Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthéon between
force on a spring and displacement of the spring is always nonlinear t@ stagree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablyinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

R. CannonpPynamics of Physical Systeni967 [49].

In Chapters 2—4 we considered the construction and anaty<sigferential
equation models for dynamical systems. In this chapter weiafize our results
to the case of linear, time-invariant, input/output systerwo central concepts
are the matrix exponential and the convolution equatiorguth which we can
completely characterize the behavior of a linear system.alde describe some
properties of the input/output response and show how tooxppate a nonlinear
system by a linear one.

5.1 BASIC DEFINITIONS

We have seen several instances of linear differential @nsin the examples of
the previous chapters, including the spring-mass systamgeéd oscillator) and
the operational amplifier in the presence of small (non-a#ing) input signals.
More generally, many dynamical systems can be modeled aetyby linear dif-
ferential equations. Electrical circuits are one example lofoad class of systems
for which linear models can be used effectively. Linear msagk also broadly
applicable in mechanical engineering, for example as nsoofesmall deviations
from equilibria in solid and fluid mechanics. Signal procegsystems, including
digital filters of the sort used in CD and MP3 players, are anatbarce of good
examples, although often these are best modeled in didoret€as described in
more detail in the exercises).

In many cases, wereatesystems with linear input/output response through
the use of feedback. Indeed, it was the desire for lineanbehthat led Harold S.
Black to the invention of the negative feedback amplifier. 8$trall modern single
processing systems, whether analog or digital, use fe&dbgeroduce linear or
near-linear input/output characteristics. For theseesyst it is often useful to
represent the input/output characteristics as linealrigg the internal details
required to get that linear response.
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For other systems nonlinearities cannot be ignored, eslbedi one cares
about the global behavior of the system. The predator-prelyl@m is one exam-
ple of this: to capture the oscillatory behavior of the idegendent populations
we must include the nonlinear coupling terms. Other examplelude switch-
ing behavior and generating periodic motion for locomatiBlowever, if we care
about what happens near an equilibrium point, it often sidficeapproximate
the nonlinear dynamics by their lodalearization as we already explored briefly
in Section 4.3. The linearization is essentially an approXionaof the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systemseriormally. Con-
sider a state space system of the form

dx = f(x,u), y = h(x,u), (5.1)
dt

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually

restrict ourselves to the single input, single output castakingp=q= 1. We

also assume that all functions are smooth and that for amaagoclass of inputs

(e.g., piecewise continuous functions of time) that theitsohs of equation (5.1)

exist for all time.

It will be convenient to assume that the origin= 0, u= 0 is an equilibrium
point for this systemx = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose {ixatue) # (0,0) is an equilibrium point
of the system with outpute = h(xe,Ue). Then we can define a new set of states,
inputs and outputs

X=X—% UO=uU-Us V=Yy-VYe
and rewrite the equations of motion in terms of these vagibl

—X
dt N
¥=h(X+X%e,0+Ue) —Ye =:h(

Xt
=t

)
).

In the new set of variables, the origin is an equilibrium pauith output 0, and
hence we can carry out our analysis in this set of variablese@e have obtained
our answers in this new set of variables, we simply “traesl#tem back to the
original coordinates using= Xe+ X, U= Ug+ G andy = ye+V.

Returning to the original equations (5.1), now assumindneuit loss of gen-
erality that the origin is the equilibrium point of intereste write the outpuy(t)
corresponding to initial conditior(0) = xo and inputu(t) asy(t;xo,u). Using
this notation, a system is said to béireear input/output systentf the following

= f(R+Xe, U+ Ue) —: f(

)

Xt
o=}
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conditions are satisfied:

() y(t;axi+ Bxz,0) = ay(t; x1,0) + By(t; %2, 0)
(i) y(t; axo,0u) = ay(t; %o, 0) + Oy(t; 0, u) (5.2)
(iii)  y(t;0,0u1+ yup) = SY(t; 0,uz) + yy(t; 0, u2).

Thus, we define a system to be linear if the outputs are jointlsal in the initial
condition response and the forced response. Property (iigisisual decomposi-
tion of a system response into the homogeneous resporse)(and the particular
responsexp = 0). Property (iii) is the formal definition of therinciple of super-
position

The general form of a linear state space system is

(;(—Ax—i— Bu, y =Cx+Du, (5.3)
whereA € R™" B e R™P, C e R™", D € R¥P. In the special case of a single-
input, single-output system® is a column vectorC is a row vector and is
scalar. Equation (5.3) is a system of linear, first order, diffidal equations with
inputu, statex and outpuy. It is easy to show that given solutiorgt) andxx(t)
for this set of equations, that they satisfy the linearitpditions (Exercise 5.1).

We define the solutiom,(t) with zero input as th@omogeneousolution and
the solutiorxp(t) with zero initial condition as thparticular solution. Figure 5.1
illustrates how the homogeneous and particular solutiansbe superimposed to
form the complete solution.

It is also possible to show that if a finite dimensional dynahgystem is in-
put/output linear in the sense we have described, that ititveays be represented
by a state space equation of the form (5.3) through apptepciacice of state
variables. In Section 5.2 we will give an explicit solutionezfuation (5.3) but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first order differential equation

— =ax+u, y=X

with x(0) = Xo. Letu; = Asinwit andu; = Bcoswyt. The homogeneous solution
is Xn(t) = €¥'xg, and the two particular solutions are

—w €+ wy coswt + asinowgt
a2+ w7
ae! — acoswpt + wp Sinwpt
as+ w5

Suppose that we now choog€)) = axp andu = u; + Up. Then the resulting
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Figure 5.1: Superposition of homogeneous and particular solutions. The first mowss
the input, state and output corresponding to the initial condition respoitesé&cond row
shows the same variables corresponding to zero initial condition, baen@input. The
third row is the complete solution, which is the sum of the two individual solutions

solution is
A Ba
x(t):eat<orxo+ 5 w12+ 5 2)
a“+w a+w
_AwlcosahtJrasinwlt B—acoswzt+cozsinw2t

5.4
a2+ w? a2+ w3 >4)

To see this, substitute equation (5.4) into the differéeigation. Thus, the prop-
erties of a linear system are satisfied. O

Time Invariance

Time invarianceas an important concept that is used to describe a systemewvhos
properties do not change with time. More precisely, for aetimvariant system
if the input u(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amouat u(t + a) gives the outpuy(t +a). Systems
that are linear and time-invariant, often calledl systemshave the interesting
property that their response to an arbitrary input is coteplecharacterized by
their response to step inputs or their response to shortuiiseg”.

To explore the consequences of time-invariance, we first cberibe response
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant signakcan
represented as a sum of step signals (a) and the resulting output is ttoé thenindividual
outputs (b).

to a piecewise constant input. Assume that the system ialipiait rest and con-
sider the piecewise constant input shown in Figure 5.2a. Tinat inas jumps at
timesty and its values after the jumps anéy). The input can be viewed as a
combination of steps: the first step at titgehas amplitude(tp), the second step
at timet; has amplitudei(t;) — u(tp), etc.

Assuming that the system is initially at an equilibrium gdigo that the initial
condition response is zero), the response to the input cabtiad@ed by superim-
posing the responses to a combination of step inputsHI(Btbe the response to
a unit step applied at time 0. The response to the first steprsHliie— to)u(to),
the response to the second stepi& —t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t) = H(t —to)u(to) + H(t — tl) (u(tz) — u(to)) + - --
(H(t) H(t_tl) (H(t—tl t—tz))u(tl)+...
)

(2]

— ZJ(H(t—tn) H(t—thi1))u(tn)

2 H(t—tn) —H(t -t
n= tn+1 —tn

An example of this computation is shown in Figure 5.2.
The response to a continuous input signal is obtained by datkia limit as
the1—ty — 0, which gives

. /OOOH’(t—T)u(T)dT, (5.5)

whereH’ is the derivative of the step response, also calledripilse response
The response of a linear time-invariant system to any inputicas be computed
from the step response. Notice that the output only depemdseoinput since we
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assumed the system was initially at re$0) = 0. We will derive equation (5.5) in
a slightly different way in the next section.

5.2 THE MATRIX EXPONENTIAL

Equation (5.5) shows that the output of a linear system carritewas an integral
over the inputsi(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial condition&e begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set ded#htial equations
defines a linear input/output system, we have not fully corgbtihe solution of
the system. We begin by considering the homogeneous respongsponding to
the system
dx
dt
For thescalardifferential equation

= AX (5.6)

X = ax xeR, aeR
the solution is given by the exponential

x(t) = €¥x(0).

We wish to generalize this to the vector case, whiebecomes a matrix. We define
thematrix exponentiahs the infinite series

_ 1 2 3
e = |+x+2x+ x %k' , (5.7)

whereX € R™"is a square matrix andis then x nidentity matrix. We make use
of the notation
X0=1 X?=XX X"=x"1X,

which defines what we mean by the “power” of a matrix. Equatiai)(& easy
to remember since it is just the Taylor series for the scalpoeential, applied to
the matrixX. It can be shown that the series in equation (5.7) conveiwesany
matrix X € R™" in the same way that the normal exponential is defined for any
scalara € R.

ReplacingX in equation (5.7) byAt wheret € R we find that

1 1 ® 1
M= | LAt AR A = > .\l
2 3! Lok
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and differentiating this expression with respect gives
d 1 > 1
— M= AL A+ AN =AY AR = A 5.8
dt TATEGAT =AY 8

Multiplying by x(0) from the right we find thax(t) = €*x(0) is the solution to the
differential equation (5.6) with initial conditiox(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6)is given by
x(t) = éMx(0).

Notice that the form of the solution is exactly the same asfatar equations,
but we must put the vectox0) on the right of the matrix™!.

The form of the solution immediately allows us to see that theton is linear
in the initial condition. In particular, iky (t) is the solution to equation (5.6) with
initial condition x(0) = Xp1 andxnz2(t) with initial condition x(0) = xg2, then the
solution with initial conditionx(0) = axo1+ BXoz IS given by

X(t) = M (axo1+ Bxoz) = (A€ %o1+ BEMX02) = aXp(t) + BXna(t).
Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = ayn(t) + Byn2(t),

whereyp (t) andyno(t) are the outputs correspondingXq (t) andxn(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful for understandiagic concepts is the
second order system given by

G=u
y=a

This system system is calleddauble integratobecause the inputis integrated
twice to determine the outpyt
In state space form, we write= (qg,q) and

dx_ (0 1) . (0],
dt— (0 O 1)~

The dynamics matrix of a double integrator is

01
A—[oo

and we find by direct calculation thAZ = 0 and hence

“n (s
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Thus the homogeneous solutian= 0) for the double integrator is given by

- (3 3) (28] - (5
y(t) = x1(0) +1tx2(0).

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring-mastesysvith zero damp-
ing, is

G+ wfg=u.
Putting the system into state space form, the dynamics nfatrihis system can
be written as

A 0 w and At _ co_swot sinapt '
—wy O —Sinapt  cosant

This expression foe™ can be verified by differentiation:

Ee/“— —wpSinapt  wp Cosupt
dt = = | —apcoswpt  —wpSinupt

_ 0 w co_swot sinaypt — AX(1),
—wpy O —sSinapt  cosunt

The solution is then given by

cosupt  Sinupt x1(0
x(t) = e'x(0) = [_sinwot coswot] [X;(Og]'

If { # 0 then the solution is more complicated, but the matrix exptial can
be shown to be

Zei“’dt—Ze_iwdt eiwdt_|_e—iaht eiwdt_e—iaht
_|_
plt 2¢/(%2-1 2 2¢/(%2—-1
€ e—ioodt _eioodt Ze—iwdt_zeiwdt eiu)dt+e—ia)dt

2¢/(2—1 2¢/(2—-1 * 2

wherewy = an+/{? — 1. Note thatwy and/{? — 1 can either be real or complex,
but the combinations of terms will always yield a real valoethe entries in the

matrix exponential. O

An important class of linear systems are those that can beecied into diag-
onal form. Suppose that we are given a system

dx
a_Ax

such that all of the eigenvalues Afare distinct. It can be shown (Exercise 4.14)
that we can find an invertible matrik such thaff AT is diagonal. If we choose
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a set of coordinatez= T x, then in the new coordinates the dynamics become

92_ 19X Tax=TAT 12
dt dt
By construction ofT, this system will be diagonal.
Now consider a diagonal matri& and the correspondinkth power ofAt,

which is also diagonal:

A1 0) Atk 0
e mr= | M ,
0 ' An 0 | pING
It follows from the series expansion that the matrix expaia¢is given by
eht 0
e |
0 ot

A similar expansion can be done in the case that the eigegwalte complex,
using a block diagonal matrix, similar to what was done in Bect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transforsmdihgional form.
They can however be transformed to a closely related frorgattieJordan form
in which the dynamics matrix has the eigenvalues along theattial. When there
are equal eigenvalues there may be 1s appearing in the siagendl indicating
that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it tenwritten
as

50 0 o a1 o
0 X 0 '
J= where J = | : oo e (5.9)
8 ;) 0O 0 ... A 1
K 0 0 ... 0 A

Each matrixJ; is called aJordan blockand A; for that block corresponds to an
eigenvalue ofl. A first order Jordan block can be represented as a systenstonsi
ing of an integrator with the feedbadk Jordan of higher order can be represented
as series connections of such systems, as illustrated imeFg8.

Theorem 5.2(Jordan decompositionAny matrix Ac R™" can be transformed
into Jordan form with the eigenvalues of A determiningn the Jordan form.
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X1 X1 X2 X1 X2 X2

A A A A A A

Figure 5.3: Representation of linear system where the dynamics matrix is a Jordda bloc
A first order Jordan block can be represented as an integrator withdekA , as shown on
the left. Second and third order Jordan blocks can be representedess cnnections of
integrators with feedback, as shown on the right.

Proof. See any standard text on linear algebra, such as Strang [188]spEtial
case where the eigenvalues are distinct is examined in Beefcl4. Ol

Converting a matrix into Jordan form can be complicatedaaigh MATLAB
can do this conversion for numerical matrices usingjtbedan function. The
structure of the resulting Jordan form is particularly ieting since there is no
requirement that the individual's be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different size.

Once a matrix is in Jordan form, the exponential of the mataix be computed
in terms of the Jordan blocks:

er 0 ... O

; 0 e* 0

e = (5.10)
o ... 0
o ... ek,

This follows from the block diagonal form af. The exponentials of the Jordan
blocks can in turn be written as

) ) 2 A n-1 )
et telt e L e
0 e et . e
el = Mt : : (5.11)
te}\it
0 elit

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexm@atriNote thatA
may be complex, in which case the transformafiothat converts a matrix into
Jordan form will also be complex. Whenhas a nonzero imaginary component,
the solutions will have oscillatory components since

eI — g% (coswt +i sinwt).

We can now use these results to prove Theorem 4.1, which shatethe equilib-
rium pointxe = 0 of a linear system is asymptotically stable if and only iARe O.
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Proof of Theorem 4.1Let T € C™" be an invertible matrix that transformsnto
Jordan form,) = TAT—. Using coordinatez= T x, we can write the solution(t)
as
z(t) = e%'2(0).

Since any solutiom(t) can be written in terms of a solutia) with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the sérmed coordinates.

The solutiorg(t) can be written as a combination of the elements of the matrix
exponential and from equation (5.11) these elements adlydeczero for arbitrary
z(0) if and only if ReA; < 0. Furthermore, if any; has positive real part, then
there exists an initial conditior(0) such that the corresponding solution increases
without bound. Since we can scale this initial condition tcablgitrarily small, it
follows that the equilibrium point is unstable if any eigahiwe has positive real
part. O

The existence of a canonical form allows us to prove many pti@seof linear
systems by changing to a set of coordinates in whichAheatrix is in Jordan
form. This will be used in Chapters 6 and 7 to design contrellée illustrate
this in the following proposition, which follows along tharae lines as the proof
of Theorem 4.1.

Proposition 5.3. Suppose that the system
X = AX

has no eigenvalues with strictly positive real part and onenore eigenvalues
with zero real part. Then the system is stable if and only if Jbelan blocks
corresponding to each eigenvalue with zero real part ardasdd x 1) blocks.

Proof. Exercise 5.2. O
The following example illustrates the use of Jordan form.

Example 5.4 Linear model of a thrust vectored aircraft.

Consider the dynamics of a thrust vectored aircraft suchatsiescribed in Exam-
ple 2.9. Suppose that we choage= u, = 0, so that the dynamics of the system
become

) \
g Z5
z_ Z5
dt —gsinzz —cz; ’ (5.12)
—g(coszz—1)—cz,
0

\

wherez = (x,y,0,X,y,08). The equilibrium points for the system are given by
setting the velocitiege, Ye and 6, to zero and choosing the remaining variables to
satisfy

—gsinzze=0

= 0.=0.
—g(coszzge—1) =0 — Be=
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————

Figure 5.4: Modes of vibration for a system consisting of two masses connectedimgsp
In (a) the masses move left and right in synchronization in (b) they rnmwards or against
each other.

This corresponds to the upright orientation for the aircrédbte thatxe andye
are not specified. This is because we can translate the systeameww (upright)
position and we still obtain an equilibrium point.

To compute the stability of the equilibrium point, we comptiie linearization
using equation (4.11):

0 0 O 1 0
0 0 O 0 1 O
A:ad—F =10 0 O 0 o 1f.
Xl o 0 -g —¢c 0 0O
0 0 O 0O -c O

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c,—c}.

We see that the linearized system is not asymptoticallyiestgibce not all of the
eigenvalues have strictly negative real part.

To determine with the system is stable in the sense of Lyapume must make
use of the Jordan form. It can be shown that the Jordan forni®fiven by

0|0 0 00O
0/0 1 0/ 0|0
;_|ojoo1folo
~|ojooojo]o
0/0 0 0| —c| 0
0]0 0 0] 0 |—-c

Since the second Jordan block has eigenvalue 0 and is not e®igpnvalue, the
linearization is unstable. O

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pescrof the types of
behavior the system can exhibit. For oscillatory systems térmmodeis often

used to describe the vibration patterns that can occur. &igudrillustrates modes
for a system consisting of two masses connected by springs.p@ttern is when
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both masses oscillate left and right in unison, another isnwthe masses moves
towards and from each other.

The initial condition response of a linear system can be @mrith terms of a
matrix exponential involving the dynamics matéx The properties of the matrix
A therefore determine the resulting behavior of the systefmerGa matrixA €
R™", recall thatv is an eigenvector oA with eigenvalué\ if

Av=AV.

In generald andv may be complex valued, althoughAfis real-valued then for
any eigenvalud , its complex conjugaté * will also be an eigenvalue (withi* as
the corresponding eigenvector).

Suppose first that andv are a real-valued eigenvalue/eigenvector paiXor
If we look at the solution of the differential equation #(0) = v, it follows from
the definition of the matrix exponential that

t 150 A?t? t
v = (I +At+§At +-~-)v:v+)\tv+7v+-~-:e/‘ V.

The solution thus lies in the subspace spanned by the eigenvébe eigenvalue
A describes how the solution varies in time and this solusaften called anode
of the system. (In the literature, the term mode is also ofteed to refer to the
eigenvalue, rather than the solution.)

If we look at the individual elements of the vectorandy, it follows that

Xi (t) _ e/‘tvi

X (t) e“vj '
and hence the ratios of the components of the staige constants for a (real)
mode. The eigenvector thus gives the “shape” of the solutimhig also called
amode shapef the system. Figure 5.5 illustrates the modes for a secouer or
system consisting of a fast mode and a slow mode. Noticeltbattate variables
have the same sign for the slow mode different signs for thienfemde.

The situation is more complicated when the eigenvalued afe complex.
SinceA has real elements, the eigenvalues and the eigenvectorsrapex con-
jugatesA = g +iw andv = u=xiw, which implies that

U V4V We V—V*
2 2
Making use of the matrix exponential, we have

v = eM(u+iw) = e ((ucoswt — wsinwt) +i(usinwt +wcoswt)),

which implies
Mu= %(eAtv+ eAt\f*> — ue’ coswt — wet sincot

My = % (eA‘v— eAtv*) = ue”' sinct + we’t coswt.
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Figure 5.5: lllustration of the notion of modes for a second order system with reahedde
ues. The left figure (a) shows the phase plane and the modes @dssjo solutions that
start on the eigenvectors (bold lines). The corresponding time funai@enshown in (b).

A solution with initial conditions in the subspace spanngdhe real paru and
imaginary partv of the eigenvector will thus remain in that subspace. Thetiepiu
will be a logarithmic spiral characterized lmyand w. We again call the solution
corresponding td a mode of the system anthe mode shape.

If a matrix A has an distinct eigenvalueds, ..., An, then the initial condition
response can be written as a linear combination of the mddesee this, suppose
for simplicity that we have all real eigenvalues with copesding unit eigenvec-
torsvy,...,vh. From linear algebra, these eigenvectors are linearly iewiégnt
and we can write the initial conditiox(0) as

X(O) = 1V1+ d2Vo + - - - + ApVp.
Using linearity, the initial condition response can be teritas
X(t) = ale/\ltvl + azeAthZ 4.4 aneﬁntvn.

Thus, the response is a linear combination the modes of thersywith the am-
plitude of the individual modes growing or decayinged$. The case for distinct
complex eigenvalues follows similarly (the case for nostidcct eigenvalues is
more subtle and requires making use of the Jordan form disdua the previous
section).

Example 5.5 Coupled spring-mass system
Consider the spring-mass system shown in Figure 5.4. Theiegudtmotion of
the system are

My = —2kop — cdp + kep

Moty = ko — 2Kap — CQ2

In state-space form, we define the state tabe(qi, g, d1,¢2) and we can rewrite
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the equations as

0 0 1 0
0 0 0 1
dx 2k Kk C o |x
d | m m m '
k%o, _c
m m m/

We now define a transformatian= T x that puts this system into a simpler form.
Letzy = 3(th + ), 22 = 21, z3 = 3(Ch — ) @ndzs = 3, so that

1 1 0 O
110 0 1 1

Z=Tx=3511 21 0 o0
O 0 1 1
In the new coordinates, the dynamics become
(0 1 0 0
k
-—— —— 0 0
dz_ | m .
dt 0 0 0 1
0 3k c
m m

and we see that the system is in block diagonahfoda) form.

In the z coordinates, the states and z, parameterize one mode with eigen-
valuesA ~ c¢/(2vkm)+i,/k/m, and the statez andz; another mode witiA ~
c¢/(2v/3km) +i,/3k/m. From the form of the transformatioh we see that these
modes correspond exactly to the modes in Figure 5.4, in wdni@mdg, move ei-
ther toward or against each other. The real and imaginarg pathe eigenvalues
give the decay rates and frequencies for each mode. O

5.3 INPUT/OUTPUT RESPONSE

In the previous section we saw how to compute the initial @mmresponse using
the matrix exponential. In this section we derive doavolution equatioypwhich
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (Eeeated here:

dx
at - /xFBu (5.13)

y = Cx+Du.
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Using the matrix exponential, the solution to equation 3p.dan be written as
follows.

Theorem 5.4. The solution to the linear differential equati@b.13)is given by
t
X(t) = x(0) + / At-TBy(T)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp§8r8) of the
matrix exponential. This gives

d t
= Ax(0) + / A-DBU(T)dT + Bu(t) = Ax+ B,
0
which proves the result. Notice that the calculation is esaky the same as for
proving the result for a first order equation. O

It follows from equations (5.13) and (5.14) that the inputfmut relation for a
linear system is given by

y(t) = Ce"x(0) + /Ot ceNt-DBu(T)dT 4 Du(t). (5.15)

It is easy to see from this equation that the output is joititigar in both the
initial conditions and the state, which follows from thedarity of matrix/vector
multiplication and integration.

Equation (5.15) is called theonvolution equatiomand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetbtiy the matrixA,
play a critical role in both the stability and performancetiod system. Indeed,
the matrix exponential describésth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can vemgusing the concept
of theimpulse responsef a system. Consider the application of an input signal
u(t) given by the following equation:

0 t<0
ut) =pe(t) =< 1/e 0<t<e (5.16)
0 t>e¢.

This signal is a “pulse” of duratiom and amplitude Le, as illustrated in Fig-
ure 5.6a. We define ampulse &(t), to be the limit of this signal as — O:

o(t) = l@o Pe(t). (5.17)

This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction for understanding sgorese of a system. Note
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Figure 5.6: Pulse response and impulse response. The figure on the left shizses pti
width 5, 2 and 1, each with total area equal to 1. The corresponding pdpenses for a
linear system with eigenvalugs= {—0.08 —0.62} are shown on the right as solid lines.
The dashed line is the true impulse response, which is well-approximatedpoyse of
duration 1.

that the integral of an impulse is one:

t t t
/0 5(T)d1':.0 lanOpg(t)dr:yLno A pe(t)dr

"€
=lim [ 1/edtr=1 t>0.

e—0.J0
In particular, the integral of an impulse over an arbitgashort period of time is

identically 1.
We define thempulse responsef a systemh(t), to be the output correspond-
ing to having an impulse as its input:

h(t) = /0 tc:ez‘\“—T)EacS(r)olr = Ce'B, (5.18)

where the second equality follows from the fact thét) is zero everywhere except
the origin and its integral is identically one. We can nowtevithe convolution
equation in terms of the initial condition response, thevotution of the impulse
response and the input signal, and the direct term:

y(t) = CeMx(0) + /Ot h(t — )u(t)dT + Du(t). (5.19)

One interpretation of this equation, explored in Exercigge . that the response
of the linear system is the superposition of the response iofmite set of shifted

impulses whose magnitude is given by the inuft). This is essentially the ar-
gument used in analyzing Figure 5.2 and deriving equatids).(9\ote that the

second term in equation (5.19) is identical to equation)(&ril it can be shown
that the impulse response is formally equivalent to thevdévie of the step re-
sponse.
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The use of pulses as an approximation of the impulse respisseravides a
mechanism for identifying the dynamics of a system from daigure 5.6b shows
the pulse responses of a system for different pulse widtlaic®lthat the pulse
responses approaches the impulse response as the pulbegoédt to zero. As
a general rule, if the fastest eigenvalue of a stable systesrdal part-omax,
then a pulse of lengtl will provide a good estimate of the impulse response
E£0max < 1. Note that for Figure 5.6, a pulse width©& 1 s givescOmax = 0.62
and the pulse response is already close to the impulse respon

Coordinate Invariance

The components of the input vectarand the output vectoy are given by the
chosen inputs and outputs of a model, but the state varidelesnd on the coor-
dinate frame chosen to represent the state. This choice oficates affects the
values of the matrice8, B andC that are used in the model. (The direct tebm
is not affected since it maps inputs to outputs.) We now itiyate some of the
consequences of changing coordinate systems.
Introduce new coordinatesby the transformatioz = Tx, whereT is an in-
vertible matrix. It follows from equation (5.3) that
‘;'tz = T(Ax+Bu) = TAT 1z+ TBu=Az+Bu
y=Cx+DU =CT1z+Du =Cz+Du.

The transformed system has the same form as equation (5.8)eburatrice, B
andC are different:

A=TAT !t B=TB C=CT % (5.20)

There are often special choices of coordinate systems tbat as to see a partic-
ular property of the system, hence coordinate transfoonattan be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transfoguedlinates to
that in the original state coordinates. We make use of aniitapbproperty of the

exponential map, .
eTST! _ 1571

which can be verified by substitution in the definition of the @xgntial map.
Using this property, it is easy to show that

X(t) =T 1z(t) = T 1ATx(0) + T2 /0t f-DBu(r)dr.

From this form of the equation, we see that if it is possibleram$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationteruntransformed state
x by simple matrix multiplications. This technique is illLestied in the following
examples.

if
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs with
stiffnessk and a viscous damper with damping coefficienThe mass on the right is drive
through a spring connected to a sinusoidally varying attachment.

Example 5.6 Coupled spring-mass system
Consider the coupled spring-mass system shown in FigureTh&.input to this
system is the sinusoidal motion of the end of rightmost gpaimd the output is the
position of each mass; andg,. The equations of motion are given by

the equations as

(0 0 1 0 0
0 0 0 1 0
dx 2k k c
—=1-= = = o0 |x+]o]u
dt m m m
ko2& oocf (S
m m m m

mMybs = —2kan — gy + Kop
Mol = ko — 2Kep — ¢z + Ku.

In state-space form, we define the state tabe(q1,dp, g1,¢2) and we can rewrite

This is a coupled set of four differential equations and qodmplicated to solve

in analytical form.

The dynamics matrix is the same as in Example 5.5 and we caneiseandi-
nate transformation defined there to put the system in modal: fo

o 1 o0 o0 0
ke 5 k
dz_ m m 2m
gt lo o o 1|*| o |¥
0 o X ¢ _k
m m 2m

Note that the resulting matrix equations are block diagamal hence decoupled.
We can thus solve for the solutions by computing the solstiohtwo sets of
second order systems represented by the staie®) and (z3,z). Indeed, the
functional form of each set of equations is identical to thfad single spring-mass
system.

Once we have solved the two sets of independent second ajdatiens, we
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Figure 5.8: Transient versus steady state response. The left plot shows theargplihear
system and the right plot the corresponding output. The output signallinitizdergoes a
transient before settling into its steady state behavior.

can recover the dynamics in the original coordinates byrting the state trans-
formation and writingc = T 1z We can also determine the stability of the system
by looking at the stability of the independent second orgstesns (Exercise 5.6).

O
Steady State Response
Given a linear input/output system
dx
at = Ax+Bu (5.21)
y = Cx+ Du,

the general form of the solution to equation (5.21) is giventhie convolution
equation:

y(t) = CeMx(0) + /0 tce‘\@—f)Esul(r)olHDu(t).

We see from the form of this equation that the solution cassisan initial condi-
tion response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—theansient responsand steady state re-
sponse The transient response occurs in the first period of time #fieinput
is applied and reflects the mismatch between the initial ¢dmmdand the steady
state solution. The steady state response is the portioreafutput response that
reflects the long term behavior of the system under the giveatsn For inputs
that are periodic the steady state response will often hedierand for constant
inputs the response will often be constant. An example ofrresient and steady
state response for a periodic input is shown in Figure 5.8.

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to another. uAit step(sometimes called the
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and steady sta
value give the key performance properties of the signal.

Heaviside step function) is defined as

0 t=0
1 t>0.

u—S(t)—{

The step responsef the system (5.21) is defined as the outy} starting from
zero initial condition (or the appropriate equilibrium pgiand given a step input.
We note that the step input is discontinuous and hence isnaatigally imple-
mentable. However, it is a convenient abstraction that delyiused in studying
input/output systems.

We can compute the step response to a linear system usinghelation
equation. Setting(0) = 0 and using the definition of the step input above, we
have

t
y(t) = / Ct-DBu(T)dT 4+ Du(t)
0
t
- / CeMt-TBdr 4D t>0.
JO

If A has eigenvalues with negative real part (implying that theim is a stable
equilibrium point in the absence of any input), then we cavrite the solution as

y(t)=CAeB+D-CA B t>0. (5.22)
V- -
transient steady state

The first term is the transient response and decays to zdre-as. The second
term is the steady state response and represents the vatue aditput for large
time.

A sample step response is shown in Figure 5.9. Several termsadewhen
referring to a step response. Téieady state valyeg/ss, of a step response is the
final level of the output, assuming it converges. Tise time T, is the amount
of time required for the signal to go from 10% of its final valoe90% of its final
value. Itis possible to define other limits as well, but in ek we shall use these
percentages unless otherwise indicated. @vershootMy, is the percentage of
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Figure 5.10: Response of a compartment model to a constant drug infusion. A simple
diagram of the system is shown in (a). The step response (b) shovatehaf concentration
buildup in compartment 2. In (c) a pulse of initial concentration is used ¢éedpp the
response.
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the final value by which the signal initially rises above thelfirdue. This usually
assumes that future values of the signal do not overshodirtalevalue by more
than this initial transient, otherwise the term can be anniig. Finally, theettling
time T, is the amount of time required for the signal to stay withia &f its final
value for all future times. The settling time is also somesrdefined as reaching
1% or 2% of the final value (see Exercise 5.8). In general thederpgance
measures can depend on the amplitude of the input step, blindéar systems it
can be shown that the last three quantities defined above dependent of the
size of the step.

Example 5.7 Compartment Model

Consider the compartment model illustrated in Figure 5.10described in more
detail in Section 3.6. Assume that a drug is administered Iogtemt infusion in
compartment; and that the drug has its effect in compartméntTo assess how
the quickly the concentration in the compartment reaclesglgtstate we compute
the step response which is shown in Figure 5.10b. The stepnesps quite
slow with a settling time of 39 minutes. It is possible to dbtthe steady state
concentration much faster by having a faster injection natelly, as is shown
in Figure 5.10c. The response of the system in this case canrbputed by
combining two step responses (Exercisg O

Another common input signal to a linear system is a sinusmid@mbination
of sinusoids). Thérequency responsa an input/output system measures the way
in which the system responds to a sinusoidal excitation @xdits inputs. As we
have already seen for scalar systems, the particular gsolasisociated with a sinu-
soidal excitation is itself a sinusoid at the same frequeHeyce we can compare
the magnitude and phase of the output sinusoid to the inpotegenerally, if a
system has a sinusoidal output response at the same frgoagtie input forcing,
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we can speak of the frequency response of the system.
To see this in more detail, we must evaluate the convolutipmgon (5.15) for
u = coswt. This turns out to be a very messy calculation, but we can mak&ef
the fact that the system is linear to simplify the derivatitm particular, we note
that 1
cosawt = 5 (e“‘" + e*i“").

Since the system is linear, it suffices to compute the respdrtbe gystem to the
complex inputu(t) = e and we can then reconstruct the input to a sinusoid by
averaging the responses correspondingi=a wt ands= —it.

Applying the convolution equation to the inpuit= €% with x(0) = 0, we have

t
y(t):/ CAt-UBETdr 4 Dt
0
t t
- / Ct-D+sITgr | pest — At / Cds-ATBdr + De,
0 0

If we assume that none of the eigenvaluesiddre equal tes = +iw, then the
matrix sl — A is invertible and we can write (after some algebra)

y(t) =Ce (x(0) — (s —A) B) + (C(sI—A) B+D)e".

transient steady state

Notice that once again the solution consists of both a teaigiomponent and a
steady state component. The transient component decaysotd #ee system is
asymptotically stable and the steady state component pFonal to the (com-
plex) inputu = e,
We can simplify the form of the solution slightly further bgwriting the steady
state response as
yso(t) = M dfest — \elstHe)

where _
Mel® =C(sl—A)"1B+D (5.23)

andM and 6 represent the magnitude and phase of the complex nu@(s¢r
A)~B+D. Whens=iw, we say thaM is thegainand@ is thephaseof the system
at a given forcing frequencgo. Using linearity and combining the solutions for
s= +iw ands= —iw, we can show that if we have an input A;sin(wt + @)
and outpuly = Aysin(wt + ¢ ), then

gain(w) = :z =M phaséw)=¢ — Y = 6.

The steady state solution for a sinusaig- coswt is now given by

If the phasef is positive, we say that the output “leads” the input, othisenve
say it “lags” the input.
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Figure 5.11: Frequency response, showing gain and phase. The gain is givee bt
of the output amplitude to the input amplitudd, = Ay/A,. The phase lag is given by
6 = —2n(ty —tp)/T; itis negative for the case shown because the output lags the input.

A sample frequency response is illustrated in Figure 5.11.sbkid line shows
the input sinusoid, which has amplitude 1. The output sirug®ishown as a
dashed line, and has a different amplitude plus a shiftedghahe gain is the
ratio of the amplitudes of the sinusoids, which can be ddtexchby measuring
the height of the peaks. The phase is determined by compdrngatio of the
time between zero crossings of the input and output to theatiygeriod of the
sinusoid:

AT

Another way to view the frequency response is to plot how #ia gnd phase
in equation (5.23) depend an (throughs = iw). Figure 5.11 shows an example
of this type of representation.

Example 5.8 Active bandpass filter

Consider the op amp circuit shown in Figure 5.12a. We can éeywnamics of the
system by writing the “nodal equations”, which state that $hm of the currents
at any node must be zero. Assuming that=v, = 0, as we did in Section 3.3,
we have

_ Vl_VZ_C1% o:(:l%+§+c2%’ 0=C2%+E—C1%

0 Ry dt’ dt Ry dt dt R dt’

Choosingv, andvs as our states and using the first and last equations, we obtain

%_vl—vz %_ V3 Vi—Ww
dt RiC1 ’ dt R.Co RiCo -
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Figure 5.12: Active band pass filter. The circuit diagram shows an op amp withR&o
filters arranged to provide a band pass filter. The plot on the right stimgain and phase
of the filter as a function of frequency.
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Rewriting these in linear state space form we obtain

N 1
dx RiC1 RiCy
A X+ u
RiCo RoCo R;Co
y= (0 1] X

wherex = (v2,Vv3), u= vy andy = vs.
The frequency response for the system can be computed usiag@ay(5.23):

B & RiCys
Ry (1 + R]_C]_S) (1 + RZCZS)

The magnitude and phase are plotted in Figure 5.12BRfer 100Q, R, =5 kQ
andC; =C, = 100 pF. We see that the circuit passes through signals wigh e
cies around 10 rad/s, but attenuates frequencies below$aad above 50 rad/s.
At 0.1 rad/s the input signal is attenuated by 20x (0.05). Type of circuit is
called abandpass filtessince it pass through signals in the band of frequencies
between 5 and 50 rad/s.

Mel® =C(sl—-A)'B+D = s=iw.

O

As in the case of the step response, a number of standardrpes@ee defined
for frequency responses. The gain of the systemw at O is called thezero fre-
guency gairand corresponds to the ratio between a constant input arstehdy
output:

Mo = —CA !B+D.
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The zero frequency gain is only well definedhifs invertible (and, in particular, if

it does has not eigenvalues at 0). Itis also important to thatiethe zero frequency
gain is only a relevant quantity when a system is stable atheutorresponding
equilibrium point. So, if we apply a constant input= r then the corresponding
equilibrium pointxe = —A~1Br must be stable in order to talk about the zero fre-
quency gain. (In electrical engineering, the zero frequeain is often called the
“DC gain”. DC stands for “direct current” and reflects the coomseparation of
signals in electrical engineering into a direct currentdZeequency) term and an
alternating current (AC) term.)

The bandwidthaw, of a system is the frequency where the gain has decreased
by a factor of /2 from its zero frequency gain. This definition assumes that
we have nonzero, finite zero frequency gain. For systems tteatuate low fre-
quencies but pass through high frequencies, the referexicésgaken as the high
frequency gain. For a system such as the band-pass filter in &8, band-
width is defined as the range of frequencies where the gaingsrighan ¥+/2 of
the gain at the center of the band. (For Example 5.8 this woinkl aybandwidth
of approximately 50 rad/s.)

Another important property of the frequency response isrésenance peak
M, the largest value of the frequency response, angdéad frequencyo,, the
frequency where the maximum occurs. These two propertiesridesthe fre-
quency of the sinusoidal input that produces the largessiplesoutput and the
gain at the frequency.

Example 5.9 AFM Dynamics

Consider the model for the vertical dynamics of the atomicdamicroscope in

contact mode, discussed in Section 3.5. The basic dynamiag\ane by equa-

tion (3.22). The piezo stack can be modeled by a second ordersywith un-

damped natural frequenays and relative dampings. The dynamics are then
described by the linear system

0 1 0 0 0
dx | —k/(m+m) —c/(m+m) 1/m; O 1ol
dt 0 0 0 1 0

0 0 —§  —2{3us w?

y— mp [ mk mc 1 0] X

Mm+m LMm+my M +np
where the input signal is the drive signal to the amplifier iddvthe piezo stack
and the output is the elongation of the piezo. The frequerspomse of the system
is shown in Figure 5.13. The zero frequency gain of the systéviyis 1. There
are two resonant poles with peds; = 2.12 atwm; =238 krad's andM;, = 4.29
at wmrp =746 krad's. The bandwidth of the system, defined as the lowest fre-
quency where the gain ig2 less than the zero frequency gaingis=292 krad's.
There is also a dip in the gaMy = 0.556 for wnq =268 krad's. This dip (some-
times called aranti-resonancgis associated with a dip in the phase and will limit
the performance when the system is controlled by simplercbets, as will see
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AFM picture T

Figure 5.13: AFM frequency response. The plot on the right shows the gain arskpfoa
the piezo stack of an atomic force microscope. The response contaifretuency peaks at
resonances of the system, along with an antiresonanoe-a268 krad/s. The combination
of a resonant peak followed by an antiresonance is common for systémmultiple lightly
damped modes.

in Chapter 10. O

Sampling

It is often convenient to use both differential and differerequations in modeling
and control. For linear systems it is straightforward tosfarm from one to the
other. Consider the general linear system described bytiegu&.13) and assume
that the control signal is constant over sampling intervatanstant lengtth. It
follows from equation (5.14) of Theorem 5.4 that

X(t+h) = X (t) + /tt+h éMTBu(k) dr = ®x(t) +u(t), (5.25)

where we have assumed that the discontinuous control sigieahtinuous from
the right. The behavior of the system at the sampling timesh is described by
the difference equation

xk+1] = dx(k| +Tukl,  y[k =Cxk|+DulK. (5.26)

Notice that the difference equation (5.26) is an exact sapr&tion of the behavior
of the system at the sampling instants. Similar expressianslso be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.25) to (5.26) is called samplifbe relations be-
tween the system matrices in the continuous and samplegs@qmtations is

o= Fz(/oheASdS)B; A:%Iogd?, B:(/Ohe/“dt)_lr. (5.27)

Notice that ifA is invertible we have

r=A"1(e"-1).
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All continuous time systems have a discrete time versiorihmre are discrete
time systems which do not have a continuous time equivaldre.precise condi-
tion is that the matrixp cannot have real eigenvalues on the negative real axis.

Example 5.10 Differential equation for IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotusesemere
obtained as the discrete time system

y[k+ 1] = ay{k] + bulk]

wherea = 0.43, b = 0.47 and the sampling period = 60s. A differential
equation model is needed if we would like to design contraiteayms based on
continuous time theory. Such a model is obtained by applymggon (5.27),
hence

loga

h -1
A=292_ 00141 B= (/ eAtdt> b= 00141
h Jo

and we find that the difference equation can be interpretecsamaled version of
the ordinary differential equation

31( =—0.141x+0.141u

5.4 LINEARIZATION

As described in the beginning of the chapter, a common safrieear system
models is through thapproximationof a nonlinear system by a linear one. These
approximations are aimed at studying the local behavior ®fstem, where the
nonlinear effects are expected to be small. In this sectierdiscuss how to lo-
cally approximate a system by its linearization and what lsarsaid about the
approximation in terms of stability. We begin with an illtetion of the basic
concept using the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system are derived in @28&til and have the
form

dv

m - = AnUT(anv) — mgGsgr(y) - 1pC/AV — mgsing, (5.28)

where the first term on the right hand side of the equation igdiee generated
by the engine and the remaining three terms are the rollingdn, aerodynamic
drag and gravitational disturbance force. There is an dxjitiln (ve, Ue) when the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equation (5.28) ardlwa@quilibrium gives

d(v—ve)

T a(V—Ve) —bg (8 — Be) +b(u—ue) (5.29)
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The full lines is the simulation based on a nonlinear model and the dasleed lin
shows the corresponding simulation using a linear model. The controltes geekp = 0.5
andk; = 0.1.

where

4 Ue0 2T (apVe) — PCyAVe
m

Notice that the term corresponding to rolling friction gipaars ifv = 0. For a car
in fourth gear withve = 25 m/s,68; = 0 and the numerical values for the car from
Section 3.1, the equilibrium value for the throttlelis= 0.1687 and the parameters
area= —0.0101,b = 1.32 andc = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed evoiime.

Figure 5.14 shows a simulation of a cruise controller witkedinand nonlinear
models; the differences between the linear and nonlineatetscare small and
hence the linearized model provides a reasonable approgima O

_ anT (anVe)

Jacobian Linearization around an Equilibrium Point

To proceed more formally, consider a single input, singlgpounonlinear system

dx n
a_f(x,u) xeR“ueR
y = h(x,u) yeR

(5.31)

with an equilibrium point ak = X, U = Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pdiat ue),
we suppose that— x, andu — ue are both small, so that nonlinear perturbations
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around this equilibrium point can be ignored compared with(tower order) lin-
ear terms. This is roughly the same type of argument that wken we do small
angle approximations, replacing $lrwith 8 and co$ with 1 for 8 near zero.

As we did in Chapter 4, we define a new set of state variables well as
inputsv and outputsv:

Z=X—Xe V=U—Ue W=y —h(Xe,Ug).

These variables are all close to zero when we are near thébemun point, and so
in these variables the nonlinear terms can be thought ofeakigfher order terms
in a Taylor series expansion of the relevant vector fieldsufassg for now that
these exist).

Formally, theJacobian linearizatiorof the nonlinear system (5.31) is

z=Az+Bv
(5.32)
w=Cz+ Dy,
where
A:ﬂ B:ﬁ :@ :@ (5.33)
0X (Yo U) Ju (Xe,le) ox (Yo U) Ju (Xe,e)

The system (5.32) approximates the original system (5.3Bnwhe are near the
equilibrium point about which the system was linearized.

It is important to note that we can only define the linearizatid a system
about an equilibrium point. To see this, consider a polyrabsystem

X = ag+ aiX+ apx® +azx + u,

whereag # 0. There are a family of equilibrium points for this systemegivby
(Xe,Ue) = (Xe, —@0 — @1Xe — azx?e — a@@) and we can linearize around any of these.
Suppose that we try to linearize around the origin of the syskte= 0, u= 0. If

we drop the higher order termsxnthen we get

X=ap+aix+u,

which isnot the Jacobian linearization & # 0. The constant term must be kept
and this is not present in (5.32). Furthermore, even if we Kepttonstant term
in the approximate model, the system would quickly move aftam this point
(since it is “driven” by the constant terap) and hence the approximation could
soon fail to hold.

Software for modeling and simulation frequently has faesitfor performing
linearization symbolically or numerically. The MATLAB comman r i mfinds
the equilibrium andl i nnod extracts linear state-space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering
Consider the vehicle steering system introduced in Exam@e 2he nonlinear
equations of motion for the system are given by equatior#3§2(2.25) and can
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be written as

4 (> vcos(a(d)+0) ans
s 1y vsméa(é) +6) | a(s) = arctar(a ";‘)n )7
tle O tansé

b

wherex, y and 8 are the position and orientation of the center of mass of the
vehicle,vy is the velocity of the rear whed,is the distance between the front and
rear wheels and is the angle of the front wheel. The functior{d) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a sttéilghpath @ = 6)
with fixed velocityvg # 0. To find the relevant equilibrium point, we first g 0
and we see that we must have= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in the direction is by definitiomot at equilibrium since
&2+n?= v% # 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviatthe vehicle
from a straight line. For simplicity, we lély = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inytlaed 6
directions. With some abuse of notation we introduce th&gesta= (y,0) and
u= 9. The system is then in standard form with

vsin(a(u) +x2)
f(x,u) [ i ] , a(u) :arctar(atanu), h(x,u) = x1.

Vo

b tanu b
The equilibrium point of interest is given by= (0,0) andu = 0. To compute the
linearization the model around this equilibrium point, waka use of the formu-
las (5.33). A straightforward calculation yields

A— ﬂ . 0 Vo B— ﬂ o avo/b
 dx|x=0 (O O ~ du|x=0 | Vo/b
u=0 u=0
oh Jdh
C_&x:o_[l O] D_%X:O_O
u=0 u=0
and the linearized system
X = Ax+Bu, y=Cx+Du (5.34)

thus provides an approximation to the original nonlinearaiyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Section 2.3. For this system, we clio@seheel basé
as the length unit and the unit as the time required to traweheel base. The
normalized state is thus= (x1/b,x2) and the new time variable is= vot /b. The
model (5.34) then becomes

)G 0o om
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wherey=a/b. The normalized linear model for vehicle steering with néppéng
wheels is thus a linear system with only one parameter. O

Feedback Linearization

Another type of linearization is the use of feedback to contlee dynamics of a
nonlinear system into a linear one. We illustrate the bage with an example.

Example 5.13 Cruise control
Consider again the cruise control system from Example 5. hbse dynamics are
given in equation (5.28):

dv

M- = anUT(anv) —mgGsgnv) - 1pCyAVZ —mgsind.

If we chooseu as a feedback law of the form

1 / 1

then the resulting dynamics become

dv
— = d 5.37
M=yt (5.37)

whered = mgsin8 is the disturbance force due the slope of the road. If we now
define a feedback law far (such as a proportional-integral-derivative [PID] con-
troller), we can use equation (5.36) to compute the final itipatt should be com-
manded.

Equation (5.37) is a linear differential equation. We haveeasially “inverted”
the nonlinearity through the use of the feedback law (5.3R)is requires that
we have an accurate measurement of the vehicle velecitywell as an accurate
model of the torque characteristics of the engine, geangatirag and friction
characteristics and mass of the car. While such a model igeratrally available
(remembering that the parameter values can change), if sigrda good feedback
law for U/, then we can achieve robustness to these uncertainties. O

More generally, we say that a system of the form

dx

=T, y=h(

is feedback linearizablé we can find a control lawu = a(x,v) such that the
resulting closed loop system is input/output linear witputiv and outputy, as
shown in Figure 5.15. To fully characterize such systems yoih& the scope of
this text, but we note that in addition to changes in the injmatgeneral theory also
allows for (nonlinear) changes in the states that are usel@goribe the system,
keeping only the input and output variables fixed. More detfilthis process can
be found in the textbooks by Isidori [105] and Khalil [121].

@ One case the comes up relatively frequently, and is hencthwspecial mention,
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Linearized dynamics
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Figure 5.15: Feedback linearization using feedback. A nonlinear feedback of time fo
u= a(x,v) is used to modify the dynamics of a nonlinear process so that the resfrons

the inputv to the outputy is linear. A linear controller can then be used to regulate the
system'’s dynamics.

is the set of mechanical systems of the form

M(q)d+C(a,q) = B(q)u.

Hereq € R" is the configuration of the mechanical systavh,g) € R"" is the
configuration-dependent inertia matr(,q, q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness antidny andB(q) € R™P

is the input matrix. Ifp = n then we have the same number of inputs and con-
figuration variables and if we further have th&Q) is an invertible matrix for all
configurationsy, then we can choose

u=B"(q)(M(q)v—-C(q,q)). (5.38)
The resulting dynamics become
M@d=M(@v = 4=V,

which is a linear system. We can now use the tools of lineatesysheory to
analyze and design control laws for the linearized systemembering to apply
equation (5.38) to obtain the actual input that will be agglio the system.

This type of control is common in robotics, where it goes byrtame ofcom-
puted torqueand aircraft flight control, where it is call@ynamic inversionSome
modeling tools like Modelica can generate the code for therse model automat-
ically. One caution is that feedback linearization canmitancel out beneficial
terms in the natural dynamics, and hence it must be used aiith Extensions that
do not require complete cancellation of nonlinearitiestigseussed in Khalil [121]
and Krstt et al.[127].

5.5 FURTHER READING

The idea to characterize dynamics by considering the resgdosstep inputs is
due to Heaviside. The unit step is therefore also calletHdeeviside step function
The majority of the material in this chapter is very classmadl can be found in
most books on dynamics and control theory, including eadyk& on control such
as James, Nichols and Phillips [108], and more recent tektsach as Franklin,
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Powell and Emami-Naeini [80] and Ogata [158]. A delightfulgeetation of lin-
ear systems is given in the book by Brockett [45], a more cefmgnsive treatment
is given by Rugh [167] and an elegant mathematical treatnsegiven in Son-
tag [178]. The material on feedback linearization is founté@oks on nonlinear
control theory, such as Isidori [105] and Khalil [121].

EXERCISES

5.1 Show that the differential equation (5.3) is a linear inputait system using
the definitions in Section 5.1

5.2 Using the computation for the matrix exponential, show #guation (5.11)
holds for the case of a:33 Jordan block. (Hint: decompose the matrix into the
form S+ N whereSis a diagonal matrix.)

5.3 Construct a linear system for which a periodic input doespnotiuce a peri-
odic output. (Hint: the Jordan form should not be diagonal.)

5.4 Prove Proposition 5.3 by showing that if the system contairsbaigenvalue
A = 0 with nontrivial Jordan block, then there exists an initahdition which
has a solution that grows in time. Extend this argument to #se ©f complex
eigenvalues with R& = 0 by using the block Jordan form

J= (Missing]
5.5 Show that a signal(t) can be decomposed in terms of the impulse function
o(t) as .
u(t) :/ 5(t—1)u(t)dt
0

and use this decomposition plus the principle of superiposio show that the
response of a linear system to an inpgt) (assuming zero initial condition) can

be written as "
yt) = [ hit-ou(n)ar.
0

whereh(t) is the impulse response of the system.

5.6 Compute the full solution to the coupled spring-mass systeExample 5.6
by transforming the solution for the block diagonal systeamkointo the original
set of coordinates. Show that the system is asymptoticalblesif m, b andk are
all greater than zero.

5.7 Show that the step response for an asymptotically stablarlsyestem is given
by equation (5.22).

5.8 Consider a first order system of the form
X=—TX+U
y =X
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We say that the parameteis thetime constantor the system since the zero input
system approaches the originegds For a first order system of this form, show that
the rise time of the system is approximately 2 5% settling time corresponds to
approximately 3 and a 2% settling time corresponds to approximately 4

5.9 Consider a linear discrete time system of the form
x[k+ 1] = AXK] 4+ Bulk]
y[K] = Cx[K] 4 DulK].

(&) Show that the general form of the output of a discrete timeal system is
given by the discrete time convolution equation:

y[k] = CAf%) + kzj CA<=1BU]i] 4 Du[K]

(b) Show that a discrete time linear system is asymptoticaéiple if and only
if all eigenvalues ofA have magnitude strictly less than 1.

(c) Letulk] = Asin(wk) represent an oscillatory input with frequerwyx 7t (to
avoid “aliasing”). Show that the steady state component®fésponse has
gainM and phasé where

Mel® =C(é®l —A)"B+D.

(d) Show that if we have a nonlinear discrete time system
X[k = f(x[k],u[k]) xkl e R"ue R
y[K] = h(x[K], u[k]) yeR

then we can linearize the system around an equilibrium peiue) by
defining the matriced, B, C andD as in equation (5.33).

5.10 Consider the consensus protocol introduced in Example Zhaw that if
the graph of the sensor network is connected, then we can fiathaguch that
the agent states converge to the average value of the mdaguantity.

5.11 Consider the dynamics of a genetic circuit that implemest&repression
the protein produced by the gene is a repressor for the prdtais restricting its
own production. Using the models presented in Example 2tE3dynamics for
the system can be written as

dm_ _a

dt  1rkp oo ym (5.39)
dp

at —Pm-op

for p,m > 0. Find the equilibrium points for the system and use the fined
dynamics around each equilibrium point to determine thallstability of the
system.
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5.12 Consider the following simple Keynesian macro-economideh the form
of a linear discrete time system discussed in Exercise 5.9

Ct+1]) _ a a Cit] a
[ I[t+1] ] N [ab—a ab] [ 1t] * lab Glt]
Y[t] =CJt] + I [t] + G[t]
Determine the eigenvalues of the dynamics matrix. Whenharartagnitudes of
the eigenvalues less than 1? Assume that the system is ifbeigui with constant
values capital spending, investment and government expenditu Explore

what happens when government expenditure increases by 13%.the values
a=0.25andb=0.5.

5.13 Consider a linear system= Axwith ReA; < 0 for all eigenvalueg; of the
matrix A. Show that the matrix

P:/OweATTQeNdT

defines a Lyapunov function of the forh(x) = x" Px.



