilibriuntgor the
system. Show that ifa;i| < 1 for all i, all initial conditions give solutions
that converge to the equilibrium point.

(c) Write a computer program to plot the output of the systamesponse to
a unit step inputulk] = 1, k > 0. Plot the response of your system with

x[0] = 0 andA given by
05 1
A= [ 0 0.25] '

2.4 Keynes’ simple model for an economy is given by
Y[kl =CIK] + 1 [k] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for yégaiConsumption and investment are modeled
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by difference equations of the form
Clk+1] = aY[K], I[k+ 1] = b(Clk+ 1] —CIK]),

wherea andb are parameters. The first equation implies that consumption in
creases with GNP but that the effect is delayed. The secoratiegumplies that
investment is proportional to the rate of change of consignpt

Show that the equilibrium value of the GNP is given by

Ye

1= a(le"‘ Ge),

where the parameter/{1 — a) is the Keynes multiplier (the gain fromor G to
Y). With a= 0.25 an increase of government expenditure will result in aftdd
increase of GNP. Also show that the model can be written aftlosving discrete
time state model

[?[{Il:ill}]] = [aba—a ;b] [CI:[[IL(]]] + [:b] GlK
Y[K = C[K +I[K + G[K.

2.5(Second order system identification) Verify that equatio8Z2in Example 2.5
is correct and use this formula and the others in the exarmpternpute the pa-
rameters corresponding to the step response in Figure 2.14.

2.6(Least squares system identification) Consider a nonlin&areintial equation
that can be written in the form

dx M
at i;m fi(x),

where fi(x) are known nonlinear functions amg are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estinfatesstatex at time
instantdy, to, ..., tn, with N > M. Show that the parameteas can be determined
by finding the least squares solution to a linear equationefdim

Ha = b,

wherea € RM is the vector of all parameters amtl e RN*M andb € RN are
appropriately defined.

2.7(Normalized oscillator dynamics) Consider a damped spmirggs system with
dynamics

mg+cq+kg=u.
Let ap = \/k/m be the undamped natural frequency ahe- c/(2v/km) be the
relative damping.

(a) Show that by rescaling the equations, we can write th@sydiynamics in
the form
G+ 2 woz+ wiq=w (2.35)
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whereu = F /m. This form of the dynamics is that of a linear oscillator with
natural frequencywy and damping coefficierg.

(b) Show that the system can be further normalized and wiiittéme form
da -~ dz
a2 dt

We thus see that the essential dynamics of the system arengovby a
single damping parametef,

=-—-21—2{2p+V.

2.8 An electric generator connected to a strong power grid camdgeled by a
momentum balance for the rotor of the generator:
2
J?ﬁ? =Pn—Po=Pn— %sintp,

whereld is the effective moment of inertia of the generatbthe angle of rotation,
Pn the mechanical power that drives the generdiois the generator voltag¥,
the grid voltage an& the reactance of the lind> is the active electrical power
and, assuming that the line dynamics are much faster thaotihedynamics, it is
given byP. =V 1 = (EV/X)sin¢, wherel is the current component in phase with
the voltageE and¢ is the phase angle between voltageandV.

Show that the dynamics of the electric generate have the sammatized form
as the inverted pendulum (note that damping has been nedléactthe model
above).

2.9 Show that the dynamics for a balance system using normalizediimates
can be written in state space form as

X3
Xa
dx —OX2 — a'SiNX COSXp + U

dt 1- afcoZxy '
— 0B COSXXZ — SiNXp + B COSXoU
1—apBcogx

wherex = (q/1,6,q/1,06).

2.10 Consider the dynamics of two repressors connected togitleecycle, as

shown below:
A
up — </ /> — U
B

Using the models from Example 2.13, under the assumptiorthlegbarameters
are the same for both genes, and further assuming that theAneBhEentrations
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reach steady state quickly, show that the dynamics for ffstes can be written
as dz H dz H

1
—=———7—V — = —Z—\Vh. 2.36
dr  1+27 b dr  1+7] 2" (2.36)
wherez; andz represent scaled versions of the protein concentratichthatime
scale has been changed. Show hhat2.16 using the parameters in Example 2.13.



