Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with signsiéiteriora-
tions in another frequency range, and the price is higher if the plant is -bpam unstable.
This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture in 1989 [181].

In this chapter we continue to explore the use of frequencyado techniques
with a focus on design of feedback systems. We begin with arimrough de-
scription of the performance specifications for control ey, and then introduce
the concept of “loop shaping” as a mechanism for designimgrobtiers in the fre-
guency domain. We also introduce some fundamental liroitatio performance
for systems with right half plane poles and zeros.

11.1 SENSITIVITY FUNCTIONS

In the previous chapter, we considered the use of PID feedmekmechanism
for designing a feedback controller for a given processhis¢hapter we will ex-
pand our approach to include a richer repertoire of toolsf@ping the frequency
response of the closed loop system.

One of the key ideas in this chapter is that we can design theviier of the
closed loop system by focusing on the open loop transfertiiumc This same
approach was used in studying stability using the Nyquitgrgon: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedloop system. From a design perspective, the use of loop asabds is
very powerful: since the loop transfer functionlis= PC, if we can specify the
desired performance in terms of properties pfve can directly see the impact of
changes in the controll€. This is much easier, for example, than trying to reason
directly about the tracking response of the closed loopesystwvhose transfer
function is given byGy, = PC/(1+ PC).

We will start by investigating some key properties of thedfesck loop. A
block diagram of a basic feedback loop is shown in Figure 1ThE system loop
is composed of two components, the process and the comtrbfie controller has
two blocks: the feedback blodR and the feedforward block. There are two
disturbances acting on the process, the load disturb@énaed the measurement
noisen. The load disturbance represents disturbances that devertitess away
from its desired behavior, while the measurement noiseesgmts the disturbances
that corrupt the information about the process given by émsars. In the figure,
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedone Th
controller has a feedback blo€kand a feedforward block. The external signals are the
command signal, the load disturbanca and the measurement noiseThe process output
isy and the control signal is.

the load disturbance is assumed to act on the process inpatisEhsimplification,
since disturbances often enter the process in many differays, but it allows us
to streamline the presentation without significant loss ofegality.

The process output is the real variable that we want to control. Control is
based on the measured siggalvhere the measurements are corrupted by mea-
surement noisa. The process is influenced by the controller via the contrat var
ableu. The process is thus a system with three inputs—the contri@hblau, the
load disturbance and the measurement noise-and one output—the measured
signaly. The controller is a system with two inputs and one output. Tipeitis
are the measured signablnd the reference signaland the output is the control
signalu. Note that the control signalis an input to the process and the output of
the controller, and that the measured signal the output of the process and an
input to the controller.

The feedback loop in Figure 11.1 is influenced by three exteigahls, the
reference, the load disturbance and the measurement noise Any of the re-
maining signals can be of interest in controller designetelng on the particular
application. Since the system is linear, the relations betvike inputs and the in-
teresting signals can be expressed in terms of the transfetions. The following
relations are obtained from the block diagram in Figure 11.1:

PCF P 1

1+PC 1+PC 1+PC

PCF P —PC
z 1+PC 1+PC 14PC|
v] = | CF ! —C [d]. (11.1)
U 1+PC 1+PC 1+PC| |,
o CF  -PC -C

1+PC 1+PC 1+PC

F P ~1
1+PC 1+PC 1+PC

In addition, we can write the transfer function for the evetween the reference
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r and the outpufy (not an explicit signal in the diagram), which satisfies

PCF>r+ P 4, PC |
1+PC 1+PC"  1+PC"

There are several interesting conclusions we can draw fr@setiequations.
First we can observe that several transfer functions areatine sind that all of the

important relations are given by the following set of sixwsger functions, which
we call theGang of Six

e=r—n=(1

PCF PC =

1+PC 1+PC 1+PC

* * * (11.2)
CF C 1

1+PC 1+PC 1+PC’

The transfer functions in the first column give the responséefirocess output
and control signal to the setpoint. The second column caonthia response of
the control variable to load disturbance and noise and thédalamn gives the
response of the process output to those two inputs. Notateotily four transfer
functions are required to describe how the system reactatbdisturbances and
the measurement noise, and that two additional transfetifums are required to
describe how the system responds to setpoint changes.

The linear behavior of the system is determined by the sixsfearfunctions
in equation (11.2) and specifications can be expressed irstefrinese transfer
functions. The special case whEn= 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedraok the error only
and the system is completely characterized by four trarfisfetions, namely the
four rightmost transfer functions in equation (11.2), whiave specific names:

1

S= 17PC sensitivity function
= PC complementary sensitivity function
1+PC
P o . (11.3)
PS= 15 PC load sensitivity function
S= c noise sensitivity function
1+PC

These transfer functions and their equivalent systems dezldhe Gang of Four
The load disturbance sensitivity function is sometimeseckthe input sensitivity
function and the noise sensitivity function is sometimdkedahe output sensitiv-
ity function. These transfer functions have many intergsproperties that will
be discussed in detail in the rest of the chapter. Good ihgighthese properties
is essential for understanding the performance of feedbgstems both for the
purpose of use and design.

Analyzing the Gang of Six we find that the feedback contr@arfluences the
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the effects of load disturbances and measurement noise&eNbat measurement
noise enters the process via the feedback. In Section 12.@ ibevshown that
the controller influences the sensitivity of the closed looptocess variations.
The feedforward paif of the controller only influences the response to command
signals.

In Chapter 9 we focused on the loop transfer function and weadahat its
properties gave useful insight into the properties of aesyistTo make a proper
assessment of a feedback system it is necessary to corts&dprdperties of all
transfer functions (11.2) in the Gang of Six or Gang of Fouriwor feedback, as
illustrated in the following example.

Example 11.1 Theloop transfer function only gives limited insight

Consider a process with the transfer functi®is) = 1/(s— a) controlled by a PI
controller with error feedback having the transfer funet{s) = k(s—a)/s. The
loop transfer function i& = k/s, and the sensitivity functions are

_ PC Kk po_ P _ s
~ 1+PC  s+k ~ 1+PC  (s—a)(s+k)
~C k(-4 1 s

CS= 1+PC  s+k S= 1+PC  s+k’

Notice that the factos— a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivitgtion or complemen-
tary sensitivity function. However, cancellation of thetfar is very serious ia> 0
since the transfer functioRSrelating load disturbances to process output is then
unstable. In particular, a small disturbarttean lead to an unbounded output,
which is clearly not desirable. O

The system in Figure 11.1 represents a special case becasisssuimed that
the load disturbance enters at the process input and thahélasured output is
the sum of the process variable and measurement noise.rlizstes can enter
in many different ways and the sensors may have dynamics. i& afsstract way
to capture the general case is shown in Figure 11.2, which twedytwo blocks
representing the process”) and the controller€’). The process has two inputs,
the control signali and a vector of disturbances and two outputs, the measured
signaly and a vector of signalsthat is used to specify performance. The system in
Figure 11.1 can be captured by choosmg- (d,n) andz= (n,v,e, ). The pro-
cess transfer functio®” is a 2x 2 block matrix and the controller transfer function
% is a 1x 2 block matrix; see Exercise 11.3. Processes with multiplatsnpnd
outputs can also be considered by regardimgdy as vectors. Representations at
these higher levels of abstraction are useful for the deveént of theory because
they make it possible to focus on fundamentals and to solwergéproblems with
a wide range of applications. However, care must be exerdisenaintain the
coupling to the real world control problems we intend to solv
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Figure 11.2: A more general representation of a feedback system. The progasgsuin
represents the control signal, which can be manipulated, and the piopesw represents
other signals that influence the process. The process optptihe measured variables and
z are other interesting signals of interest.

11.2 FEEDFORWARD DESIGN

Most of our analysis and design tools up to this point haveised on the role of
feedback and its effect on the dynamics of the system. Feedfdris a simple
and powerful technique that complements feedback. It canskd both to im-
prove the response to reference signals and to reduce #ut effmeasurable dis-
turbances. Feedforward compensation admits perfect etiom of disturbances
but it is much more sensitive than feedback. A general scHemieedforward
was discussed in Section 7.5 on page 225 using Figure 7.10. plesiiorm of
feedforward for PID controllers was discussed in Section.1UHe controller in
Figure 11.1 also has a feedforward block to improve respamseféerence sig-
nals. An alternative version of feedforward is shown in Fegglit.3, which we will
use in this section to understand some of the tradeoffs leetvieedforward and
feedback.

Systems with two degrees of freedom (feedforward and feéddzave the
advantage that the response to reference signals can lpael@sndependently of
the design for disturbance attenuation and robustness. Mérst consider the
response to reference signals and we will therefore ityitedsume that the load

= Fu(s) Fa(s)

Ym e

$\eta$
> Fm(s) %@«v

Pi(s) »s{Signjas

Figure 11.3: Block diagram of a system with feedforward compensation for impraoeed
sponse to reference signals and measured disturbances. Thiémvieed elements are
present:Fn(s) sets the desired output valug,(s) generates the feedforward command
andFy(s) attempts to cancel disturbances.
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disturbancel is zero. Let, represent the ideal response of the system to reference
signals. The feedforward compensator is characterizeddatyahsfer function,
andF,. When the set point is changed the transfer fundipgenerates the signal
Ug, which is chosen to give the desired output when appliedad o the process.
Under ideal conditions the outpyis then equal tyy, the error signal is zero and
there will be no feedback action. If there are disturbanceaadeling errors, the
signalyy andy will differ. The feedback then attempts to bring the erroréoaz

To make a formal analysis we compute the transfer functiomfreference to

process output ( )
P(CFn+Fy PR, — Fm
Gy(S)=———=——=Fnt+——-— 11.4
(=1 pc ™t Iipc (11.4)
whereP = P,P;. The first term represents the desired transfer function. Téwnske
term can be made small in two ways. Feedforward compensagioie used to
makePR, — Fy, small or feedback compensation can be used to makeQlarge.

Perfect feedforward compensation is obtained by choosing
Fn = PR. (11.5)

Notice the different character of feedback and feedforwsvih feedforward we
attempt to match two transfer functions, and with feedbaelattempt attempt to
make the error small by dividing it by a large number. For atcler having
integral action, the loop gain is large for small freques@ed it is thus sufficient
to make sure that the condition for ideal feedforward holdsigher frequencies.
This is easier than trying to satisfy the condition (11.5)dbfrequencies.

We will now consider reduction of effects of the load distambed in Fig-
ure 11.3. We consider the case where we are able to measudisthebance
signal and assume that the disturbance enters the proceamibg in a known
way (captured by, andP,). The effect of the disturbance can be reduced by feed-
ing the measured signal through a dynamical system withrémsfier functior.
Assuming that the referenceis zero, we can use block diagram algebra to find
that the transfer function from disturbance to processudugp

Po(1+FyPy)
1+PC
whereP = PP,. The effect of the disturbance can be reduced by makindd{P;

small (feedforward) or by making-£ PC large (feedback). Perfect compensation
is obtained by choosing

Gya = (11.6)

Fa=—-P L (11.7)

Notice that the feedforward disturbance compensator igtregse of the transfer
function Py, requiring precise knowledge of the process dynamics.

As in the case of reference tracking, disturbance rejectombe accomplished
by combining Feedback and feedforward controllers. Sincefteqquency dis-
turbances can be effectively eliminated by feedback we osdyire the use of
feedforward for high frequency disturbances, and the tearisnctionF4 in equa-
tion (11.7) can then be computed using an approximatidd ébr high frequen-
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Figure11.4: Feedforward control for vehicle steering. Lateral deviagi@md steering angle
d for smooth lane change control using feedforward.

cies.

Equations (11.5) and (11.7) give analytic expressions ffg¢bdforward com-
pensator. To obtain a transfer function that can be impleeakrithout difficulties
we require that the feedforward compensator is stable atdgtioes not require
differentiation. Therefore there may be constraints oniptesshoices of the de-
sired responsé,, and approximations are needed if the process has zeros in the
right half plane.

Example 11.2 Vehicle steering
A linearized model for vehicle steering was given in Exampde &he normalized
transfer function from steering angle to lateral deviai®n
ys+1
P(s) = 2
For a lane transfer system we would like to have a nice regpeitkout overshoot
and we therefore choose the desired response as

a2
Fn= ——
where the response speed or aggressiveness of the steegogarned by the
parametern. Equation (11.5) gives

Fm a’s?

TP (stD)(sta)?
which is a stable transfer function as longjas 0. Figure 11.4 shows the re-
sponses of the system far= 1.5. The figure shows that a lane change is ac-
complished in about 10 vehicle lengths with smooth steesimgjes. The largest
steering angle is a little bit more than 0.1 rad (6 deg). Usiegscaled variables
the curve showing lateral deviations can also be intergrasehe vehicle path with
vehicle length as the length unit. O

A major advantage of controllers with two degrees of freedbat combine
feedback and feedforward is that the control design proldambe split in two
parts. The feedback controll€ can be designed to give good robustness and
effective disturbance attenuation and the feedforward gaar be designed inde-
pendently to give the desired response to command signals.
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11.3 PERFORMANCE SPECIFICATIONS

A key element of the control design process is how we spebifydesired per-
formance of the system. It is also important for users to tstedad performance
specifications so that they know what to ask for and how to tegstem. Specifi-
cations are often given in terms of robustness to procesatizars and responses
to reference signals and disturbances. They can be givenrbmims of time and
frequency responses. Specifications on the step respondertenee signals was
given in Figure 5.9 in Section 5.3 and in Section 6.3. Robustspssifications
based on the loop transfer function and the sensitivity tions were discussed
in Section 9.3 and will be discussed more in Chapter 12. Theifg@ions dis-
cussed previously were based on the loop transfer funct®ince we found in
Section 11.1 that a single transfer functions did not alwdysacterize the prop-
erties of the closed loop completely we will give a more coetgldiscussion of
specifications in this section, based on the full Gang of Six.

The transfer function gives a good characterization of thea behavior of a
system. To give specifications is is desirable to captureltheacteristic properties
of a system with a few parameters. Common features for tisoreses are over-
shoot, rise time and settling time, as shown in Figure 5.9 ged®d7. Common
features of frequency responses are resonance peak, pgakificy, crossover fre-
quency and bandwidth. The crossover frequency is defined &stheency where
the gain is equal to the low frequency gain for low-pass syster the high fre-
quency gain for high-pass systems. The bandwidth is defineldeaselquencies
where the gain is Av/2 of the low frequency (low-pass), mid frequency (band-
pass) or high frequency gain (high-pass). There are iniegeglations between
specifications in the time and frequency domain. Roughlylspgathe behavior
of time responses for short times is related to behavioramfufency responses at
high frequencies and vice versa. The precise relations areivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figure 11.1. The responsésrence signals
is described by the transfer functio@, = PCF/(1+ PC) andGy = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is usefutdonsider
both the response of the output and that of the control sigimaparticular, the
control signal response allows us to judge the magnituderatedof the control
signal required to obtain the output response.

The time response of process output can be characterizegebtjymieT,, over-
shootM,, and settling timéls. The response of the control signal can be charac-
terized by the largest value of the control signal or the slveot. The frequency
responsésy, can be characterized by the resonance pégkhe largest value of
the frequency response; the peak frequeagy, the frequency where the maxi-
mum occurs; and the bandwidth,, the frequency where the gain has decreased
to 1/4/2. The transfer functios,, can be characterized by the largest value of
Gur(iw)]-
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Figure 11.5: Reference signal responses. The responses in process gupdtcontrol
signalu to a unit step in the reference sigmas shown in (a) and the gain curves@®§; and
Gyr are shown in (b). Results with PI control with error feedback are shiovudl lines, the
dashed lines show results for a controller with a feedforward compensa

Example 11.3 Response to reference signals
Consider a process with the transfer funct{s) = (s-+1)~3 and a PI controller
with error feedback having the gaikg = 0.6 andk; = 0.5. The responses are
illustrated in Figure 11.5. The full lines show results for a &htoller with error
feedback. The dashed lines show results for a controllerfegtiforward designed
to give the transfer functio@y, = (0.5s+ 1)~3. Looking at the time responses we
find that the controller with feedforward gives a faster resgowith no overshoot.
However, much larger control signals are required to olitaérfast response. The
largest value of the control signal is 8 compared to 1.2 ferdgular PI controller.
The controller with feedforward has a larger bandwidth (redriwith o) and no
resonance peak. The transfer functi@p also has higher gain at high frequencies.
U

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to congp#re output of the
closed loop system in Figure 11.1 with the output of the cpoading open loop
system obtained by settif@ = 0. If we let the disturbances for the open and
closed loop systems be identical, the output of the closeg &ystem is then ob-
tained simply by passing the open loop output through a systih the transfer
function S. The sensitivity function tells how the variations in the uttare in-
fluenced by feedback (Exercise 11.10). Disturbances withuéecies such that
|S(iw)| < 1 are attenuated but disturbances with frequencies sutiSha)| > 1
are amplified by feedback. The maximum sensitilty, which occurs at the sen-
sitivity crossover frequencys, is thus a measure of the largest amplification of
the disturbances. The maximum magnitude of1t-L) is also the minimum of
|1+ L|, which is precisely the stability margs, defined in Section 9.3, so that
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function on the right (a) can be tsedlculated the
properties of the sensitivity function through the relat®r- 1/(1+L). The sensitivity
crossover frequenays: and the frequencymswhere the sensitivity has its largest value are
indicated in the figure. All points inside the dashed circle have sensitivitegerthan 1.

Ms = 1/sym. The maximum sensitivity is therefore also a robustness aneas

If the sensitivity function is known, the potential improwents by feedback
can be evaluated simply by recording a typical output andifilgeit through the
sensitivity function. A plot of the gain curve of the sensti function is a good
way to make an assessment of disturbance attenuation. 8meesitivity func-
tion only depends on the loop transfer function its propertian also be visualized
graphically using the Nyquist plot of the loop transfer ftioe. This is illustrated
in Figure 11.6. The complex numbertll (iw) can be represented as the vec-
tor from the point—1 to the pointL(iw) on the Nyquist curve. The sensitivity is
thus less than one for all points outside a circle with radiwnd center at-1.
Disturbances with frequencies in this range are attenuatede feedback.

The transfer functiorGyq from load disturbance to process outpuy for the
system in Figure 11.1is

P T
Gyg = 1+PC_PS_ c (11.8)

Since load disturbances typically have low frequencies,gitural to focus on the
behavior of the transfer function at low frequencies. Foystem withP(0) # 0
and a controller with integral action, the controller gaoeg to infinity for small
frequencies and we have the following approximation forlsma

“CcTCcT K

wherek; is the integral gain. Since the sensitivity functiSigoes to 1 for largs
we have the approximatid@yy ~ P for high frequencies.

Measurement noise, which typically has high frequenciesegates rapid vari-
ations in the control variable that are detrimental bec#tusgcause wear in many
actuators and can even saturate an actuator. It is thustiampoo keep the varia-

Gya (11.9)
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Figure 11.7: Disturbance responses. Time and frequency responses of praapsity to
load disturbancel are shown in (a) and responses of the control sigrtal measurement
noised are shown in (b). The low frequency approximation is shown with dotted kmel
the high frequency approximations by dashed lines.

tions in the control signal due to measurement noise at ned® levels—a typical
requirement is that the variations are only a fraction ofdpan of the control sig-
nal. The variations can be influenced by filtering and by propsigtieof the high
frequency properties of the controller.

The effects of measurement noise are captured by the trausfetion from
measurement noise to the control signal,

C T
Gun= 1+PC_CS_ 3 (11.10)

For low frequencies the transfer function the sensitivitydtion equals 1 anGyn,
can be approximated by/P. For high frequencie®C is small andG,,, can be
approximated a&yn ~ C.

Example 11.4 Response to disturbances

Consider a process with the transfer functiR{s) = (s+1)~2 and a PID controller
with gainsk = 0.6, ki = 0.5 andky = 2.0. We augment the controller with a second
order noise filter withTs = 0.1 so that its transfer function is

kg +ks+k
Cls) = S(?T?/2+sTi +1)

The responses are illustrated in Figure 11.7. The system respom step in the
load disturbance in the top part of Figure 11.7a has a pealk8fdl.timet = 2.73,

and the initial part of the response is well captured by tlgh fiiequency approx-
imation Gyq =~ P (dashed). The magnitude of the peak is also well approximated
by the low frequency approximatidd,q ~ 1/C (dotted), but the peak time is not.
The frequency response in Figure 11.7a shows that the gaintasienum 0.58
atw = 0.7. The figure shows that the gain curve is well captured by theoapp
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mations.

The response of the control signal to a step in measuremesg fishown
in Figure 11.7b. The high frequency roll-off of the transfendtion Gyn(iw) is
due to filtering; without that the gain curve in Figure 11.7b Vgdocontinue to
rise after 20 rags. The step response has a peak of 113-a0.08 which is well
captured by the high frequency approximation (dashed). fdguency response
has its peak 20 atw = 14, which is also well captured by the high frequency
approximation (dashed). Notice that the peak occurs faveltoe peak of the
response to load disturbances and far above the gain cevsBequencywy =
0.78. An approximation derived in Exercise 11.11 gives f@&Xiw)| ~ ky/ Tt =
20 which occurs ab = /2/Tq = 14.1. 0

11.4 FEEDBACK DESIGN VIA LOOP SHAPING

One advantage of the Nyquist stability theorem is that itisdal on the loop trans-
fer function, which is related to the controller transfendtion throughL = PC.

It is thus easy to see how the controller influences the loogstea function. To
make an unstable system stable we simply have to bend theidtymuve away
from the critical point.

This simple idea is the basis of several different design authcollectively
calledloop shaping The methods are based on choosing a compensator that gives
a loop transfer function with a desired shape. One podssihidito determine a
loop transfer function that gives a closed loop system withdesired properties
and to compute the controller &= L/P. Another is to start with the process
transfer function change its gain and then add poles and zertil the desired
shape is obtained. In this section we will explore differep shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape of the loop transfertiondhat gives good
performance and good stability margins. Figure 11.8 showgiadl loop trans-
fer function. Good robustness requires good stability mar¢pr good gain and
phase margins) which imposes requirements on the loopféraiusiction around
the crossover frequencies,c andwyc. The gain ofl at low frequencies must be
large in order to have good tracking of command signals aod gejection of low
frequency disturbances. SinBe= 1/(1+ L) it follows that for frequencies where
IL| > 100 disturbances will be attenuated by a factor of 100 ant¢r#ok&ing error
is less than 1%. It is therefore desirable to have a largesowes frequency and
a steep (negative) slope of the gain curve. The gain at lowuéecjes can be in-
creased by a controller with integral action which is alsecdag compensation
To avoid injecting too much measurement noise into the sy#tes desirable that
the loop transfer function have a low gain at frequencieb figguenciesigh fre-
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Figure 11.8: Gain curve of the Bode plot for a typical loop transfer function. The gain
crossover frequencyyyc and the slopegc of the gain curve at crossover are important pa-
rameters that determine the robustness of the closed lop systems. Aetpvefcy, a large
magnitude forL provides good load disturbance rejection and reference tracking, athile
high frequency a small loop gain is used to avoid amplifying measurencise.

guency roll-off The choice of gain crossover frequency is a compromise legtwe
attenuation of load disturbances, injection of measurémeise and robustness.
Bode's relations (see Section 9.4) impose restrictions erstiape of the loop
transfer function. Equation (9.8) implies that the slopeh& gain curve at gain
crossover cannot be too steep. If the gain curve is constape,swe have the
following relation between slopgc and phase margigim:
2¢m

Nge = —2+ == [rad = —180 + g [ded. (11.11)

This formula is a reasonable approximation when the gainecdoes not deviate
too much from a straight line. It follows from equation (11)lhat the phase
margins 30, 45° and 60 correspond to the slopes -5/3, -3/2 and -4/3.

Loop shaping is a trial and error procedure. We typicallytstath a Bode
plot of the process transfer function. We then attempt t@shhe loop transfer
function by changing controller gain and adding poles andszef the controller.
Different performance specifications are evaluated for eactiroller as we at-
tempt to balance many different requirements by adjustorgroller parameters
and complexity. Loop shaping is straightforward to applyitgke-input, single
output systems. It can also be applied to systems with ong gpd many out-
puts by closing the loops one at a time starting with the imuest loop. The only
limitation for minimum phase systems is that large phasgdead high controller
gains may be required to obtain closed loop systems withrésgionse. Many
specific procedures are available: they all require expeeidit they also give a
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Figure 11.9: Frequency response for a lead and lag compens&ss~= k(s+a)/(s+b).
Lead compensation occurs whar< b (left) and provides phase lead betweer= a and
w = b. Lag compensation correspondsato- b and provides low frequency gain. Pl control
is a special case of lag compensation and PD control is a special dase abmpensations.
Frequency responses are shown in dashed curves.

good insight into the conflicting requirements. There are &mental limitations
to what can be achieved for systems that are not minimum pliasg will be
discussed in the next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfeiction of the process
and to add simple compensators with the transfer function

s4a
=k——.
C(s) s+b

The compensator is called a lead compensatokib and a lag compensatordf>
b. The PI controller is a special case of lag compensator bvith0 and the ideal
PD controller is a special case of a lead compensator a4#th0. Bode plots of
lead and lag compensators are shown in Figure 11.9. Lag coatjmnscreases
the gain at low frequencies. It is typically used to improsacking performance
and disturbance attenuation at low frequencies. The fotigwexample gives an
illustration.

(11.12)

Example 11.5 Atomic force microscopein tapping mode
A simple model of the dynamics of the vertical motion of annaimforce micro-
scope in tapping mode was given in Exercise 9.5. The transfati@n for the
system dynamics is
a(l—e =)

st(s+a)

P(s) =

wherea = {wp, andt = 27m/wp and the gain has been normalized to 1. A Bode
plot of this transfer function for the parameters 1 and is shown in dashed curves
in Figure 11.10a. To improve attenuation of load disturbamee increase the low
frequency gain by introducing an integrating controllereTéop transfer function
then becomek = ki P(s) /sand we adjust the gain so that the phase margin is zero,
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Figure 11.10: Loop shaping design of a controller for an atomic force microscope pirigp
mode. Figure 11.10a shows Bode plots of the process (dashed)pth&dmsfer function
with an integral controller with critical gain (dotted) and a PI controller adflistegive
reasonable robustness. Figure 11.10b shows the gain curves f@atiteof Four for the
system.

giving k; = 8.3. Notice the increase of the gain at low frequencies. The RPbate

is shown by the dotted line in Figure 11.10a where the cripcatt is indicated by

o. To improve the phase margin we introduce proportionabaciind we increase
the proportional gairk, gradually until reasonable values of the sensitivities are
obtained. The valu&, = 3.5 givesMs = 1.6 andM; = 1.3. The loop transfer
function is shown in full lines in Figure 11.10a. Notice thgrsficant increase of
the phase margin compared with the purely integrating odatr(dotted line).

To evaluate the design we also compute the gain curves afthsfer functions
in the Gang of Four. They are shown in Figure 11.10b. The pealedéhsitivity
curves are reasonable and the ploP&shows that the largest value BSis 0.3
which implies that load disturbances are well attenuatee.plbt ofCSshows that
the largest controller gain is 6. The controller has a gain®&8 high frequencies
and hence we may consider adding high frequency roll off. O

A common problem in design of feedback systems is that theekay of
the system at the desired crossover frequency is not highgénitm allow either
proportional or integral feedback to be used effectivehstéad, one may have a
situation where you need to add phdsad to the system, so that the crossover
frequency can be increased.

A standard way to accomplish this is to uskead compensatomwhich has the

form  s+a

— k2
(s s+b

A key feature of the lead compensator is that it adds plesin the frequency
range between the pole/zero pair (and extending approglyna0X in frequency
in each direction). By appropriately choosing the locatdrnhis phase lead, we

a<b. (11.13)
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=
6
-7 ) Symbol  Description Value
m vehicle mass 4.0kg
y r J vehicle inertiags axis  0.0475 kgrh
. F ! r force moment arm 26.0cm

! d angular damping 0.001 kgm/s

= MY K g gravitational constant 9.8 nf/s

(@ (b)

Figure 11.11: Roll control of a vectored thrust aircraft. The roll andlés controlled by
applying maneuvering thrusters, resulting in a moment generatég. byhe table to the
right lists the parameter values for a laboratory version of the system.

can provide additional phase margin at the gain crossogguéncy.

Because the phase of a transfer function is related to tpe sitthe magnitude,
increasing the phase requires increasing the gain of tigetiaasfer function over
the frequency range in which the lead compensation is apgHence we can also
think of the lead compensator as changing the slope of timsfeafunction and
thus shaping the loop transfer function in the crossovepre@lthough it can be
applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust airgratich as the one il-
lustrated in Figure 11.11. Following exercise 8.11, we mdkdelsystem with a
second order transfer function of the form

r

P(s) = J&+cs’

with the parameters given in Figure 11.11b. We take as ouppaénce speci-
fication that we would like less than 1% error in steady statklass than 10%
tracking error up to 10 rad/sec.

The open loop transfer function is shown in Figure 11.12a. Toeae our
performance specification, we would like to have a gain ofatl@0 at a frequency
of 10 rad/sec, requiring the gain crossover frequency tot laehggher frequency.
We see from the loop shape that in order to achieve the dgs@dédrmance we
cannot simply increase the gain, since this would give a l@myphase margin.
Instead, we must increase the phase at the desired cro$sayazncy.

To accomplish this, we use a lead compensator (11.13)awtl2 andb = 50.
We then set the gain of the system to provide a large loop gaito the desired
bandwidth, as shown in Figure 11.12b. We see that this sysasra bain of greater
than 10 at all frequencies up to 10 rad/sec and that it hasA@etegrees of phase
margin. O
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Figure 11.12: Control design for a vectored thrust aircraft using lead compensalibe
Bode plot for the open loop proceBsis shown on the left and the loop transfer function
L = PC using a lead compensator on the right. Note the phase lead in the cros=gioer
nearw = 100 rad/s.

The action of a lead compensator is essentially the sametas tha derivative
portion of a PID controller. As described in Section 10.5, wiemfuse a filter for
the derivative action of a PID controller to limit the high dueency gain. This
same effect is present in a lead compensator through theapsie b.

Equation (11.13) is a first order lead compensator and cangaon to 90 of
phase lead. Higher levels of phase lead can be provided hg assecond order
lead compensator:

(s+a)?

(51 D)2 a<h.

C(s) =k

11.5 FUNDAMENTAL LIMITATIONS

Although loop shaping gives us a great deal of flexibility irsidgaing the closed
loop response of a system, there are certain fundamentis lon what can be
achieved. We consider here some of the primary performamégtions that can
occur due to difficult dynamics; additional limitations hagito do with robustness
are considered in the next chapter.

Right Half Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to @dnirhe limitations are
related to poles and zeros in the right half plane and timaydelTo explore the
limitations caused by poles and zeros in the right half plaedactor the process
transfer function as

P(S) = Pmp(S)Pap(s), (11.14)

wherePnpis the minimum phase part ailp is the non-minimum phase part. The
factorization is normalized so th@p(iw)| = 1 and the sign is chosen so tiiap,
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has negative phase. The transfer functigpis called arall-pass systerhecause
it has unit gain for all frequencies. Requiring that the ghasrgin isp, we get

argL (iwgc) = argPap(iwyc) + argPmp(iwyc) +argC(iwye) > —m+ ¢m, (11.15)

whereC is the controller transfer function. Le be the slope of the gain curve
at the crossover frequency. Sinégp(iw)| = 1 it follows that

_ dlog|L(iw)| _ dlog|Pnp(iw)C(iw)|

Nae =
g¢ dlogw | “ dlogw oy
= C = C

Assuming that the slopeyc is negative it has to be larger thai? for the system
to be stable. It follows from Bode’s relations, equatior8f9that

argPmp(iw) +argC(iw) ~ ngcg .
Combining this with equation (11.15) gives the followingguality for the allow-
able phase lag

—argPap(ite) < TT— G-+ Ngey =1 1. (11.16)

5=
This condition, which we call therossover frequency inequaljtghows that the
gain crossover frequency must be chosen so that the phaskthegnon-minimum
phase component is not too large. For systems with high tobss require-
ments we may choose a phase margin of @, = 71/3) and a slopeég. = —1,
which gives an admissible phase lgg= 11/6 = 0.52rad (30). For systems
where we can accept a lower robustness we may choose a phage nfad5
(¢m = 11/4) and the slopegc = —1/2, which gives an admissible phase Ihg=
/2= 1.57 rad (90).

The crossover frequency inequality shows that non-miniminasp compo-
nents impose severe restrictions on possible crossovgrdreies. It also means
that there are systems that cannot be controlled with suffisibility margins.
The conditions are more stringent if the process has an @megmP (i wyc), as we
shall see in the next chapter. We illustrate the limitatioresnumber of commonly
encountered situations.

Example 11.7 Zero in theright half plane
The non-minimum phase part of the process transfer functia ystem with a
right half plane zero is

z—s
Pap(s) = Py
wherez > 0. The phase lag of the non-minimum phase part is
—argPyp(iw) = 2arctan§.
Since the phase d¥;, decreases with frequency, the inequality (11.16) gives the
following bound on the crossover frequency:

Wye < ztan(¢,/2). (11.17)
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With ¢, = 11/3 we getwyc < 0.6a. Slow zeros £ small) therefore give stricter
restrictions on possible gain crossover frequencies tastrzeros. O

Time delays also impose limitations similar to those givgrzéros in the right
half plane. We can understand this intuitively from the agpnation
o ST A, l1-st
1+st’

Example 11.8 Polein theright half plane
The non-minimum phase part of the transfer function for aesgswith a pole in
the right half plane is

S+p
P ="
ap(s) S p7
wherep > 0. The phase lag of the non-minimum phase part is
¢ = —argPyp(iw) = 2arctanc%
and the crossover frequency inequality becomes
p
> — . 11.18
4 (g1 /2) (H-19)

Right half plane poles thus require that the closed loopesydtave sufficiently
high bandwidth. Withp, = 11/3 we getwy > 1.7p. Fast right half plane poleg(
large) therefore gives stricter restrictions on possilam grossover frequencies
than slow poles. Control of unstable systems imposes reqeints for process
actuators and sensors. O

Since a zero in the right half plane gives an upper limit to ttf@evable gain
crossover frequency it follows that zeros far to the rightegsmall limitations
but that zeros close to the origin imposes severe limitatiofhe situation with
right half plane poles is different because a pole imposesvearllimit to the gain
crossover frequency and poles far to the right require syst&ith a high gain
crossover frequency. It can thus be expected that systethspaies and zeros
cannot be controlled robustly if the poles and zeros are lasec

A straightforward way to use the crossover frequency inkigua to plot the
phase of the non-minimum phase fadyp of the process transfer function. Such
a plot will immediately show the permissible gain crossdvequencies. An illus-
tration is given in Figure 11.13 which shows the phas@sgffor systems with a
right half plane pole-zero pair and systems with a right pkhe pole and a time
delay. If we require that the phase lagof the nonminimum phase factor should
be less than 90 deg we must require that the ratis larger than 6 or smaller
than 1/6 for system with right half plane poles and zeros hatlthe producpr is
less than 0.15 for systems with a time delay and a right hatigpole. Notice the
symmetry in the problem far> pandz < p: in either case the zeros and the poles
must be sufficiently far apart (Exercise 11.13). Also notic fhossible values of
the gain crossover frequenay are quite limited.
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Figure 11.13: Example limitations due to the crossover frequency inequality. The figure
illustrates limitations by showing the phase of the minimum phase fa&gipof transfer
functions. All systems have a right half plane polesat 1. The system in (a) has zeros at
s=2,5, 10, 20 and 50 (full lines) and at= 0.5, 0.02 0.1 0.05 and 0.02 (dashed lines). The
system in (b) has time delays= 0.05 0.1, 0.2 0.5 and 1.

As the examples above show, right half plane poles and zegoi$isantly limit
the achievable performance of a system, hence one woultbléeoid these when-
ever possible. The poles of a system depend on the intrinsiandics of the sys-
tem and are given by the eigenvalues of the dynamics matoika linear system.
Sensors and actuators have no effect on the poles; the onlyoaghange poles
is to redesign the system. Notice that this does not imply tihatable systems
should be avoided. Unstable system may actually have aalyasit one example
is high performance supersonic aircraft.

The zeros of a system depend on the how sensors and actuatcmugted to
the states. The zeros depend on all the mat#cd® C andD in a linear system.
The zeros can thus be influenced by moving sensors and actoatoysadding

sensors and actuators. Notice that a fully actuated syBtenh does not have any
Zeros.

Example 11.9 Balance system
As an example of a system with both right half plane poles &nds; consider the
balance system with zero damping, whose dynamics are giwen b

ml
Hor = M — 122 + mgimt
— s +mgl
HpF =

(= (Mg — mPI2)? + mgIM) -

Assume that we want to stabilize the pendulum by using thiepeesition as the
measured signal. The transfer function from the input férde the cart position
p has poles[0,0,++/mgIM /(Mg — m?I12)} and zerog{++/mgl/3}. Using the
parameters in Example 6.7, the right half plane pole i3at2.68 and the zero is
atz=2.09. The pole is so close to the zero that the system cannot lhebed
robustly. Using Figure 11.13, we see that the amount of aableyphase margin
for the system is very small if we desire a bandwidth in theyeaof 2—4 rad/s.
The right half plane zero of the system can be eliminated byging the
output of the system. For example, if we choose the outpubtoespond to a
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position at a distanaealong the pendulum, we haye= p—r sin@ and the transfer
function for the linearized output becomes

(mlr — )% 4+ mgl
(=M —PI2)2+ mgiM) -

If we choose sufficiently large themlr — J; > 0 and we eliminate the right half
plane zero, obtaining instead two pure imaginary zeros.e Nt = J+ ml?
and so if the inertia of the penduludnis nonzero themlr — J > 0 requires > I,
indicating that our output must correspond to a point abbeecenter of mass of
the pendulum.

If we choose such thamnlr — J > 0 then the crossover inequality is based just
on the right half plane pole (Example 11.8). If our desiredsghlag is¢, = 45°
then our gain crossover must satisfy

Hyr = Hpr —IrHgr =

p
=268
“c > tang, /2 o8
Assuming that our actuators have sufficiently high bandwid#ly a factor of 10
abovewyc or roughly 4 Hz, then we can provide robust tracking up to fres
quency.

O

Bode’s Integral Formula

In addition to providing adequate phase margin for robustibty, a typical con-
trol design will have to satisfy performance conditions lo@ $ensitivity functions
(Gang of Four). In particular the sensitivity functi®= 1/(1+ PC) represents
disturbance attenuation and also relates the tracking etoathe reference signal:
we usually want the sensitivity to be small over the rangeexfdiencies where we
want small tracking error and good disturbance attenuafidmasic problem is to
investigate ifS can be made small over a large frequency range. We will syart b
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first order geoaed a proportional
controller. Let the loop transfer function be

_k
s+ 1
where parametekis the controller gain. The sensitivity function is

s+1
S(s) = s+1+k

. 1+ w?
i)l = \/1+2k+k2+w2'

L(s) = PC

and we have
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This implies thatS(iw)| < 1 for all finite frequencies and that the sensitivity can
be made arbitrary small for any finite frequency by makirsgfficiently large. [

The system in Example 11.10 is unfortunately an exception. Eyddature
of the system is that the Nyquist curve of the process is cetelyl contained in
the right half plane. Such systems are calpeditive real For these systems the
Nyquist curve never enters the unit disk centered-at(the region is shown in
Figure 11.6) where the sensitivity is greater than one.

For typical control systems there are unfortunately secerestraints on the
sensitivity function. The following theorem, due to Bodeowides insights into
the limits of performance under feedback.

Theorem 11.1 (Bode’s integral formula)Let S's) be the sensitivity function for
a feedback system and assume that it goes to zero fasted flsdfior large s. If
the loop transfer function has poleg im the right half plane then the sensitivity
function satisfies the following integral:

* , * 1
/o Iog]S(lco)|dm_/0 Iog|1+L(iw>’dw_nz Pk (11.19)

Equation (11.19) implies that there are fundamental linutest to what can
be achieved by control and that control design can be vieweal r@distribution
of disturbance attenuation over different frequenciespadrticular, this equation
shows that if the sensitivity function is made smaller fomgdfrequencies it must
increase at other frequencies so that the integral ofS0@)| remains constant.
This means that if disturbance attenuation is improved infogmguency range it
will be worse in another, a property sometime referred tinasvaterbed effectit
also follows that systems with open loop poles in the right plane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded asoaservation law if the loop transfer
function has no poles in the right half plane the equatiorpéfias to

/Owlog|S(iw)|dw:0.

This formula can be given a nice geometric interpretationllastiated in Fig-
ure 11.14, which shows Id§(iw)| as a function otv. The area over the horizontal
axis must be equal to the area under the axis when frequepbytisd on dinear
scale. Thus if we wish to make the sensitivity smaller up toesfeguencyosc we
must balance this by increased sensitivity abaye Control system design can be
viewed as trading the disturbance attenuation at somedrages for disturbance
amplification at other frequencies.

There is an analogous result for the complementary sengifiuiction which

tells that
® log|T (iw)] 1
—————dw=n) — 11.20
| =5 55 (11.20)
where the summation is over all right half plane zeros. Noti@t slow right half

plane zeros are worse than fast ones and that fast right laalké poles are worse
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Figure11.14: Interpretation of thevaterbed effectThe function logS(iw)| is plotted versus
win linear scales in (a). According to Bode’s integral formula (11.19pitea of lodS(iw)|
above zero must be equal to the area below zero. Gunter Stein’s ettipn of design as a
trade-off of sensitivities at different frequencies is shown in (Br{f{181]).

than slow ones.

Example 11.11 X29 aircr aft

As an example of the application of Bode’s integral formwa, present an anal-
ysis of the control system for the X-29 aircraft (see Figurel®), which has an
unusual configuration of aerodynamic surfaces that are weditp enhance its
maneuverability. This analysis was originally carried outGunter Stein in his
article “Respect the Unstable” [181], which is also the sewf the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parasrtbedrdescribe
the key properties of the system. The X-29 has longitudinaadyics that are very
similar to the inverted pendulum dynamics (Examp® and, in particular, have
a pair of poles at approximately= +6 and a zero at= 26. The actuators that
stabilize the pitch have a bandwidth@f = 40 rad/s and the desired bandwidth of
the pitch control loop isn = 3 rad/s. Since the ratio of the zero to the pole is only
4.3 we may expect that is may be difficult to achieve the spetifits.

To evaluate the achievable performance, we seek to choesettitrol law such
that the sensitivity function is small up to the desired haidth and has a value
of no greater thamMs beyond that value. Because of the Bode integral formula,
we know thatMs must be greater than 1 to balance the small sensitivity at low
frequency. We thus ask whether or not we can find a control&riths the shape
shown in Figure 11.15b and seek to find the smallest vali dfat achieves this.
Note that the sensitivity above the frequenayis not specified since we have no
actuator authority at that frequency. However, assumiatttie process dynamics
fall off at high frequency, the sensitivity at high frequgmnill approach 1. Thus,
we desire to design a closed loop system that has low setysdivfrequencies
below cy and sensitivity that is not too large betwemnand ws.

From Bode’s integral formula, we know that whatever congmolve choose,
equation (11.19) must hold. We will assume that the seitsifiunction is given
by

wMs

. W< W
\S(Iwﬂ:{M‘*’l
S O-)lﬁwﬁwaa
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Figure 11.15: X-29 flight control system. The aircraft makes use of forward swépgs
and a set of canards on the fuselage to achieve high maneuverabiligyfigtine on the
right shows the desired sensitivity for the closed loop system. We seedetour control
authority to shape the sensitivity curve so that we have low sensitivity (geddrmance)
up to frequencyw; by creating higher sensitivity up to our actuator bandwidgh

corresponding Figure 11.15b. If we further assume thég)| < 5/w? for fre-
guencies larger than the actuator bandwidth, Bode’s intégrcomes

o wa
/ Iog|S(iw)|dw:/ log|S(ie)|dew+ &
0 0

w
:/o log wal\)ilsdw+(a)a—a>l)long+5: Tp.

If we ignore the small contribution from, we can solve foMs in terms of the
remaining parameters of the system,

Mg = lP+an)/@a,

This formula tells us what the achievable valuévfwill be for the given control
specifications. In particular, using= 6, wy = 3 andw, = 40 rad/s we get that
Ms = 1.75, which means that in the range of frequencies betweeand w;,
disturbances at the input to the process dynamics (suchrad will be amplified
by a factor of 175 in terms of their effect on the aircraft.

Another way to view these results is to compute the phaseimtrgt corre-
sponds to the given level of sensitivity. Since the peak seitginormally occurs
at or near the crossover frequency, we can compute the praggnnsorrespond-
ing to Ms = 1.75. As shown in Exercise 11.16 the maximum achievable phase
margin for this system is approximately°3%vhich is below the usual design limit
in aerospace systems of“431ence for this system it is not possible to obtain high
performance and robustness at the same time, unless moacauthority is
available.

O
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Figure 11.16: Contour used to prove Bode’s theorem. For each right half plane psle w
create a path from the imaginary axis that encircles the pole as shown iguhe Tio avoid
clutter we have shown only one of the paths that enclose one right ha#f.plan

@ Derivation of Bode’s Formula

This is a technical section which requires some knowledgéetiieory of com-
plex variables, in particular contour integration. Assuthat the loop transfer
function has distinct poles at= pg in the right half plane and thai(s) goes to
zero faster than /sfor large values o§.

Consider the integral of the logarithm of the sensitivitpétionS(s) = 1/(1+
L(s)) over the contour shown in Figure 11.16. The contour enclogesght half
plane except the poins= px where the loop transfer functidn(s) = P(s)C(s)
has poles and the sensitivity functi&ts) has zeros. The direction of the contour
is counter-clockwise.

The integral of the log of the sensitivity function aroundsthbntour is given

by
—iR
/r log(S(s)) ds— /iR log(S(s)) ds-+ /R 0g(S(9))ds+ Y /y log(S(s)) ds

=l1+1l2+13=0,

whereR is a large semicircle on the right angd is the contour starting on the
imaginary axis as= Im px and a small circle enclosing the pghg. The integral
is zero because the function I8g) is regular inside the contour. We have

= —i/_iR log(S(iw))dew = —2i /OiRIog(|S(iw)|)dw

iR
because the real part of I8 w) is an even function and the imaginary part is an
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odd function. Furthermore we have
12— [ log(S(s))ds— [ log(L+L(s))ds~ [ L(s)ds
R R R

SinceL (s) goes to zero faster thary4dfor larges the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integrl). For this purpose we split the contour into three
partsX., yandX_ as indicated in Figure 11.16. We can then write the integral as

|3:/X+ IogS(s)ds—k/ongS(s)ds+/X logS(s)ds

The contoury is a small circle with radius around the polgy. The magnitude of
the integrand is of the order logand the length of the path ig®. The integral
thus goes to zero as the radiugoes to zero. Furthermore, making use of the fact
thatX_ is oriented oppositely fronX., we have

./x+ logS(s)ds+ /x, logS(s)ds= / (logS(s) —logS(s— 2mi) ds= 27py.

Xy
Since|S(s)| = |S(s— 2mi)| we have

logS(s) —logS(s— 2mi) = argS(s) — argS(s— 271 ) = 211

and we find that
I3 = 2m2 py

Letting the small circles go to zero and the large circle gafmity and adding
the contributions from all right half plane poleg gives

R
I+ 1o+15 = —2i/ l0g/Stie)|dw + 3 27 =0
0

which is Bode’s formula (11.19).

11.6 DESIGN EXAMPLE

In this section we carry out a detailed design example thadtibtes the main
techniques in this chapter.

Example 11.12 L ateral control of a vectored thrust aircr aft

The problem of controlling the motion of a vertical take ofddanding (VTOL)
aircraft was introduced in Example 2.9 and in Example 11.6 revive designed a
controller for the roll dynamics. We now wish to control thasfiion of the aircraft,
a problem that requires stabilization of both the attitude position. To control
the lateral dynamics of the vectored thrust aircraft, we enade of a “inner/outer”
loop design methodology, as illustrated in Figure 11.17. @agram shows the
process dynamics and controller divided into two compasiean “inner loop”
consisting of the roll dynamics and control and an “outeiploconsisting of the
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Figure 11.17: Inner/outer control design for a vectored thrust aircraft. The innap t4
controls the roll angle of the aircraft using the vectored thrust. The dogr controller
Co, commands the roll angle to regulate the lateral position. The procesmiymare de-
composed into inner loo?() and outer loopR,) dynamics, which combine to form the full
dynamics for the aircraft.

lateral position dynamics and controller. This decompositiollows the block
diagram representation of the dynamics given in Exercisk. 8.1

The approach that we take is to design a contrd@jdor the inner loop so that
the resulting closed loop systeirh provides fast and accurate control of the roll
angle for the aircraft. We then design a controller for theri position that uses
the approximation that we can directly control the roll ang$ an input to the dy-
namics controlling the position. Under the assumptionttiatynamics of the roll
controller are fast relative to the desired bandwidth ofléteral position control,
we can then combine the inner and outer loop controllersta gangle controller
for the entire system. As a performance specification for titeessystem, we
would like to have zero steady state error in the lateraltiprsia bandwidth of
approximately 1 rad/s and a phase margin of. 45

For the inner loop, we choose our design specification to geotrie outer loop
with accurate and fast control of the roll. The inner loop dyitws are given by

r
Jg+cs

We choose the desired bandwidth to be 10 rad/s (10 times tee loop) and the
low frequency error to be no more than 5%. This specificatioraisfed using
the lead compensator of Example 11.6 designed previouslyesmhoose

S+a

PI :HGU]_:

i(s) =k—— =2 =2 k=1
C(s=ks a=2 b=25
The closed loop dynamics for the system satisfy
G GR _ G(1—mgR)

Hi = —m
'“1ycR "Y1rGR T 11GR

A plot of the magnitude of this transfer function is shown igudtie 11.18 and we
see that it is a good approximation up to 10 rad/s.
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Figure 11.18: Outer loop control design for a vectored thrust aircraft. The outer &mp
proximates the roll dynamics as a state gaimg The Bode plot for the roll dynamics
are shown on the right, indicating that this approximation is accurate up toxapyately
10 rad/s.

To design the outer loop controller, we assume the inner toticontrol is
perfect, so that we can talfy as the input to our lateral dynamics. Following the
diagram shown in Exercise 8.11, the outer loop dynamics cawritten as

~ Hi(0)
- omg’
where we replacel; (s) with H;(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, thipr@ximation may
not be valid and so we must verify this when we complete ouigdes

Our control goal is now to design a controller that gives zteady state error
in X and has a bandwidth of 1 rad/s. The outer loop process dynarécgiven
by a second order integrator and we can again use a simpledtesapensator to
satisfy the specifications. We also choose the design sutlthimdoop transfer
function for the outer loop hd&,| < 0.1 for w > 10 rad/s so that thid; dynamics
can be neglected. We choose the controller to be of the form

St8
s+by’

with the negative sign to cancel the negative sign in theggsdynamics. To find

the location of the poles, we note that the phase lead flatierest @approximately
b/10. We desire phase lead at crossover and we desire the eosg@y =

1 rad/s, so this givels, = 10. To insure that we have adequate phase lead, we must
chooses, such thab,/10 < 10a, < by, Which implies that, should be between

0.1 and 1. We chooss = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude one. A simpitalation shows that

ko = 0.8 satisfies this objective. Thus, the final outer loop contrdimomes

P(s) = Hi(0)Rs(s)

Co(5) = ko

s+0.3
Co(s) =0.8 ST 10"
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Bode Diagram Nyquist Diagram
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bodeg an
Nyquist plots for the transfer function for the combined inner and outsy teansfer func-
tions are show. The system has a phase margin‘©©a68 a gain margin of 6.2.

Finally, we can combine the inner and outer loop controllers gerify that
the system has the desired closed loop performance. The Bodsyauist plots
corresponding to Figure 11.17 with the inner and outer loagrodlers is shown
in Figure 11.19 and we see the specifications are satisfied. itficagddve show
the Gang of Four in Figure 11.20 and we see that the transfetifuns between
all inputs and outputs are reasonable.

The approach of splitting the dynamics into an inner and datgy is common
in many control applications and can lead to simpler dedignsomplex systems.
Indeed, for the aircraft dynamics studied in this examjles, very challenging to
directly design a controller from the lateral positioto the inputu;. The use of
the additional measurement @fgreatly simplifies the system requirements allows
the design to be broken up into simpler pieces.

O

11.7 FURTHER READING

Design by loop shaping was a key element of the early devedopof control and
systematic design methods were developed, see James|NaciaaPhilips [108],,
Chestnut and Mayer [51], Truxal [190], and Thaler [187]. Lobping is also
treated in standard textbooks such as Franklin, Powell and Efdagini [80],

Dorf and Bishop [60], Kuo and Golnaraghi [130] and Ogata [1%8/stems with
two degrees of freedom were developed by Horowitz [102], also discussed
limitations of poles and zeros in the right half plane. Funeatal results on lim-
itations are given in Bode [41]; more recent presentatisag@und in Goodwin,
Graebe and Salgado [88]. The treatment in Section 11.5 is basfdpb Much

of the early work was based on the loop transfer function;inifgortance of the
sensitivity functions appeared in connection with the ttgwment in the 1980s
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Figure 11.20: Gang of Four for vector thrust aircraft system.

which resulted in the so calleid,, design methods. A compact presentation is
given in the text by Doyle, Frances and Tannenbaum [63] and ,Zboyle and
Glover [203]. Loop shaping was integrated with the robustm@btheory in Mac-
Farlane and Glover [137] and Vinnicombe [192]. Comprehaensieatments of
control system design are given in Maciejowski [138] and &wio, Graebe and
Salgado [388].

EXERCISES

11.1 Consider the system in Figure 11.1 give all signal pairs whighrelated by
the transfer functions/A1+ PC), P/(1+PC), C/(1+ PC) andPC/(1+ PC).

11.2 (Cancellation of unstable process pole) Consider the syst&xample 11.1.
Choose the parametas= —1 compute time and frequency responses for all trans-
fer functions in the Gang of Four for controllers wikh= 0.2 andk = 5.

11.3 (Equivalence of Figure 11.1 and 11.2) Show that the system inré&igyii. 1
can be represented by 11.2 by proper choise of the mattitesd% .

11.4 (Sensitivity of feedback and feedforward) Consider theesysh Figure 11.1,

let Gy, be the transfer function relating measured sigrtal reference. Compute
the sensitivities oGy, with respect to the feedforward and feedback transfer func-
tionsF andC (dGy,/dF anddGy,/dC).
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11.5 (Equivalence of controllers with two degrees of freedom) Sttt the sys-
tems in Figure 11.1 and Figure 11.3 give the same responsesioaad signals

11.6 (Rise-time-bandwidth product)Prove Consider a stablesgystith the trans-g%
fer functionG(s), whereG(0) = 1. Define the rise timd; as the inverse of the
largest slope of the step response and the bandwidtl as(1/2) [ |G(iw)|dw.
Show thatwsT, > 1.

11.7 Regenerate the controller for the system in Example 11.6 ardhe fre-
qguency responses for the Gang of Four to show that the peafurenspecification
is met.

11.8 Let f(t) = f(0) +tf'(0) +t2/2f"(0) +--- be a Taylor series expansion @
the time functionf, show that

E(s) :%f(0)+éf'(0)+%f”(0)+---

11.9 Exercise 11.8 shows that the behavior of a time function falkins related
to the Laplace transform for large Show that the behavior of a time function f
larget is related to the Laplace transform for snall

11.10 Consider the feedback system shown in Figure 11.1. Assurhththeefer-
ence signal is constant. Lg$ be the measured output when there is no feedback
andy. be the output with feedback. Show that

Yei(s) = S(s)Yoi(9)

whereSis the sensitivity function.
11.11 (Approximate expression for noise sensitivity) Show thateffect of noise
on the control signal for the system in Exercise 11.4 can becappated by

kyqs
(sTa)?/2+sTy+1
Show that using this approximation the largest valufc&iw)| is kg/Ts and that
it occurs forw = /2/Ts.
11.12 Show that the nonminimum phase part of the transfer fundéiene ST

for a time delay has the the phase kag which implies that the gain crossover
frequency must be chosen so thatT < ¢,. Also use the approximatiogr ST ~

igﬁ so show that a time delay is similar to a system with a right plaihe zero

ats=2/T. A slow zero thus corresponds to a long time delay.

CS~C~

11.13 (The pole zero ratio) Consider a process with the transfeatiom
a—s
—k—"
s—b
with positivea andb. Show that the the closed loop system with unit feedback is
eitherb/a<k<lorl<k<b/a

P(s)
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11.14 (Pole in the right half plane and time delay) The non-minimuragehpart of
the transfer function for a system with one pole in the righif plane and a time
delayT is

S+P__sT
——e .
S—p
Using the gain crossover inequality, compute the limits lua achievable band-
width of the system.

Pamp(S) = (11.21)

11.15 (Integral formula for complementary sensitivity) Prove thamula (11.20)
for the complementary sensitivity.

11.16 (Phase margin formulas) Show that if the relationship betwberphase
margin and the magnitude of the sensitivity function at soeer is given by
1

11.17 (Limitations on achievable phase lag) Derive analyticatfolas correspond-
ing to the plots in Figure 11.13.

11.18 (Design of a PI controller) Consider a system with processsfex function
1

P(s) = ———— 11.22
and a Pl controller with the transfer function
ki 1+sT

C(s)=ky+—=k

( ) p"' S sT
The controller has high gain at low frequencies and its pregesinegative for all
parameter choices. To achieve good performance it is désita have large gain
at low frequencies and a high crossover frequency.

11.19 (Stabilization of inverted pendulum with visual feedbaclgnSider stabi-
lization of an inverted pendulum based on visual feedbadkgua video cam-
era with 50 Hz frame rate. Let the effective pendulum length.bdse the gain
crossover inequality to determine the minimum length ofd@edulum that can be
stabilized if we desire a phase lggof no more than 9Q



