
Chapter Three

Examples

... Don’t apply any model until you understand the simplifying assumptions on which it
is based, and you can test their validity. Catch phrase: use only as directed. Don’t limit
yourself to a single model: More than one model may be useful for understanding different
aspects of the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb in his 1970 paper “Mathematical Models—Uses and Limitations”[87].

In this chapter we present a collection of examples spanningmany different
fields of science and engineering. These examples will be used throughout the text
and in exercises to illustrate different concepts. First time readers may wish to
focus only on a few examples with which they have the most prior experience or
insight to understand the concepts of state, input, output and dynamics in a familiar
setting.

3.1 CRUISE CONTROL

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of aroad. The controller
compensates for these unknowns by measuring the speed of thecar and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure 3.1. Let v be
the speed of the car andvr the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signalsv and vr and generates a control signalu that is sent to an
actuator that controls throttle position. The throttle in turn controls the torque
T delivered by the engine, which is transmitted through gearsand the wheels,
generating a forceF that moves the car. There are disturbance forcesFd due to
variations in the slope of the road, the rolling resistance and aerodynamic forces.
The cruise controller also has a human-machine interface that allows the driver
to set and modify the desired speed. There are also functions that disconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engine, transmission,
wheels and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller canbe quite simple.

To develop a mathematical mode we start with a force balance for the car body.
Let v be the speed of the car,m the total mass (including passengers),F the force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torqueT that is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to move. The velocity
of the carv is measured by a control system that adjusts the throttle through an actuation
mechanism. A human interface allows the system to be turned on an off andthe reference
speedvr to be established.

generated by the contact of the wheels with the road, andFd the disturbance force
due to gravity and friction. The equation of motion of the car is simply

m
dv
dt

= F −Fd. (3.1)

The forceF is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0≤ u≤ 1 that
controls throttle position. The torque also depends on engine speedω. A simple
representation of the torque at full throttle is given by thetorque curve

T(ω) = Tm

(

1−β
(

ω
ωm

−1

)2
)

, (3.2)

where the maximum torqueTm is obtained at engine speedωm. Typical parameters
are Tm = 190 Nm, ωm = 420 rad/s (about 4000 RPM) andβ = 0.4. Let n be
the gear ratio andr the wheel radius. The engine speed is related to the velocity
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Figure 3.2: Torque curves for typical car engine. The graph on the left shows thetorque
generated by the engine as a function of the angular velocity of the engine,while the curve
on the right shows torque as a function of car speed for different gears.
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Figure 3.3: Car with cruise control encountering a sloping road: a schematic diagramis
shown in (a) and (b) shows the response in speed and throttle when a slope of 4◦ is encoun-
tered. The hill is modeled as a net change in hill angle,θ , of 4 degrees, with a linear change
in the angle betweent = 5 andt = 6. The PI controller has proportional gain iskp = 0.5 and
the integral gain iski = 0.1.

through the expression

ω =
n
r

v =: αnv,

and the driving force can be written as

F =
nu
r

T(ω) = αnuT(αnv).

Typical values ofαn for gears 1 through 5 areα1 = 40,α2 = 25,α3 = 16,α4 = 12
andα5 = 10. The inverse ofαn has a physical interpretation as theeffective wheel
radius. Figure 3.2 shows the torque as a function of engine speed and vehicle
speed. The figure shows that the effect of the gear is to “flatten” the torque curve
so that a almost full torque can be obtained almost over the whole speed range.

The disturbance forceFd has three major components:Fg, the forces due to
gravity;Fr , the forces due to rolling friction; andFa, the aerodynamic drag, Letting
the slope of the road beθ , gravity gives the forceFg = mgsinθ , as illustrated in
Figure 3.3a, whereg = 9.8 m/s2 is the gravitational constant. A simple model of
rolling friction is

Fr = −mgCrsgn(v),

whereCr is the coefficient of rolling friction and sgn(v) is the sign ofv (±1) or
zero if v = 0. A typical value for the coefficient of rolling friction isCr = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

Fa =
1
2

ρCdAv2,

whereρ is the density of air,Cd is the shape-dependent aerodynamic drag coef-
ficient andA is the frontal area of the car. Typical parameters areρ = 1.3 kg/m3,
Cd = 0.32 andA = 2.4 m2.
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Summarizing, we find that the car can be modeled by

m
dv
dt

= αnuT(αnv)−mgCrsgn(v)− 1
2ρCdAv2−mgsinθ , (3.3)

where the functionT is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velocityv, which is also the output. The
input is the signalu that controls the throttle position, and the disturbance isthe
forceFd, which depends on the slope of the road. The system is nonlinear because
of the torque curve and the nonlinear character of the aerodynamic drag. There
can also be variations in the parameters, e.g. the mass of thecar depends on the
number of passengers and the load being carried in the car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We shall use a PI (proportional-integral)
controller, which has the form

u(t) = kpe(t)+ki

∫ t

0
e(τ)dτ.

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller statez and implementing the differential equation

dz
dt

= vr −v u= kp(vr −v)+kiz, (3.4)

wherevr is the desired (reference) speed. As discussed briefly in the introduction,
the integrator (represented by the statez) ensures that in steady state the error will
be driven to zero, even when there are disturbances or modeling errors. (The design
of PI controllers is the subject of Chapter 10.) Figure 3.3b shows the response of
the closed loop system, consisting of equations (3.3) and (3.4), when it encounters
a hill. The figure shows that even if the hill is so steep that the throttle changes
from 0.17 to almost full throttle, the largest speed error isless than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (3.3). It may seem
surprising that such a seemingly complicated system can be described by the sim-
ple model (3.3). It is important to make sure that we restrictour use of the model to
the uncertainty lemon conceptualized in Figure 2.15b. The model is not valid for
very rapid changes of the throttle because since we have ignored the details of the
engine dynamics, neither is it valid for very slow changes because the properties
of the engine will change over the years. Nevertheless the model is very useful
for the design of a cruise control system. As we shall see in later chapters, the
reason for this is the inherent robustness of feedback systems: even if the model
is not perfectly accurate, we can use it to design a controller and make use of the
feedback in the controller to manage the uncertainty in the system.

The cruise control system also has a human-machine interfacethat allows the
driver to communicate with the system. There are many different ways to imple-
ment this system; one version is illustrated in Figure 3.4. Thesystem has four
buttons: on-off, set/decelerate, resume/accelerate and cancel. The operation of the
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Figure 3.4: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of five buttons on the cruise control interface: on, off, set/accel,
resume or cancel.

system is governed by a finite state machine that controls the modes of the PI con-
troller and the reference generator. Implementation of controllers and reference
generators will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyond the simple cruise con-
trol system described here. Modern applications include emissions control, trac-
tion control and power control (especially in hybrid vehicles). Many automotive
applications are discussed in detail in and the book by Kiencke and Nielsen [122]
and the survey papers by Powerset al. [23, 162].

3.2 BICYCLE DYNAMICS

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the
front fork. A detailed model of a bicycle is complex because the system has many
degrees of freedom and the geometry is complicated. However, a great deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicycle rolls on the hor-
izontal xy plane. Introduce a coordinate system that is fixed to the bicycle with
the ξ -axis through the contact points of the wheels with the ground, theη-axis
horizontal and theζ -axis vertical, as shown in Figure 3.5. Letv0 be the velocity of
the bicycle at the rear wheel,b the wheel base,ϕ the tilt angle andδ the steering
angle. The coordinate system rotates around the pointO with the angular veloc-
ity ω = v0δ/b, and an observer fixed to the bicycle experiences forces due tothe
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown
in the rear view in Figure 3.5b. To model the tilt, consider therigid body obtained
when the wheels, the rider and the front fork assembly are fixedto the bicycle
frame. Letm be the total mass of the system,J the moment of inertia of this
body with respect to theξ -axis, andD the product of inertia with respect to the
ξ ζ axes. Furthermore, let theξ and ζ coordinates of the center of mass with
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Figure 3.5: Schematic views of a bicycle. The steering angle isδ , the roll angle isϕ . The
center of mass has heighth and distancea from a vertical through the contact pointP1 of the
rear wheel. The wheel base isb and the trail isc.

respect to the rear wheel contact point,P1, be a and h, respectively. We have
J ≈ mh2 andD = mah. The torques acting on the system are due to gravity and
centripetal action. Assuming that the steering angleδ is small, the equation of
motion becomes

J
d2ϕ
dt2

−
Dv0

b
dδ
dt

= mghsinϕ +
mv2

0h

b
δ , (3.5)

The termmghsinϕ is the torque generated by gravity. The terms containingδ and
its derivative are the torques generated by steering, with the term(Dv0/b)dδ/dt
due to inertial forces and the term(mv2

0h/b)δ due to centripetal forces.
The steering angle is influenced by the torque the rider appliesto the handle

bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the roadP2 is behind the axis of rotation of
the front wheel assembly, as shown in Figure 3.5c. The distancec between the
contact point of the front wheelP2 and the projection of the axis of rotation of
the front fork assemblyP3 is called thetrail . The steering properties of a bicycle
depend critically on the trail. A large trail increases stability but makes the steering
less agile.

A consequence of the design of the front fork is that the steering angleδ is
influenced both by steering torqueT and by the tilt of the frameϕ. This means
that the bicycle with a front fork is afeedback systemas illustrated by the block
diagram in Figure 3.6. The steering angleδ influences the tilt angleϕ and the
tilt angle influences the steering angle giving rise to the circular causality that is
characteristic for reasoning about feedback. For a front fork with positive trail, the
bicycle will steer into the lean creating a centrifugal force that attempts to diminish
the lean. Under certain conditions, the feedback can actually stabilize the bicycle.
A crude empirical model is obtained by assuming that the blocksA andB are static
gainsk1 andk2 respectively:

δ = k1T −k2ϕ. (3.6)
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Figure 3.6: Block diagram of the bicycle with a front fork. The steering torque appliedto
the handlebars isT, the roll angle isϕ , and the steering angleδ . Notice that the front fork
creates a feedback from the roll angleϕ to the steering angleδ that under certain conditions
can stabilize the system.

This model neglects the dynamics of the front fork, the tire-road interaction and
the fact that the parameters depend on the velocity. A more accurate model is
obtained by the rigid body dynamics of the front fork and the frame. Assuming
small angles this model becomes

M









ϕ̈
δ̈








+Cv0









ϕ̇
δ̇








+(K0 +K2v2

0)









ϕ
δ








=









0
T








, (3.7)

where the elements of the 2×2 matricesM, C, K0 andK2 depend on the geome-
try and the mass distribution of the bicycle. Note that this has a form somewhat
similar to the spring-mass system introduced in Chapter 2 and the balance system
in Example 2.1. Even this more complex model is inaccurate because the inter-
action between tire and road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure 2.15b provides a
framework for understanding the validity of the model underthese assumptions

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [198] and Herlihy [98]. The model (3.7) was presented in a
paper by Whipple in 1899 [193]. More details on bicycle modeling is given in the
paper [19], which has many references.

3.3 OPERATIONAL AMPLIFIER CIRCUITS

The operational amplifier (op amp) is a modern implementation of Black’s feed-
back amplifier. It is a universal component that is widely usedfor instrumentation,
control and communication. It is also a key element in analogcomputing.

Schematic diagrams of the operational amplifier are shown in Figure 3.7. The
amplifier has one inverting input (v−), one non-inverting input (v+), and one output
(vout). There are also connections for the supply voltages,e− ande+, and a zero
adjustment (offset null). A simple model is obtained by assuming that the input
currentsi− andi+ are zero and that the output is given by the static relation

vout = sat(vmin,vmax)

(

k(v+−v−)
)

, (3.8)
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Figure 3.7: An operational amplifier and two schematic diagrams. The figure on the left
shows the amplifier pin connections on an integrated circuit chip, the middle figure shows a
schematic with all connections, and the diagram on the right shows only the signal connec-
tions.

where sat denotes the saturation function

sat(a,b)(x) =











a if x < a

x if a≤ x≤ b

b if x > b.

(3.9)

We assume that the gaink is large, in the range of 106–108, and the voltagesvmin
andvmax satisfy

e− ≤ vmin < vmax≤ e+

and hence are in the range of the supply voltages. More accurate models are ob-
tained by replacing the saturation function with a smooth function as shown in
Figure 3.8. For small input signals the amplifier characteristic (3.8) is linear:

vout = k(v+−v−) =: −kv. (3.10)

Since the open loop gaink is very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 3.9a. To model the feedback amplifier in the
linear range, we assume that the currenti0 = i− + i+ is zero, and that the gain of

vmin

vout

v+ −v−

vmax

Figure 3.8: Input/output characteristics of an operational amplifier. The differential input is
given byv+−v−. The output voltage is a linear function of the input in a small range around
0, with saturation atvmin andvmax. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feedback around
an operational amplifier and has a corresponding block diagram (b). The resistorsR1 andR2
determine the gain of the amplifier.

the amplifier is so large that the voltagev = v−−v+ is also zero. It follows from
Ohm’s law that the currents through resistorsR1 andR2 are given by

v1

R1
= −

v2

R2

and hence the closed loop gain of the amplifier is

v2

v1
= −kcl where kcl =

R2

R1
. (3.11)

A more accurate model is obtained by continuing to neglect the currenti0 but
assuming that the voltagev is small but not negligible. The current balance is then

v1−v
R1

=
v−v2

R2
. (3.12)

Assuming that the amplifier operates in the linear range and using equation (3.10)
the gain of the closed loop system becomes

kcl = −
v2

v1
=

R2

R1

1

1+
1
k

(

1+
R2

R1

) (3.13)

If the open loop gaink of the operational amplifier is large, the closed loop gain
kcl is the same as in the simple model given by equation (3.11). Notice that the
closed loop gain only depends on the passive components and that variations in
k only have a marginal effect on the closed loop gain. For example if k = 106

andR2/R1 = 100, a variation ofk by 100% only gives a variation of 0.01% in the
closed loop gain. The drastic reduction in sensitivity is a nice illustration of how
feedback can be used to make precise systems from uncertain components. In this
particular case, feedback is used to trade high gain and low robustness for low gain
and high robustness. Equation (3.13) was the formula that inspired Black when he
invented the feedback amplifier [36] (see the quote at the beginning of Chapter 12).

It is instructive to develop a block diagram for the feedbackamplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier with inputv and outputv2
as one block. To complete the block diagram we must describe how v depends on
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around an operational
amplifier. The capacitorC is used to store charge and represents the integral of the input.

v1 andv2. Solving equation (3.12) forv gives

v =
R2

R1 +R2
v1 +

R1

R1 +R2
v2 =

R2

R1 +R2

(

v1 +
R1

R2

)

,

and we obtain the block diagram shown in Figure 3.9b. The diagram clearly shows
that the system has feedback and that the gain fromv2 to v is R1/(R1 +R2), which
can also be read from the circuit diagram in Figure 3.9a. If theloop is stable
and the gain of the amplifier is large it follows that the errore is small and then
we find thatv2 = −(R2/R1)v1. Notice that the resistorR1 appears in two blocks
in the block diagram. This situation is typical in electricalcircuits and it is one
reason why block diagrams are not always well suited for sometypes of physical
modeling.

The simple model of the amplifier given by equation (3.10) givesqualitative
insight but it neglects the fact that the amplifier is a dynamical system. A more
realistic model is

dvout

dt
= −avout−bv. (3.14)

The parameterb that has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (3.14) is still not valid for very high or very low frequencies, since drift
causes deviations at low frequencies and there are additional dynamics that appear
at frequencies close tob. The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typically in the range of 5-10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile and many differentsystems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
Exercise 3.5 shows how a second order oscillator is implemented and Figure 3.10
shows the circuit diagram for an analog PI (proportional-integral) controller. To
develop a simple model for the circuit we assume that the currenti0 is zero and that
the open loop gaink is so large that the input voltagev is negligible. The currenti
through the capacitor isi = Cdvc/dt, wherevc is the voltage across the capacitor.



3.4. COMPUTING SYSTEMS AND NETWORKS 79

Since the same current goes through the resistorR1 we get

i =
v1

R1
= C

dvc

dt
,

which implies that

vc(t) =
1
C

∫

i(t)dt =
1

R1C

∫ t

0
v1(τ)dτ.

The output voltage is thus given by

v2(t) = −R2i−vc = −
R2

R1
v1(t)−

1
R1C

∫ t

0
v1(τ)dτ,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [135,
161] and their usage is described in many textbooks (e.g. [53]). Good information
is also available from suppliers [110, 142].

3.4 COMPUTING SYSTEMS AND NETWORKS

The application of feedback to computing systems follows thesame principles as
control of physical systems, but the types of measurements and control inputs that
can be used are somewhat different. Measurements (sensors)are typically related
to resource utilization in the computing system or network,and can include quan-
tifies such as the processor load, memory usage or network bandwidth. Control
variables (actuators) typically involve setting limits onthe resources available to a
process. This might be done by controlling the amount of memory, disk space or
time that a process can consume, turning on or off processing, delaying availability
of a resource, or rejecting incoming requests to a server process. Process modeling
for networked computing systems is also challenging, and empirical models based
on measurements are often used when a first principles model isnot available.

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers will start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide fast
response to web requests, it is important that the web serverprocesses do not over-
load the server’s computational capabilities nor exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain and feedback can be used to provide good performance
in the presence of this uncertainty.
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Figure 3.11: Feedback control of a web server. Connection requests arrive on an input
queue, where they are sent to a server process. A finite state machine keeps track of the
state of the individual server processes and responds to requests. Acontrol algorithm can
modify the server’s operation by controlling parameters that affect its behavior, such as the
maximum number of requests that can be serviced at a single time (MaxClients) or the
amount of time that a connection can remain idle before it is dropped (KeepAlive).

Figure 3.11 illustrates the use of feedback to modulate the operation of the
Apache web server. The web server operates by placing incoming connection
requests on a queue and then starting a subprocess to handle requests for each ac-
cepted connection. This subprocess responds to requests from a given connection
as they come in, alternating between aBusy state and aWait state. (Keeping
the subprocess active between requests is known as “persistence” of the connec-
tion and provides substantial reduction in latency to requests for multiple pieces of
information from a single site.) If no requests are receivedfor a sufficiently long
period of time, controlled by theKeepAlive parameter, then the connection is
dropped and the subprocess enters anIdle state, where it can be assigned another
connection. A maximum ofMaxClients simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control represent a tradeoff between performance (how
quickly requests receive a response) and resource usage (the amount of processing
power and memory utilized on the server). Increasing theMaxClients param-
eter allows connection requests to be pulled off of the queuemore quickly, but
increases the amount of processing power and memory usage that is required. In-
creasing theKeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the ma-
chine but increases the size of the queue (and hence the amount of time required
for a user to initiate a connection). Successful operation ofa busy server requires
proper choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we createa discrete time
model with states given by the average processor loadxcpu and the percentage
memory usagexmem. The inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timeuka. If we assume a linear model around the
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equilibrium point, the dynamics can be written as
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, (3.15)

where the coefficients of theA andB matrices must be determined based on empir-
ical measurements or detailed modeling of the web server’s processing and mem-
ory usage. Using system identification, Diao et al. [59, 97] identified the linearized
dynamics as

A =









0.54 −0.11
−0.026 0.63








, B =









−85 4.4
−2.5 2.8








×10−4,

where the system was linearized about the equilibrium point

x∗cpu = 0.58, u∗ka = 11 sec, x∗mem= 0.55, u∗mc = 600.

This model shows the basic characteristics that were described above. Look-
ing first at theB matrix, we see that increasing theKeepAlive timeout (first
column of theB matrix) decreases both the processor usage and the memory us-
age, since there is more persistence in connections and hence the server spends
a longer time waiting for a connection to close rather than taking on a new ac-
tive connection. TheMaxClients connection increases both the processing and
memory requirements. Note that the largest effect on the processor load is the
KeepAlive timeout. TheA matrix tells us about how the processor and memory
usage evolve in a region of the state space near the equilibrium point. The diagonal
terms describe how the individual resources return to equilibrium after a transient
increase or decrease. The off-diagonal terms show that thereis coupling between
the two resources, so that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types
of mechanisms have been used for other types of servers. It isimportant to remem-
ber the assumptions on the model and their role in determining when the model is
valid. In particular, since we have chosen to use average quantities over a given
sample time, the model will not provide an accurate representation for high fre-
quency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decentralized, efficient and ex-
pandable communication system. The system consists of a large number of inter-
connected gateways. A message is split into several packetsthat are transmitted
over different paths in the network and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) messageis sent back to the
sender when a packet is received. The operation of the system is governed a simple
but powerful decentralized control structure that evolvedover time.
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Figure 3.12: Internet congestion control. Source computers send information to routers,
which forward the information to other routers that eventually connect to the receiving com-
puter. When a packet is received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources and send the data
across the outgoing link. The plot on the right shows the equilibrium buffersizebe for a set
of N identical computers sending packets through a single router with drop probability ρ .

The system has two control mechanisms, calledprotocols: the Transmission
Control Protocol (TCP) for end-to-end network communication and the Internet
Protocol (IP) for routing packets and for host-to-gateway or gateway-to-gateway
communication. The current protocols evolved after some spectacular congestion
collapses occurred in the mid 1980s, when throughput unexpectedly could drop
by a factor of 1000 [106]. The control mechanism in TCP is based on conserving
the number of packets in the loop from sender to receiver and back to the sender.
The sending rate is increased exponentially when there is no congestion and it is
dropped to a low level when there is congestion.

To derive a model for congestion control, we model three separate elements
of the system: the rate at which packets are sent by individual sources (comput-
ers), the dynamics of the queues in the links (routers), and the admission control
mechanism for the queues. Figure 3.12a shows a block diagram for the system.

The current source control mechanism on the Internet is a protocol known as
TCP/Reno [134]. This protocol operates by sending packets to a receive and wait-
ing to receive an acknowledgment from the receiver that the packet has arrived. Is
no acknowledgment is sent within a certain timeout period, the packet is retrans-
mitted. To avoid waiting for the acknowledgment before sending the next packet,
Reno transmits multiple packets up to a fixed “window” around the latest packet
that has been acknowledged. If the window length is chosen properly, packets
at the beginning of the window will be acknowledge before thesource transmits
packets at the end of the window, allowing the computer to continuously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mecha-
nism in which (roughly speaking) the window size is increased by one every time
a packet is acknowledged and the window size is cut in half when packets are lost.
This mechanism allows a dynamic adjustment of the window sizein which each
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computer acts in a greedy fashion as long as packets are beingdelivered but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we haveN computers and letwi be the
current window size (measured in number of packets) for theith computer. Letqi

represent the end-to-end probability that a packet is dropped someplace between
the source and the receiver. We can model the dynamics of the window size by the
differential equation

dwi

dt
= (1−qi)

r i(t − τi)

wi
+qi(−

wi

2
r i(t − τi)), r i =

wi

τi
, (3.16)

whereτi is the end-to-end transmission time for a packet to reach is destination and
the acknowledgment to be sent back andr i is the resulting rate at which packets
are cleared from the list of packets that have been received.The first term in the
dynamics represents the increase in the window size when a packets is received
and the second term represents the decrease in window size when a packet is lost.
Notice thatr i is evaluated at timet − τi , representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the routerqueue and the
admission control mechanism for the queue. Assume that we have L links in the
network and usel to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffer,bl , and assume that the router
can contain a maximum ofbl ,max packets and transmits packets at a ratecl , equal
to the capacity of the link. The buffer dynamics can then be written as

dbl

dt
= sl −cl , sl = ∑

{i: l∈Li}

r i(t − τ f
li ), (3.17)

whereLi is the set of links that are being used by sourcei, τ f
li is the time that it

takes a packet from sourcei to reach linkl andsl is the total rate at which packets
arrive on linkl .

The admission control mechanism determines whether a given packet is ac-
cepted by a router. Since our model is based on the average quantities in the
network and not the individual packets, one simple model is to assume that the
probability that a packet is dropped depends on how how full the buffer is: pl =
ml (bl ,bmax). For simplicity, we will assume for now thatpl = ρl bl (see Exer-
cise 3.6 for a more detailed model). The probability that a packet is dropped at a
given link can be used to determine the end-to-end probability that a packet is lost
in transmission:

qi = 1− ∏
l∈Li

(1− pl ) ≈ ∑
l∈Li

pl (t − τb
li ), (3.18)

whereτb
li is the backward delay from linkl to sourcei and the approximation is

valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represent a model of the conges-
tion control dynamics. We can obtain substantial insight beconsidering a special
case in which we haveN identical sources and 1 link. In addition, we assume for
the moment that the forward and backward time delays can be ignored, in which
case the dynamics can be reduced to the form

dwi

dt
=

1
τ
−

ρb(2+w2
i )

2
,

db
dt

=
N

∑
i=1

wi

τ
−c, τ =

b
c
, (3.19)

wherewi ∈ R, i = 1, . . . ,N are the window sizes for the sources of data,b ∈ R

is the current buffer size of the router,ρ controls the rate at which packets are
dropped andc is the capacity of the link connecting the router to the computers.
The variableτ represents the amount of time required for a packet to be processed
by a router, based on the size of the buffer and the capacity ofthe link. Substituting
τ into the equations, we write the state space dynamics as

dwi

dt
=

c
b
−ρc

(

1+
w2

i

2

)

,
db
dt

=
N

∑
i=1

cwi

b
−c, (3.20)

More sophisticated models can be found in [101, 134].
The nominal operating point for the system can be found by setting ẇi = ḃ= 0:

0 =
c
b
−ρc

(

1+
w2

i

2

)

, 0 =
N

∑
i=1

cwi

b
−c, τ =

b
c
.

Exploiting the fact that each of the source dynamics are identical, it follows that all
of thewi should be the same and it can be shown that there is a unique equilibrium
satisfying the equations:

wi,e =
be

N
=

cτe

N
,

1
2ρ2N2(ρbe)

3 +(ρbe)−1 = 0. (3.21)

The solution for the second equation is a bit messy, but can easily be determined
numerically. A plot of its solution as a function of 1/(2ρ2N2) is shown in Fig-
ure 3.12b. We also note that at equilibrium we have the following additional
equalities:

τe =
be

c
=

Nwe

c
qe = Npe = Nρbe re =

we

τe

Figure 3.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out atT = 20 s and the remaining sources increasing
their rates (window sizes) to compensate. Note that the buffer size and window
sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in Tannenbaum [185].
A good presentation of the ideas behind the control principles for the Internet are
given by one of its designers, Van Jacobson, in [106]. Kelly [118] presents an
early effort of analysis of the system. The book by Hellerstein et al. [97] gives
many examples of use of feedback in computer systems.
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Figure 3.13: Internet congestion control forN identical sources across a single link. As
shown on the right, multiple sources attempt to communicate through a routeracross a single
link. An “ack” packet sent by the receiver acknowledges that the message was received;
otherwise the message packet is resent and the sending rate is slowed down at the source.
The simulation on the left is for 60 sources starting random rates, with 20 sources dropping
out att = 20 s. The buffer size is shown on the top and the individual source ratesfor 6 of
the sources are shown on the bottom.

3.5 ATOMIC FORCE MICROSCOPY

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across thesample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including the atomic force microscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
mode. In tapping mode the cantilever is vibrated and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever isin contact with the
sample and its bending is control by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of thecantilever base. The
control system has a direct influence on picture quality and scanning rate.

A schematic picture of an atomic force microscope is shown inFigure 3.14a. A
micro-cantilever with a tip having a radius of the order of 10nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base which is controlled by the piezo element.
The tilt is measured by sensing the deflection of the laser beam using a photo diode.
The signal from the photo diode is amplified and sent to a controller that drives the
amplifier for the vertical deflection of the cantilever. By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
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(a) (b)

Figure 3.14: Atomic force microscope. A schematic diagram of an atomic force microscope
is shown on the left, consisting of a piezo drive that scans the sample under the AFM tip. A
laser reflects off of the cantilever and is used to measure the detection of the tip through a
feedback controller. An AFM image of DNA is shown on the right.

the cantilever tip and the atoms of the sample. An image of thesurface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 3.14b,
which shows an AFM image of a DNA molecule.

The horizontal motion is typically modeled as a spring-mass system with low
damping. The vertical motion is more complicated. To model the system, we start
with the block diagram shown in Figure 3.15. Signals that are easily accessible are
the input voltageu to the power amplifier that drives the piezo element, the voltage
v applied to the piezo element and the output voltagey of the signal amplifier for
the photo diode. The controller is a PI controller implementedby a computer,
which is connected to the system by A/D and D/A converters. Thedeflection of
the cantilever,ϕ, is also shown in the figure. The desired reference value for the
deflection is an input to the computer.

There are several different configurations that have different dynamics. Here
we will discuss a high performance system from [172] where the cantilever base
is positioned vertically using a piezo stack. We begin the modeling by a simple
experiment on the system. Figure 3.16a shows a step response of a scanner from
the input voltageu to the power amplifier to the output voltagey of the signal
amplifier for the photo diode. This experiment captures the dynamics of the chain
of blocks fromu to y in the block diagram in Figure 3.15. Figure 3.16a shows that
the system responds quickly but that there is a poorly dampedoscillatory mode
with a period of about 35 µs. A primary task of the modeling is to understand the
origin of the oscillatory behavior. To do so we will explore the system in more
detail.

The natural frequency of the clamped cantilever is typicallyseveral hundred
kHz, which is much higher than the observed oscillation of about 30 kHz. As a
first approximation we will therefore model the cantilever asa static system. Since
the deflections are small we can assume that the bendingϕ of the cantilever is
proportional to the difference in heights between the cantilever tip at the probe
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope (AFM) in scanning mode. The control system attempts to keep the
cantilever deflection equal to it reference value. Cantilever deflection is measured, amplified
and converted to a digital signal, then compared with its reference value. Acorrecting signal
is generated by the computer, converted to analog form, amplified and sent to the piezo
element.

and the piezo scanner. A more accurate model can be obtained by modeling the
cantilever as a spring-mass system of the type discussed in Chapter 2.

Figure 3.16a also shows that the response of the power amplifieris fast. As
first approximation we will model it as a static system. The photo diode and the
signal amplifier also have fast responses and can thus be modeled as static systems.
The remaining block is a piezo system with suspension. A schematic mechanical
representation of the vertical motion of the scanner is shown in Figure 3.16b. We
will model the system as two masses separated by an ideal piezo element. The
massm1 is half of the piezo system plus the massm2 is the other half of the piezo
system and the mass of the support.

A simple model is obtained by assuming that the piezo crystalgenerates a force
F between the masses and that there is a dampingc in the spring. Let the positions
of the center of the masses bez1 andz2. A momentum balance gives the following
model for the system:

m1
d2z1

dt2
= F, m2

d2z2

dt2
= −c2

dz2

dt
−k2z2−F.

Let the elongation of the piezo elementl = z1 − z2 be the control variable and
the heightz1 of the cantilever base be the output. Eliminating the variable F in
equations (3.22) and substitutingz1− l for z2 gives the model

(m1 +m2)
d2z1

dt2
+c2

dz1

dt
+k2z1 = m2

d2l
dt2

+c2
dl
dt

+k2l . (3.22)

Summarizing, we find that a simple model of the system is obtained by mod-
eling the piezo by (3.22) and all the other blocks by static models. Introducing
the linear equationsl = k3u, andy = k4z1 we now have a complete model relat-
ing the outputy to the control signalu. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the power amplifier. As in the
previous examples, the concept of the uncertainty lemon in Figure 2.15b provides
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Figure 3.16: Measured step response and model of piezo scanner. The left figure shows a
measured step response. The top curve shows the voltageu applied to the drive amplifier
(50 mV/div), the middle curve is the outputVp of the power amplifier (500 mV/div) and
the bottom curve is the outputy of the signal amplifier (500 mV/div). The time scale is 25
µs/div. Data has been supplied by Georg Schitter. The right figure is a simple mechanical
model for the vertical positioner and the piezo crystal.

a framework for describing the uncertainty: the model will be accurate up to the
frequencies of the fastest modeled modes and over a range of motion in which the
linearized stiffness models can be used.

The experimental results in Figure 3.16a can be explained qualitatively as fol-
lows. When a voltage is applied to the piezo it expands byl0, the massm1 is moves
up and the massm2 moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to have design a control system for thevertical motion
so that it responds quickly with little oscillation. The instrument designer has
several choices: to accept the oscillation and have a slow response time, to design a
control system that can damp the oscillations, or to redesign the mechanics to give
resonances of higher frequency. The last two alternatives give a faster response
and faster imaging.

Since the dynamic behavior of the system changes with the properties of the
sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities to make AFM systems easier to use by introducing automatic tuning
and adaptation.

The book by Sarid [169] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [123]. The model discussed in this section is based on Schitter [171].

3.6 DRUG ADMINISTRATION

The phrase “take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
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Figure 3.17: The abstraction used to compartmentalize the body for the purpose of de-
scribing drug distribution (based on Teorell [186]). The body is abstracted by a number of
compartments with perfect mixing and the complex transport processesare approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constantski parameterize the rates of flow between different compartments.

problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not sohigh that it will
cause undesirable side effects. The control action is quantized,take two pills, and
sampled,every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and dosage is based on the age and weight ofthe patient.

Drug administration is a control problem. To solve it we mustunderstand how
a drug spreads in the body after it is administered. This topic, calledpharmacoki-
netics, is now a discipline of its own and the models used are calledcompartment
models. They go back to the 1920s when Widmark modeled propagation ofalco-
hol in the body [195]. Compartment models are now important for screening of
all drugs used by humans. The schematic diagram in Figure 3.17 illustrates the
idea of a compartment model. The body is viewed as a number of compartments
like blood plasma, kidney, liver, and tissues which are separated by membranes.
It is assumed that there is perfect mixing so that the drug concentration is con-
stant in each compartment. The complex transport processes are approximated
by assuming that the flow rates between the compartments are proportional to the
concentration differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration c and its effect
e is typically nonlinear. A simple model is

e=
c0

c0 +c
emax. (3.23)

The effect is linear for low concentrations and it saturates at high concentrations.
The relation can also be dynamic and and it is then calledpharmacodynamics.
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Compartment Models

The simplest dynamic model for drug administration is obtained by assuming that
the drug is evenly distributed in a single compartment afterit has been adminis-
tered and that the drug is removed at a rate proportional to the concentration. The
compartments behave like stirred tanks with perfect mixing. Let c be the concen-
tration,V the volume andq the outflow rate. Converting the description of the
system into differential equations gives the model

V
dc
dt

= −qc, c≥ 0. (3.24)

This equation has the solutionc(t) = c0e−qt/V = c0e−kt, which shows that the con-
centration decays exponentially with the time constantT = V/q after an injection.
The input is introduced implicitly as an initial condition inthe model (3.24). More
generally, the way the input enters the model depends on how the drug is adminis-
tered. For example, the input can be represented as a mass flow into the compart-
ment where the drug is injected. A pill that is dissolved can also be interpreted as
an input in terms of a mass flow rate.

The model (3.24) is called a aone-compartment modelor asingle pool model.
The parameterq/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. Bymeasuring the con-
centration at a few times, the initial concentration can be obtained by extrapolation.
If the total amount of injected substance is known, the volumeV can then be deter-
mined asV = m/c0; this volume is called thethe apparent volume of distribution.
This volume is larger than the real volume if the concentration in the plasma is
lower than in other parts of the body. The model (3.24) is very simple and there
are large individual variations in the parameters. The parametersV andq are often
normalized by dividing by the weight of the person. Typical parameters for aspirin
areV = 0.2 L/kg andq = 0.01(L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, intracellular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross behavior of drug distri-
bution but it is based on many simplifications. Improved models can be obtained
by considering the body as composed of several compartments. Examples of such
systems are shown in Figure 3.18, where the compartments are represented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment model in Figure 3.18a.
We assume that there is perfect mixing in each compartment and that the transport
between the compartments are driven by concentration differences. We further
assume that a drug with concentrationc0 is injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the output. Letc1 and
c2 be the concentrations of the drug in the compartments and letV1 andV2 be the
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Figure 3.18: Schematic diagrams of compartment models. A simple two-compartment
model is shown on the left. Each compartment is labeled by its volume and arrows indi-
cate the flow of chemical into, out of and between compartments. The compartment model
on the right shows a system with six compartments used to study metabolism ofthyroid
hormone [85]. The notationki j denotes the transport from compartmentj to compartmenti.

volumes of the compartments. The mass balances for the compartments are

V1
dc1

dt
= q(c2−c1)−q0c1 +c0u c1 ≥ 0

V2
dc2

dt
= q(c1−c2) c2 ≥ 0

y = c2.

(3.25)

Introducing the variablesk0 = q0/V1, k1 = q/V1, k2 = q/V2 andb0 = c0/V1 and
using matrix notation, the model can be written as

dc
dt

=









−k0−k1 k1
k2 −k2








c+









b0
0








u

y =


0 1


x.

(3.26)

Comparing this model with its graphical representation in Figure 3.18a we find
that the the mathematical representation (3.26) can be written by inspection.

It should also be emphasized that simple compartment modelssuch as the one
in equation (3.26) have a limited range of validity. Low frequency limits exist
because the human body changes with time and since the compartment model uses
average concentrations they will not accurately representrapid changes. There are
also nonlinear effects that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering and environ-
mental science. An interesting property of these systems isthat variables like
concentration and mass are always positive. An essential difficulty in compart-
ment modeling is deciding how to divide a complex system intocompartments.
Compartment models can also be nonlinear, as illustrated inthe next section.
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Figure 3.19: Insulin-glucose dynamics. (a) Sketch of body parts involved in controlof
glucose, (b) schematic diagram of the system, and (c) responses in insulin and glucose when
glucose in injected intravenously. From [160].

Insulin-Glucose Dynamics

It is essential that the blood glucose concentration in the body is kept in a narrow
range (0.7–1.1 g/L). Glucose concentration is influenced by many factors like food
intake, digestion and exercise. A schematic picture of the relevant parts of the body
is shown in Figure 3.19.

There is a sophisticated mechanism that regulates glucose concentration. Glu-
cose concentration is maintained by the pancreas that secrets the hormones insulin
and glucagon. Glucagon is released into the blood stream when the glucose level
is low. It acts on cells in the liver that release glucose. Insulin is secreted when
the glucose level is high and the glucose level is lowered by causing the liver and
other cells to take up more glucose. In diseases, like juvenile diabetes, the pan-
creas is unable to produce insulin and the patient must inject insulin into the body
to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are complicated, dynamics
with time scales that range from seconds to hours have been observed. Models of
different complexity have been developed. The models are typically tested with
data from experiments where glucose is injected intravenously and insulin and
glucose concentrations are measured at regular time intervals.

A relatively simple model called theminimal modelwas developed by Bergman
and coworkers [31]. This models uses two compartments, one representing the
concentration of glucose in the blood stream and the other representing the concen-
tration of insulin in the interstitial fluid. Insulin in the blood stream is considered
as an input. The reaction of glucose to insulin can be modeled by the equations

dx1

dt
= −(p1 +x2)x1 + p1ge,

dx2

dt
= −p2x2 + p3(u− ie), (3.27)

wherege and ie represent the equilibrium values of glucose and insulin,x1 is the
concentration of glucose andx2 is proportional to the concentration of interstitial
insulin. Notice the presence of the termx1x2 in the first equation. Also notice
that the model does not capture the complete feedback loop because it does not
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describe how the pancreas reacts to the glucose. Figure 3.19cshows a fit of the
model to a test on a normal person where glucose was injected intravenously at
time t = 0. Glucose concentration rises rapidly and the pancreas responds with a
rapid spike-like injection of insulin. The glucose and insulin levels then gradually
approach the equilibrium values.

Models of the type (3.27) and more complicated models havingmany com-
partments have been developed and fitted to experimental data. A difficulty in
modeling is that there are significant variations in model parameters over time and
for different patients. For example the parameterp1 in (3.27) has been reported
to vary with an order of magnitude for normal persons. The models have been
used for diagnosis and to develop schemes for treatment of persons with diseases.
Attempts to develop a fully automatic artificial pancreas hasbeen hampered by the
lack of reliable sensors.

The papers by Widmark and Tandberg [195] and Teorell [186] areclassics in
pharmacokinetics which is now an established discipline with many textbooks [61,
107, 84]. Because of its medical importance pharmacokinetics is now an essential
component of drug development. The book by Riggs [164] is a good source for
modeling of physiological systems and a more mathematical treatment is given in
[117]. Compartment models are discussed in [85]. The problemof determining
rate coefficients from experimental data is discussed in [26]and [85]. There are
many publications on the insulin-glucose model. The minimalmodel is discussed
in [52, 31, 32] more recent references are [140, 73].

3.7 POPULATION DYNAMICS

Population growth is a complex dynamic process that involvesthe interaction of
one or more species with their environment and the larger ecosystem. The dynam-
ics of population groups are interesting and important in many different areas of
social and environmental policy. There are examples where new species have been
introduced into new habitats, sometimes with disastrous results. There are also
been attempts to control population growth both through incentives and through
legislation. In this section we describe some of the models that can be used to un-
derstand how populations evolve with time and as a function of their environment.

Logistic Growth Model

Let x the population of a species at timet. A simple model is to assume that the
birth and death rates are proportional to the total population. This gives the linear
model

dx
dt

= bx−dx= (b−d)x = rx, x≥ 0, (3.28)

where birth rateb and death rated are parameters. The model gives an exponential
increase ifb > d or an exponential decrease ifb < d. A more realistic model is to
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assume that the birth rate decreases when the population is large. The following
modification of the model (3.28) has this property:

dx
dt

= rx(1−
x
xc

), x≥ 0, (3.29)

wherexc is thecarrying capacityof the environment. The model (3.29) is called
the logistic growthmodel.

Predator-Prey Models

A more sophisticated model of population dynamics includesthe effects of com-
peting populations, where one species may feed on another. This situation, referred
to as thepredator-prey problem, was already introduced in Example 2.3, where we
developed a discrete time model that captured some of the features of historical
records of lynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. LetH(t) represent the number of hares
(prey) andL(t) represent the number of lynxes (predator). The dynamics of the
system are modeled as

dH
dt

= rhH

(

1−
H
K

)

−
aHL

1+aHTh
H ≥ 0

dL
dt

= r l L

(

1−
L

kH

)

L ≥ 0.

(3.30)

In the first equation,rh represents the growth rate of the hares,K represents the
maximum population of hares (in the absence of lynxes),a represents the inter-
action term that describes how the hares are diminished as a function of the lynx
population, andTh depends is a time constant for prey consumption. In the second
equation,r l represents the growth rate of the lynxes andk represents the fraction
of hares versus lynxes at equilibrium. Note that both the hare and lynx dynamics
include terms that resemble the logistic growth model (3.29).

Of particular interest are the values at which the population values remain con-
stant, calledequilibrium points. The equilibrium points for this system can be
determined by setting the right hand side of the above equations to zero. Letting
He andLe represent the equilibrium state, from the second equation we have

Le = kHe.

Substituting this into the first equation, we must solve

rhHe

(

1−
He

K

)

−
akH2

e

1+aHeTh
= 0.
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Figure 3.20: Simulation of the predator-prey system. The figure on the left shows a sim-
ulation of the two populations as a function of time. The figure on the right shows the
populations plotted against each other, starting from different values ofthe population. The
oscillation seen in both figures is an example of a “limit cycle”. The parameter values used
for the simulations wererh = 0.02,K = 500,a = 0.03,Th = 5, r l = 0.01,k = 0.2.

Multiplying through by the denominator, we get

0 = He·

(

rh

(

1−
He

K

)

(1+aHeTh)−akHe

)

= He·

(

rhaTh

K
H2

e +(ak+ rh/K− rhaTh)He− rh

)

.

This gives one solution atHe = 0 and a second that can be solved analytically or
numerically.

Figure 3.20 shows a simulation of the dynamics starting from aset of popula-
tion values near the nonzero equilibrium values. We see thatfor this choice of pa-
rameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 2.6 (page 41).

Fisheries Management

The dynamics of a commercial fishery can be described by the following simple
model

dx
dt

= f (x)−h(x,u), (3.31)

wherex is the total biomass,f (x) the growth rate andh(x,u) the harvesting rate.
The logistic function (3.29) is a simple model for the growth rate and the harvesting
can be modeled by

h(x,u) = axu, (3.32)

where the control variableu is the harvesting effort, anda is a constant. The rate
of revenue is

g(x,u) = bh(x,u)−cu, (3.33)
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whereb andc are constants representing the price of fish and the cost of fishing.
Using equations (3.32) and (3.33) we find that the rate of revenue is

g(x,u) = (abx−c)u.

In a situation where there are many fishermen and no concern forthe environment,
it is economic to fish as long asabx> c and there will then be an equilibrium
where the biomass is

x∞ =
c
ab

, (3.34)

which is the equilibrium with unrestricted fishing.
Assume that the population is initially at equilibrium atx(0) = xc. The rev-

enue rate with unrestricted fishing is then(abxc− c)u, which can be very large.
The fishing effort then naturally increases until the equilibrium (3.34), where the
revenue rate is zero.

We can contrast unrestricted fishing with the situation for a single fishery. A
typical case is when a country has all fishing rights in a large area. In such a case it
is natural to maximize the rate ofsustainable revenue. This can be accomplished
by adding the constraint that the biomassx in equation (3.31) is constant, which
implies that

f (x) = h(x,u).

Solving this equation foru gives

u = ud(x) =
f (x)
ax

.

Inserting the value ofu into equation (3.33) gives the following rate of revenue

g(x) = bh(x,ud)−cud(x) =
(

b−
c
ax

)

f (x)

= rx
(

b−
c
ax

)(

1−
x
xc

)

=
r
xc

(

−abx2 +(c+abxc)x−cxc

)

.
(3.35)

The rate of revenue has a maximum

r0 =
r(c−abxc)

2

4abxc
, (3.36)

for
x0 =

xc

2
+

c
2ab

. (3.37)

Figure 3.21 shows a simulation of a fishery. The system is initially in equi-
librium with x = 100. Fishing begins with constant harvesting rateu = 3 at time
t = 0. The initial revenue rate is large, but it drops rapidly as the population de-
creases. At timet = 12 the revenue rate is practically zero. The fishing policy is
changed to a sustainable strategy at timet = 15. This is accomplished by using a
proportional-integral (PI) controller where the referenceis the optimal sustainable
population sizex0 = 55 given by equation (3.37). The feedback stops harvesting
for a period but the biomass increases rapidly. At timet = 28 the harvesting rate
increases rapidly and a sustainable steady state is reachedin a short time.
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Figure 3.21: Simulation of a fishery. The curves show total biomassx, harvesting rateu and
revenue rateg as a function of timet. The fishery is modeled by equations (3.31), (3.32),
(3.33) with parametersxc = 100,a = 0.1, b = 1 andc = 1. Initially fishing is unrestricted at
rateu= 3. At timet = 15 fishing is changed to harvesting at a sustainable rate, accomplished
by a PI controller with parametersk = 0.5 andki = 0.5.

Volume I of the two volume set by J. D. Murray [151] give a broadcoverage of
population dynamics.

EXERCISES

3.1 Consider the cruise control example described in Section 3.1. Build a simula-
tion that recreates the response to a hill shown in Figure 3.3band show the effects
of increasing and decreasing the mass of the car by 25%. Redesign the controller
(using trial and error is fine) so that it returns to within 10% of the desired speed
within 3 seconds of encountering the beginning of the hill.

3.2 Show that the dynamics of a bicycle frame given by equation (3.5) can be
written in state space form as

d
dt









x1
x2








=









0 mgh/J
1 0

















x1
x2








+









1
0








u

y =







Dv0

bJ

mv2
0h

bJ





x,

(3.38)

where the inputu is the torque applied to the handle bars and the outputy is the
title angleϕ. What do the statesx1 andx2 represent?

3.3 Combine the bicycle model given by equation (3.5) and the model for steering
kinematics in Example 2.8 to obtain a model that describes thepath of the center
of mass of the bicycle.
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3.4 Consider the op amp circuit shown below: Show that the dynamics can be

v2

−
+

Rb

v1

v3

R1 Ra
R2

C2
C1

vo

written in state space form as

dx
dt

=























−
1

R1C1
−

1
RaC1

0

Rb

Ra

1
R2C2

−
1

R2C2























x+





















1
R1C1

0





















u

y =


0 1


x

whereu = v1 andy = v3. (Hint: Usev2 andv3 as your state variables.)

3.5 The op amp circuit shown below is an implementation of an oscillator. Show

that the dynamics can be written in state space form as

dx
dt

=























0
R4

R1R3C1

−
1

R1C1
0























x,

where the state variables represents the voltages across the capacitorsx1 = v1 and
x2 = v2.

3.6 Analyze congestion control dynamics with RED.

3.7 A schematic diagram an AFM where the vertical scanner is a piezo tube with
preloading is shown below Show that the dynamics can be written as

(m1 +m2)
d2z1

dt2
+(c1 +c2)

dz1

dt
+(k1 +k2)z1 = m2

d2l
dt2

+c2
dl
dt

+k2l .

Are there there parameters values which makes the dynamics particularly simple.
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3.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model

Vb
dcb

dt
= q(cl −cb)+qiv

Vl
dcl

dt
= q(cb−cl )−qmax

cl

c0 +cl
+qgi

whereVb = 48 l andVl = 0.6 l are the effective distribution volumes of body wa-
ter and liver water,cb and cl are the concentrations of alcohol in the compart-
ments,qiv andqgi are the injection rates for intravenously and gastrointestinal in-
take, q = 1.5 L/min is the total hepatic blood flow,qmax = 2.75 mmol/min and
c0 = 0.1 mmol. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (State variables in compartment models) Consider the compartment model de-
scribed by equation (3.26). Letx1 and x2 be the total mass of the drug in the
compartments. Show that the system can be described by the equation

dx
dt

=









−k0−k1 k2
k1 −k2








x+









c0
0








u

y =


0 1/V2



x.

(3.39)

Compare the this equation with the (3.26) where the state variables were con-
centrations. Mass is called anextensive variableand concentration is called an
intensive variable.

3.10 (Population dynamics) Consider the model for logistic growth given by equa-
tion (3.29). Show that the maximum growth rate occurs when thesize of the
population is half of the steady state value.

3.11 (Population dynamics) Verify the curves in Figure 3.20 by creating a program
that integrates the differential equations.




