Chapter Three

Examples

. Don't apply any model until you understand the simplifying assumgttonwhich it
is based, and you can test their validity. Catch phrase: use only as dire@en't limit
yourself to a single model: More than one model may be useful for ulagheliag different
aspects of the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb in his 1970 paper “Mathematical Models—Uses and Limitatif@7§’

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be hsedghout the text
and in exercises to illustrate different concepts. Firsetimaders may wish to
focus only on a few examples with which they have the mostr@iperience or
insight to understand the concepts of state, input, outpditignamics in a familiar
setting.

3.1 CRUISE CONTROL

The cruise control system of a car is a common feedback systeoustered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopaad@ The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figule 8etv be
the speed of the car angl the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type des@&ibbriefly in Chapter 1,
receives the signalg andv; and generates a control signathat is sent to an
actuator that controls throttle position. The throttle imntwontrols the torque
T delivered by the engine, which is transmitted through geaus the wheels,
generating a forc& that moves the car. There are disturbance fofgedue to
variations in the slope of the road, the rolling resistanue aerodynamic forces.
The cruise controller also has a human-machine interfadeatttavs the driver
to set and modify the desired speed. There are also functiamhslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgalicén spite of
this, the model required to design the cruise controllertguite simple.

To develop a mathematical mode we start with a force balasrabé car body.
Let v be the speed of the canthe total mass (including passengefs}he force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the car\e.niche velocity

of the carv is measured by a control system that adjusts the throttle through an actuation
mechanism. A human interface allows the system to be turned on an ofhamdference
speedy; to be established.

generated by the contact of the wheels with the road Faride disturbance force
due to gravity and friction. The equation of motion of the casimply

dv

m— =F — Fy. 3.1
at d (3.1)
The forceF is generated by the engine, whose torque is proportiondieo t

rate of fuel injection, which is itself proportional to a dosl signal 0< u < 1 that
controls throttle position. The torque also depends on engjieedo. A simple
representation of the torque at full throttle is given by tibvgue curve

T(@) = Tm (1—/3((*‘:1—1)3, (3.2)

where the maximum torquR, is obtained at engine spee#,. Typical parameters
are T, = 190 Nm, oy, = 420 rad/s (about 4000 RPM) argi= 0.4. Letn be
the gear ratio and the wheel radius. The engine speed is related to the velocity
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigee
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea
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Figure 3.3: Car with cruise control encountering a sloping road: a schematic diaigram
shown in (a) and (b) shows the response in speed and throttle whereao§yps encoun-
tered. The hill is modeled as a net change in hill an6lef 4 degrees, with a linear change
in the angle betweein= 5 andt = 6. The Pl controller has proportional gairkis= 0.5 and
the integral gain i% = 0.1.

through the expression 0
w = FV =. (JnV,

and the driving force can be written as
n
F— T“T(a)) — apUT (V).

Typical values ofx, for gears 1 through 5 ame, = 40,0, = 25,03 = 16,04 =12
andas = 10. The inverse ofr, has a physical interpretation as thigective wheel
radius Figure 3.2 shows the torque as a function of engine speed eindle
speed. The figure shows that the effect of the gear is to “flattemtdrque curve
so that a almost full torque can be obtained almost over triendpeed range.

The disturbance forcgy has three major componentsg, the forces due to
gravity; F, the forces due to rolling friction; arig,, the aerodynamic drag, Letting
the slope of the road b&, gravity gives the forcéy = mgsing, as illustrated in
Figure 3.3a, wherg = 9.8 m/€ is the gravitational constant. A simple model of
rolling friction is

Fr = —mgGsgn(v),
whereC; is the coefficient of rolling friction and sg@w) is the sign ofv (4+1) or

zero ifv=0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squétbespeed:

Fa= SPCIAV,
wherep is the density of airCy is the shape-dependent aerodynamic drag coef-

ficient andA is the frontal area of the car. Typical parameters@re 1.3 kg/n?,
Cy=0.32 andA= 2.4 n?.



72 CHAPTER 3. EXAMPLES

Summarizing, we find that the car can be modeled by

m(;;/ = anuT(anv) — MgGsgnv) — 3pCyAV —mgsin®, (3.3)
where the functior is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velowgityvhich is also the output. The
input is the signal that controls the throttle position, and the disturbanddés
force Ry, which depends on the slope of the road. The system is nonleeause
of the torque curve and the nonlinear character of the aeadic drag. There
can also be variations in the parameters, e.g. the mass chthdepends on the
number of passengers and the load being carried in the car.

We add to this model a feedback controller that attemptsgolage the speed
of the car in the presence of disturbances. We shall use adfiqgional-integral)
controller, which has the form

u(t) = kpe(t) + k /0t e(1)dr.

This controller can itself be realized as an input/outputasiygital system by defin-
ing a controller state and implementing the differential equation

dz

dt
wherey; is the desired (reference) speed. As discussed briefly imtradiuction,
the integrator (represented by the s@gtensures that in steady state the error will
be driven to zero, even when there are disturbances or nmgdatiors. (The design
of PI controllers is the subject of Chapter 10.) Figure 3.3mshine response of
the closed loop system, consisting of equations (3.3) adq,(@hen it encounters
a hill. The figure shows that even if the hill is so steep that tettle changes
from 0.17 to almost full throttle, the largest speed errdess than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (3t3)ay seem
surprising that such a seemingly complicated system car&eritied by the sim-
ple model (3.3). Itis important to make sure that we restrictuse of the model to
the uncertainty lemon conceptualized in Figure 2.15b. Theahigchot valid for
very rapid changes of the throttle because since we haveddrnbe details of the
engine dynamics, neither is it valid for very slow changesaose the properties
of the engine will change over the years. Nevertheless thaetris very useful
for the design of a cruise control system. As we shall seetar lehapters, the
reason for this is the inherent robustness of feedbackrmegsteven if the model
is not perfectly accurate, we can use it to design a contratid make use of the
feedback in the controller to manage the uncertainty in yiséesn.

The cruise control system also has a human-machine intetiatallows the
driver to communicate with the system. There are many diften@ys to imple-
ment this system; one version is illustrated in Figure 3.4. 3ysem has four
buttons: on-off, set/decelerate, resume/accelerateamzet The operation of the

Vi —V u=kp(vr —Vv)+kiz (3.4)
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Figure 3.4: Finite state machine for cruise control system. The figure on the leftshow
some typical buttons used to control the system. The controller can be iof dour modes,
corresponding to the nodes in the diagram on the right. Transition betweendties is
controlled by pressing one of five buttons on the cruise control interfateoff, set/accel,
resume or cancel.

system is governed by a finite state machine that controls tduemof the Pl con-
troller and the reference generator. Implementation ofrotlars and reference
generators will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyondithgls cruise con-
trol system described here. Modern applications includis&ons control, trac-
tion control and power control (especially in hybrid vek&). Many automotive
applications are discussed in detail in and the book by Kiermnd Nielsen [122]
and the survey papers by Powetsal.[23, 162].

3.2 BICYCLE DYNAMICS

The bicycle is an interesting dynamical system with the featiiat one of its key
properties is due to a feedback mechanism that is createtiebgdsign of the
front fork. A detailed model of a bicycle is complex because gystem has many
degrees of freedom and the geometry is complicated. Howavgreat deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicytie on the hor-
izontal xy plane. Introduce a coordinate system that is fixed to the l@oyith
the &-axis through the contact points of the wheels with the gdpuhe n-axis
horizontal and th& -axis vertical, as shown in Figure 3.5. hetbe the velocity of
the bicycle at the rear whedd,the wheel basegp the tilt angle and the steering
angle. The coordinate system rotates around the (idinith the angular veloc-
ity w = Vvpd /b, and an observer fixed to the bicycle experiences forces dineto
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted gleium, as shown
in the rear view in Figure 3.5b. To model the tilt, considertigél body obtained
when the wheels, the rider and the front fork assembly are fizetie bicycle
frame. Letm be the total mass of the systeththe moment of inertia of this
body with respect to thé-axis, andD the product of inertia with respect to the
é{ axes. Furthermore, let the and { coordinates of the center of mass with
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Figure 3.5: Schematic views of a bicycle. The steering anglé,i¢he roll angle isp. The
center of mass has heighand distanca from a vertical through the contact poit of the
rear wheel. The wheel basetignd the trail i.

respect to the rear wheel contact poiRt, be a and h, respectively. We have

J ~ mi? andD = mah The torques acting on the system are due to gravity and
centripetal action. Assuming that the steering ariglis small, the equation of
motion becomes

d?¢ Dvods

J————= mghsin¢+m—\%h

b

The termmghsing is the torque generated by gravity. The terms contaidiagd
its derivative are the torques generated by steering, \wetterm(Dvg/b)dd/dt
due to inertial forces and the terfmih/b) & due to centripetal forces.

The steering angle is influenced by the torque the rider apmi¢ise handle
bar. Because of the tilt of the steering axis and the shapkeofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of
the front wheel assembly, as shown in Figure 3.5c. The distartween the
contact point of the front whed®, and the projection of the axis of rotation of
the front fork assembl¥s is called thetrail. The steering properties of a bicycle
depend critically on the trail. A large trail increases dtghbut makes the steering
less agile.

A consequence of the design of the front fork is that the stgeangled is
influenced both by steering torqideand by the tilt of the frame. This means
that the bicycle with a front fork is &eedback systeias illustrated by the block
diagram in Figure 3.6. The steering andlenfluences the tilt angle and the
tilt angle influences the steering angle giving rise to theular causality that is
characteristic for reasoning about feedback. For a fraktviath positive trail, the
bicycle will steer into the lean creating a centrifugal ®tbat attempts to diminish
the lean. Under certain conditions, the feedback can dgtstabilize the bicycle.
A crude empirical model is obtained by assuming that theksdéeandB are static
gainsk; andk; respectively:

3, (3.5)

5 =kiT — k. (3.6)
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Figure 3.6: Block diagram of the bicycle with a front fork. The steering torque appited
the handlebars i, the roll angle isp, and the steering angl® Notice that the front fork
creates a feedback from the roll angi¢o the steering anglé that under certain conditions
can stabilize the system.

This model neglects the dynamics of the front fork, the toaet interaction and
the fact that the parameters depend on the velocity. A moearate model is
obtained by the rigid body dynamics of the front fork and trenfe. Assuming
small angles this model becomes

M [‘g] +Cyw [‘g] + (Ko +Ka\B) [‘g] _ [?] , 3.7)

where the elements of thex22 matricesM, C, Ky andK, depend on the geome-
try and the mass distribution of the bicycle. Note that ttas b form somewhat
similar to the spring-mass system introduced in Chapterd2iag balance system
in Example 2.1. Even this more complex model is inaccurateusecthe inter-
action between tire and road is neglected; taking this ictmant requires two
additional state variables. Again, the uncertainty lemmoRigure 2.15b provides a
framework for understanding the validity of the model uniterse assumptions

Interesting presentations on the development of the kécgod given in the
books by D. Wilson [198] and Herlihy [98]. The model (3.7) wassented in a
paper by Whipple in 1899 [193]. More details on bicycle maugls given in the
paper [19], which has many references.

3.3 OPERATIONAL AMPLIFIER CIRCUITS

The operational amplifier (op amp) is a modern implementatioBlack’s feed-
back amplifier. It is a universal component that is widely ufedhstrumentation,
control and communication. It is also a key element in anatmgputing.
Schematic diagrams of the operational amplifier are shown iar€ig.7. The
amplifier has one inverting input(), one non-inverting input(;. ), and one output
(Voup)- There are also connections for the supply voltagesande,, and a zero
adjustment (offset null). A simple model is obtained by asisig that the input
currentd _ andi are zero and that the output is given by the static relation

Vout = Sagvminvvmax) (k(V+ o V_)) ’ (38)
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Figure 3.7: An operational amplifier and two schematic diagrams. The figure on the lef
shows the amplifier pin connections on an integrated circuit chip, the midgieefshows a
schematic with all connections, and the diagram on the right shows onlygthed sonnec-
tions.

where sat denotes the saturation function

a ifx<a
Satap(X) = ¢ x ifa<x<b (3.9)
b ifx>h.

We assume that the galiris large, in the range of $81, and the voltagesnn
andvmax satisfy
€_ < Vmin < Vmax < €4

and hence are in the range of the supply voltages. More aeconadels are ob-
tained by replacing the saturation function with a smoothcfion as shown in
Figure 3.8. For small input signals the amplifier character{8.8) is linear:

Vout = k(v —v_) =: —kv. (3.10)
Since the open loop gakis very large, the range of input signals where the system
is linear is very small.
A simple amplifier is obtained by arranging feedback arourmrdithsic opera-

tional amplifier as shown in Figure 3.9a. To model the feedbacglifier in the
linear range, we assume that the currignt i _ +i, is zero, and that the gain of

Vout
Vmax

Vi —V_

Vmin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkintat is
given byv; —v_. The output voltage is a linear function of the input in a small range around
0, with saturation atnin andvmax. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaiend
an operational amplifier and has a corresponding block diagram Ifle)réBistor&; andR,
determine the gain of the ampilifier.

the amplifier is so large that the voltage- v_ — v, is also zero. It follows from
Ohm’s law that the currents through resistBisandR; are given by

i_ %2
R R
and hence the closed loop gain of the amplifier is
V2 Ro
" ke where kg R, (3.11)

A more accurate model is obtained by continuing to negleetdinrentio but
assuming that the voltagas small but not negligible. The current balance is then

Vi—V V-V

Ri R~
Assuming that the amplifier operates in the linear range aimdj egjuation (3.10)
the gain of the closed loop system becomes

B_Rz 1
TR. 1 R
(D)

(3.12)

kel = — (3.13)

k R1

If the open loop gairk of the operational amplifier is large, the closed loop gain
ke is the same as in the simple model given by equation (3.11}ic&lthat the
closed loop gain only depends on the passive componentshahdadriations in
k only have a marginal effect on the closed loop gain. For exanfgk = 10°
andRy/R; = 100, a variation ok by 100% only gives a variation of 0.01% in the
closed loop gain. The drastic reduction in sensitivity is@nllustration of how
feedback can be used to make precise systems from uncestapooents. In this
particular case, feedback is used to trade high gain anddbustness for low gain
and high robustness. Equation (3.13) was the formula thpiretBlack when he
invented the feedback amplifier [36] (see the quote at thenbewg of Chapter 12).
It is instructive to develop a block diagram for the feedbaakplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier wittuirv and outputs,
as one block. To complete the block diagram we must descabevtdepends on
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around aratipaal
amplifier. The capacitd€ is used to store charge and represents the integral of the input.

vy andv,. Solving equation (3.12) for gives

vy, R, R <v+&)
7R1+R21 R1+R227R1+R2 ! R/’

and we obtain the block diagram shown in Figure 3.9b. The dmagtaarly shows
that the system has feedback and that the gain frotovis Ry /(Ry + Ry), which
can also be read from the circuit diagram in Figure 3.9a. Ifltop is stable
and the gain of the amplifier is large it follows that the ereas small and then
we find thatv, = —(Ry/Ry)va. Notice that the resistd®; appears in two blocks
in the block diagram. This situation is typical in electricaicuits and it is one
reason why block diagrams are not always well suited for stypes of physical
modeling.

The simple model of the amplifier given by equation (3.10) gigealitative
insight but it neglects the fact that the amplifier is a dynahs&ystem. A more
realistic model is

d;";“t = —aVou— bv. (3.14)

The parametdp that has dimensions of frequency and is called the gainyiaitiol
product of the amplifier. Whether a more complicated modebkedudepends on
the questions to be answered and the required size of thetaimtg lemon. The
model (3.14) is still not valid for very high or very low frequocies, since drift
causes deviations at low frequencies and there are adalidgnamics that appear
at frequencies close tm The model is also not valid for large signals—an upper
limitis given by the voltage of the power supply, typicalfythe range of 5-10 V—
neither is it valid for very low signals because of electriwaise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile and many diffegrstems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise 3.5 shows how a second order oscillator is impleedesmd Figure 3.10
shows the circuit diagram for an analog PI (proportionakgmnal) controller. To
develop a simple model for the circuit we assume that theeatiiy is zero and that
the open loop gaik is so large that the input voltagas negligible. The current
through the capacitor is= Cd\/dt, wherev; is the voltage across the capacitor.
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Since the same current goes through the resitave get

o v
SR T dt?
which implies that

Ve(t) = (l:/i(t)dt: Ric/otvl(r)dr.

The output voltage is thus given by

. R 1 1t
Vo(t) = —Roi — Ve = _ﬁivl(t) ——— [ vi(1)dr,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered byoftil [135,
161] and their usage is described in many textbooks (e.4). [&®&od information
is also available from suppliers [110, 142].

3.4 COMPUTING SYSTEMS AND NETWORKS

The application of feedback to computing systems followsstiiae principles as
control of physical systems, but the types of measuremewtsantrol inputs that
can be used are somewhat different. Measurements (seaseitypically related
to resource utilization in the computing system or netwarld can include quan-
tifies such as the processor load, memory usage or networknidthd Control
variables (actuators) typically involve setting limits the resources available to a
process. This might be done by controlling the amount of mgntbsk space or
time that a process can consume, turning on or off processatgying availability
of aresource, or rejecting incoming requests to a serveeso Process modeling
for networked computing systems is also challenging, angieal models based
on measurements are often used when a first principles moulet &vailable.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers will start multiplegesses to respond to
requests, with each process assigned to a single sourtaafiirther requests are
received from that source for a predefined period of time. Rsmethat are idle
become part of a pool that can be used to respond to new reqiliegtrovide fast
response to web requests, it is important that the web spreeesses do not over-
load the server’s computational capabilities nor exhasstemory. Since other
processes may be running on the server, the amount of aegiledcessing power
and memory is uncertain and feedback can be used to provatkmgEformance
in the presence of this uncertainty.
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Figure 3.11: Feedback control of a web server. Connection requests arriven ampat
queue, where they are sent to a server process. A finite state maekipe tkack of the
state of the individual server processes and responds to requestmtrdl algorithm can
modify the server’s operation by controlling parameters that affeceitabior, such as the
maximum number of requests that can be serviced at a single kimeJ( i ent s) or the
amount of time that a connection can remain idle before it is dropgedAl i ve).

Figure 3.11 illustrates the use of feedback to modulate tlezation of the
Apache web server. The web server operates by placing ingpognnection
requests on a queue and then starting a subprocess to hegdésts for each ac-
cepted connection. This subprocess responds to requestafgiven connection
as they come in, alternating betweeBasy state and aMi t state. (Keeping
the subprocess active between requests is known as “pers#stof the connec-
tion and provides substantial reduction in latency to retgi®r multiple pieces of
information from a single site.) If no requests are receifg@da sufficiently long
period of time, controlled by thEeepAl i ve parameter, then the connection is
dropped and the subprocess enterkdine state, where it can be assigned another
connection. A maximum daxCl i ent s simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control represent a tradeoff betwedarpemce (how
quickly requests receive a response) and resource usagan(tbunt of processing
power and memory utilized on the server). IncreasingvtheCl i ent s param-
eter allows connection requests to be pulled off of the quaaee quickly, but
increases the amount of processing power and memory usatgs tequired. In-
creasing th&keepAl i ve timeout means that individual connections can remain
idle for a longer period of time, which decreases the prangdsad on the ma-
chine but increases the size of the queue (and hence the aofdime required
for a user to initiate a connection). Successful operaticalafisy server requires
proper choice of these parameters, often based on trialramid e

To model the dynamics of this system in more detail, we craatiscrete time
model with states given by the average processor lggdand the percentage
memory usag&mem 1he inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timey,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

(i) = [ w2 () + (B 22) () o0

where the coefficients of theandB matrices must be determined based on empir-
ical measurements or detailed modeling of the web servessgssing and mem-
ory usage. Using system identification, Diao et al. [59, 9&hitfied the linearized
dynamics as

_( 054 011 (-85 44 4
A= [—0.026 063]’ B= [—2.5 2.8] 107

where the system was linearized about the equilibrium point
Xepu = 0.58, Uka = 11 sec Xiem = 0.55, U = 600

This model shows the basic characteristics that were destabove. Look-
ing first at theB matrix, we see that increasing thkeepAl i ve timeout (first
column of theB matrix) decreases both the processor usage and the memory us
age, since there is more persistence in connections ane lleacserver spends
a longer time waiting for a connection to close rather th&mgaon a new ac-
tive connection. Thékaxd i ent s connection increases both the processing and
memory requirements. Note that the largest effect on thegssor load is the
KeepAl i ve timeout. TheA matrix tells us about how the processor and memory
usage evolve in a region of the state space near the equilipoint. The diagonal
terms describe how the individual resources return to #xjim after a transient
increase or decrease. The off-diagonal terms show that iheogipling between
the two resources, so that a change in one could cause ahatgein the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on gehine. Similar types
of mechanisms have been used for other types of serversmip@tant to remem-
ber the assumptions on the model and their role in detergnimimen the model is
valid. In particular, since we have chosen to use averagetijea over a given
sample time, the model will not provide an accurate repiasiem for high fre-
guency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decenté@iefficient and ex-
pandable communication system. The system consists of ahangber of inter-
connected gateways. A message is split into several pattiadtsre transmitted
over different paths in the network and the packages arénegjao recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgovérned a simple
but powerful decentralized control structure that evoleedr time.
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Figure 3.12: Internet congestion control. Source computers send information terspu
which forward the information to other routers that eventually connecitogbeiving com-
puter. When a packet is received, an acknowledgment packet isasathrough the routers
(not shown). The routers buffer information received from thersesiand send the data
across the outgoing link. The plot on the right shows the equilibrium befferh, for a set
of N identical computers sending packets through a single router with droalpitdy p.

The system has two control mechanisms, cafemtocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureeegly could drop
by a factor of 1000 [106]. The control mechanism in TCP is basedomserving
the number of packets in the loop from sender to receiver actl to the sender.
The sending rate is increased exponentially when there i®ngestion and it is
dropped to a low level when there is congestion.

To derive a model for congestion control, we model three isgpaelements
of the system: the rate at which packets are sent by indiV/stuarces (comput-
ers), the dynamics of the queues in the links (routers), hadtimission control
mechanism for the queues. Figure 3.12a shows a block diagnatmef system.

The current source control mechanism on the Internet is @gobknown as
TCP/Reno [134]. This protocol operates by sending packetsd¢oeive and wait-
ing to receive an acknowledgment from the receiver that #uket has arrived. Is
no acknowledgment is sent within a certain timeout peribd,dgacket is retrans-
mitted. To avoid waiting for the acknowledgment before segdhe next packet,
Reno transmits multiple packets up to a fixed “window” aroume latest packet
that has been acknowledged. If the window length is chosepeply, packets
at the beginning of the window will be acknowledge before gbarce transmits
packets at the end of the window, allowing the computer tdinaously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses adekafecha-
nism in which (roughly speaking) the window size is increblsg one every time
a packet is acknowledged and the window size is cut in halimgaekets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
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computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byrithérsg the
dynamics of the window size. Suppose we haélveomputers and lety; be the
current window size (measured in number of packets) foittheomputer. Let;
represent the end-to-end probability that a packet is drdmomeplace between
the source and the receiver. We can model the dynamics ofittuow size by the
differential equation

dw o rit-T) o ooow W
H_(:I_—q|) W +q,(—§r.(t—r.)), r'_?i’

wherer; is the end-to-end transmission time for a packet to reackdsrhtion and
the acknowledgment to be sent back an the resulting rate at which packets
are cleared from the list of packets that have been receiVkd.first term in the
dynamics represents the increase in the window size wheckesais received
and the second term represents the decrease in window sezeaybacket is lost.
Notice thatr; is evaluated at time— 1;, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the rogtexue and the
admission control mechanism for the queue. Assume that welhBinks in the
network and usé to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffgrand assume that the router
can contain a maximum diff max packets and transmits packets at a tequal
to the capacity of the link. The buffer dynamics can then bétamias

dd?:a—q, S = z ri(t—r”f), (3.17)
{ir TeLi}

(3.16)

wherelL; is the set of links that are being used by soUrce‘; is the time that it
takes a packet from sourceo reach linkl ands is the total rate at which packets
arrive on linkl.

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagéitisam the
network and not the individual packets, one simple modebiagsume that the
probability that a packet is dropped depends on how how ligllduffer is: p, =
m (b;,bmax). For simplicity, we will assume for now thas = p/b (see Exer-
cise 3.6 for a more detailed model). The probability that &pais dropped at a
given link can be used to determine the end-to-end prolatilat a packet is lost

in transmission: )
G=1-[]A-p) =5 pt—1), (3.18)
leL; leL;

whererfiJ is the backward delay from linkto sourcel and the approximation is
valid as long as the individual drop probabilities are smdle use the backward
delay since this represents the time required for the aclatmment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represeradehof the conges-
tion control dynamics. We can obtain substantial insighttesidering a special
case in which we havl identical sources and 1 link. In addition, we assume for
the moment that the forward and backward time delays canrimgeg, in which
case the dynamics can be reduced to the form

dwi 1 pb2+w?) dbo Nw b
G 1 2 0 a ur & Ttg G
wherew; € R, i =1,....N are the window sizes for the sources of ddi& R

is the current buffer size of the routew, controls the rate at which packets are
dropped ana is the capacity of the link connecting the router to the cotarsu
The variabler represents the amount of time required for a packet to beepsed
by a router, based on the size of the buffer and the capadiedink. Substituting

T into the equations, we write the state space dynamics as

dw ¢ w2 db Y ew
E —b—pC<1+ 2), a—i;T—C, (3.20)

More sophisticated models can be found in [101, 134]. _
The nominal operating point for the system can be found bingett = b = 0:

c w2 CJew b
O_b—pc<1+2>, O_i;T_C’ =

Exploiting the fact that each of the source dynamics are idahtt follows that all
of thew; should be the same and it can be shown that there is a uniqilidegon
satisfying the equations:

1 3

Wie=~ N’ W(Pbe) + (pbe) =1=0. (3.21)
The solution for the second equation is a bit messy, but caly éssdetermined
numerically. A plot of its solution as a function of 2p°N?) is shown in Fig-
ure 3.12b. We also note that at equilibrium we have the falgwadditional

equalities:
be NWe We
c c Ge=NPe=NPLe  Te= -

Te

Figure 3.13 shows a simulation of 60 sources communicatingsa@ single
link, with 20 sources dropping out &t= 20 s and the remaining sources increasing
their rates (window sizes) to compensate. Note that theebsfze and window
sizes automatically adjust to match the capacity of the link

A comprehensive treatment of computer networks is givemmeénbaum [185].
A good presentation of the ideas behind the control priesifibr the Internet are
given by one of its designers, Van Jacobson, in [106]. Kelly8] presents an
early effort of analysis of the system. The book by Hellers&t al. [97] gives
many examples of use of feedback in computer systems.
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Figure 3.13: Internet congestion control fa¥ identical sources across a single link. As
shown on the right, multiple sources attempt to communicate through a santess a single
link. An “ack” packet sent by the receiver acknowledges that thesages was received,;
otherwise the message packet is resent and the sending rate is slowedtdbe source.
The simulation on the left is for 60 sources starting random rates, withi@@eodropping
out att = 20 s. The buffer size is shown on the top and the individual source fiatésof
the sources are shown on the bottom.

3.5 ATOMIC FORCE MICROSCOPY

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andidleiRohrer
for their design of the scanning tunneling microscope. Tleea idf the instrument
is to bring an atomically sharp tip so close to a conductingase that tunneling
occurs. Animage is obtained by traversing the tip acrossdh&ple and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit vigadion of surface
structure at the nanometer scale, including the atomicefancroscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM canatgén two
mode. In tapping mode the cantilever is vibrated and the itundjel of vibration
is controlled by feedback. In contact mode the cantileven isontact with the
sample and its bending is control by feedback. In both casesal is actuated
by a piezo element that controls the vertical position ofdastilever base. The
control system has a direct influence on picture quality aadmsiog rate.

A schematic picture of an atomic force microscope is showkigare 3.14a. A
micro-cantilever with a tip having a radius of the order ofrtf is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpedoaphy of the surface
and the position of the cantilever base which is controllgdhe piezo element.
The tiltis measured by sensing the deflection of the laser bearg a photo diode.
The signal from the photo diode is amplified and sent to a cdatrtiiat drives the
amplifier for the vertical deflection of the cantilever. By aamtfling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thmiatiorces between
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Figure 3.14: Atomic force microscope. A schematic diagram of an atomic force niomes
is shown on the left, consisting of a piezo drive that scans the sample tined&FM tip. A
laser reflects off of the cantilever and is used to measure the detectioe ty tthrough a
feedback controller. An AFM image of DNA is shown on the right.

the cantilever tip and the atoms of the sample. An image o$tiniace is obtained
by scanning the cantilever along the sample. The resolutiakemit possible to
see the structure of the sample on the atomic scale, agalladtin Figure 3.14b,
which shows an AFM image of a DNA molecule.

The horizontal maotion is typically modeled as a spring-massesn with low
damping. The vertical motion is more complicated. To modelsystem, we start
with the block diagram shown in Figure 3.15. Signals that aséyeaccessible are
the input voltages to the power amplifier that drives the piezo element, the gelta
v applied to the piezo element and the output voltagéthe signal amplifier for
the photo diode. The controller is a Pl controller implemertigda computer,
which is connected to the system by A/D and D/A converters. ddfection of
the cantileverg, is also shown in the figure. The desired reference value for the
deflection is an input to the computer.

There are several different configurations that have diftedgnamics. Here
we will discuss a high performance system from [172] wheeedhntilever base
is positioned vertically using a piezo stack. We begin theletiog by a simple
experiment on the system. Figure 3.16a shows a step respbasgzanner from
the input voltageu to the power amplifier to the output voltageof the signal
amplifier for the photo diode. This experiment captures theadyins of the chain
of blocks fromu toy in the block diagram in Figure 3.15. Figure 3.16a shows that
the system responds quickly but that there is a poorly dansgedlatory mode
with a period of about 35 ps. A primary task of the modelingisihderstand the
origin of the oscillatory behavior. To do so we will exploigetsystem in more
detail.

The natural frequency of the clamped cantilever is typicadlyeral hundred
kHz, which is much higher than the observed oscillation awlB0 kHz. As a
first approximation we will therefore model the cantileverastatic system. Since
the deflections are small we can assume that the berfdiofjthe cantilever is
proportional to the difference in heights between the tewdr tip at the probe
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope (AFM) in scanning mode. The control systeamats to keep the
cantilever deflection equal to it reference value. Cantilever deflectioeésured, amplified
and converted to a digital signal, then compared with its reference valoerrécting signal

is generated by the computer, converted to analog form, amplified andcséhe piezo
element.

and the piezo scanner. A more accurate model can be obtaynewdeling the
cantilever as a spring-mass system of the type discusselapter 2.

Figure 3.16a also shows that the response of the power amjdifiast. As
first approximation we will model it as a static system. The plaibde and the
signal amplifier also have fast responses and can thus be aedomiestatic systems.
The remaining block is a piezo system with suspension. A saliermechanical
representation of the vertical motion of the scanner is shiomFigure 3.16b. We
will model the system as two masses separated by an idea plement. The
massm is half of the piezo system plus the massis the other half of the piezo
system and the mass of the support.

A simple model is obtained by assuming that the piezo crgsmaérates a force
F between the masses and that there is a dangamghe spring. Let the positions
of the center of the masses heandz,. A momentum balance gives the following
model for the system:

d?z dz

d221
m—s5 =F =—C— —kzn—F
gz~ e Zdt 7
Let the elongation of the piezo elemdnt z3 — 7, be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vagi&bin
equations (3.22) and substitutiag— | for z; gives the model

2 2
‘fjtz,j +c2‘jjztl Fkozy = ngtl +c2‘;'1 Flol. (3.22)
Summarizing, we find that a simple model of the system is obtiairyemod-
eling the piezo by (3.22) and all the other blocks by statidel®. Introducing
the linear equations= kzu, andy = ksz; we now have a complete model relat-
ing the outputy to the control signal. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the powepldier. As in the
previous examples, the concept of the uncertainty lemonguargi2.15b provides

(M +mp)
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Figure 3.16: Measured step response and model of piezo scanner. The le& figows a
measured step response. The top curve shows the valtagplied to the drive amplifier
(50 mv/div), the middle curve is the outp\}, of the power amplifier (500 mV/div) and
the bottom curve is the outpytof the signal amplifier (500 mV/div). The time scale is 25
us/div. Data has been supplied by Georg Schitter. The right figure is desimgchanical
model for the vertical positioner and the piezo crystal.

a framework for describing the uncertainty: the model wdldccurate up to the
frequencies of the fastest modeled modes and over a rangetiimin which the
linearized stiffness models can be used.

The experimental results in Figure 3.16a can be explainedtaizly as fol-
lows. When a voltage is applied to the piezo it expandk Jiype massny is moves
up and the mass, moves down instantaneously. The system settles after aypoorl
damped oscillation.

It is highly desirable to have design a control system forwbical motion
so that it responds quickly with little oscillation. The inghent designer has
several choices: to accept the oscillation and have a sleporese time, to design a
control system that can damp the oscillations, or to redetbig mechanics to give
resonances of higher frequency. The last two alternatives agifaster response
and faster imaging.

Since the dynamic behavior of the system changes with theepiep of the
sample, itis necessary to tune the feedback loop. In singgtemis this is currently
done manually by adjusting parameters of a PI controller. dlage interesting
possibilities to make AFM systems easier to use by introdpainomatic tuning
and adaptation.

The book by Sarid [169] gives a broad coverage of atomic foraeascopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [123]. The model discussed in this section is based dritee [171].

3.6 DRUG ADMINISTRATION

The phrase “take two pills three times a day” is a recommeadatith which we
are all familiar. Behind this recommendation is a solutibam open loop control
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Figure 3.17: The abstraction used to compartmentalize the body for the purpose of de-
scribing drug distribution (based on Teorell [186]). The body is ab&tthby a number of
compartments with perfect mixing and the complex transport processepproximated by
assuming that the flow is proportional to the concentration difference® icaimpartments.

The constant&; parameterize the rates of flow between different compartments.

problem. The key issue is to make sure that the concentrafiannzedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is qaeahtake two pills and
sampledgevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and dosage is based on the age and weitjte patient.

Drug administration is a control problem. To solve it we mustierstand how
a drug spreads in the body after it is administered. This tagilledpharmacoki-
netics is now a discipline of its own and the models used are caitaedpartment
models They go back to the 1920s when Widmark modeled propagatiafcof
hol in the body [195]. Compartment models are now importantstreening of
all drugs used by humans. The schematic diagram in Figure Bukirates the
idea of a compartment model. The body is viewed as a numbemopadments
like blood plasma, kidney, liver, and tissues which are sspd by membranes.
It is assumed that there is perfect mixing so that the drugeatnation is con-
stant in each compartment. The complex transport processesparoximated
by assuming that the flow rates between the compartments@pertional to the
concentration differences in the compartments.

To describe the effect of a drug it is necessary to know batlkdnhcentration
and how it influences the body. The relation between concémtraaind its effect
eis typically nonlinear. A simple model is

Co
e= . 3.23
C0+Cernax ( )

The effect is linear for low concentrations and it saturatdsgh concentrations.
The relation can also be dynamic and and it is then callemacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgdiby assuming that
the drug is evenly distributed in a single compartment aftteas been adminis-
tered and that the drug is removed at a rate proportionaktadhcentration. The
compartments behave like stirred tanks with perfect mixiogt ¢ be the concen-
tration,V the volume andj the outflow rate. Converting the description of the
system into differential equations gives the model

(;f[: =—qc, c>0. (3.24)

This equation has the solutiaft) = coe~ 9V = cpe !, which shows that the con-
centration decays exponentially with the time consfartV /q after an injection.
The input is introduced implicitly as an initial conditiontine model (3.24). More
generally, the way the input enters the model depends onlmedrtig is adminis-
tered. For example, the input can be represented as a massfiothié compart-
ment where the drug is injected. A pill that is dissolved ckio &e interpreted as
an input in terms of a mass flow rate.

The model (3.24) is called aane-compartment model asingle pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman&sgsuring the con-
centration at a few times, the initial concentration canlitaimed by extrapolation.
If the total amount of injected substance is known, the vaifnecan then be deter-
mined as/ = m/cp; this volume is called théhe apparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The model (3.24) is vampte and there
are large individual variations in the parameters. The patargV andq are often
normalized by dividing by the weight of the person. Typicatgmeters for aspirin
areV = 0.2 L/kg andq = 0.01(L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, intthdar fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross beluddoug distri-
bution but it is based on many simplifications. Improved msaein be obtained
by considering the body as composed of several compartnexasnples of such
systems are shown in Figure 3.18, where the compartmentsaesented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment rebish Figure 3.18a.
We assume that there is perfect mixing in each compartmehthat the transport
between the compartments are driven by concentrationreliftees. We further
assume that a drug with concentratmris injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputclabd
c2 be the concentrations of the drug in the compartments ang hdV, be the

S
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Figure 3.18: Schematic diagrams of compartment models. A simple two-compartment
model is shown on the left. Each compartment is labeled by its volume aodsamdi-

cate the flow of chemical into, out of and between compartments. Thpament model

on the right shows a system with six compartments used to study metaboligyroid
hormone [85]. The notatiok; denotes the transport from compartmeid compartmenit

volumes of the compartments. The mass balances for the congds are

dc
VlT: =((C2—C1)—CoC1+Cu €1 >0
dc
g o 0
y=Cp.

Introducing the variableky = qo/V1, k1 = q/V1, ko = q/V2 andbg = ¢p/V1 and
using matrix notation, the model can be written as

dC_ —ko—ki ki bo
dt_[ ke —kz]c+[0 !

(3.26)
y= (0 l) X.

Comparing this model with its graphical representation iguFé 3.18a we find

that the the mathematical representation (3.26) can beewiily inspection.

It should also be emphasized that simple compartment msdelsas the one
in equation (3.26) have a limited range of validity. Low freqay limits exist
because the human body changes with time and since the congpéimodel uses
average concentrations they will not accurately represgnd changes. There are
also nonlinear effects that influence transportation betvilee compartments.

Compartment models are widely used in medicine, engingexitd environ-
mental science. An interesting property of these systentiaisvariables like
concentration and mass are always positive. An essenffalulty in compart-
ment modeling is deciding how to divide a complex system gdmpartments.
Compartment models can also be nonlinear, as illustratdteinext section.
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Figure 3.19: Insulin-glucose dynamics. (a) Sketch of body parts involved in comtol

glucose, (b) schematic diagram of the system, and (c) responseslin ansd glucose when
glucose in injected intravenously. From [160].

Insulin-Glucose Dynamics

It is essential that the blood glucose concentration in tigybs kept in a narrow
range (0.7-1.1 g/L). Glucose concentration is influenced hyyrfactors like food
intake, digestion and exercise. A schematic picture ofelevant parts of the body
is shown in Figure 3.19.

There is a sophisticated mechanism that regulates glucosewwation. Glu-
cose concentration is maintained by the pancreas thattséiceshormones insulin
and glucagon. Glucagon is released into the blood stream tiieeglucose level
is low. It acts on cells in the liver that release glucose.ulinsis secreted when
the glucose level is high and the glucose level is lowereddusing the liver and
other cells to take up more glucose. In diseases, like jlveli@betes, the pan-
creas is unable to produce insulin and the patient musttimjealin into the body
to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are coagdicdynamics
with time scales that range from seconds to hours have besamaa. Models of
different complexity have been developed. The models aredijp tested with
data from experiments where glucose is injected intravelyoand insulin and
glucose concentrations are measured at regular time aiserv

Arelatively simple model called thminimal modeWas developed by Bergman
and coworkers [31]. This models uses two compartments, gnesenting the
concentration of glucose in the blood stream and the otlpeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the dbd stream is considered
as an input. The reaction of glucose to insulin can be modsledebequations

Xm o

dx .
dp = (Prtxe)xi+ pade, de = —paXo+ pa(U—ie), (3.27)

wherege andie represent the equilibrium values of glucose and insuiris the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the temix, in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
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describe how the pancreas reacts to the glucose. Figure 8ht®¢s a fit of the
model to a test on a normal person where glucose was injecteyénously at
timet = 0. Glucose concentration rises rapidly and the pancrepsmes with a
rapid spike-like injection of insulin. The glucose and inisuévels then gradually
approach the equilibrium values.

Models of the type (3.27) and more complicated models hawmiagy com-
partments have been developed and fitted to experimental datifficulty in
modeling is that there are significant variations in modeapaaters over time and
for different patients. For example the paramgieilin (3.27) has been reported
to vary with an order of magnitude for normal persons. The riHave been
used for diagnosis and to develop schemes for treatmentsbipe with diseases.
Attempts to develop a fully automatic artificial pancreastesn hampered by the
lack of reliable sensors.

The papers by Widmark and Tandberg [195] and Teorell [186kssics in
pharmacokinetics which is now an established disciplirtd wiany textbooks [61,
107, 84]. Because of its medical importance pharmacokis&inow an essential
component of drug development. The book by Riggs [164] is algmurce for
modeling of physiological systems and a more mathematieatrnent is given in
[117]. Compartment models are discussed in [85]. The prold&determining
rate coefficients from experimental data is discussed in §26l [85]. There are
many publications on the insulin-glucose model. The minimadel is discussed
in [52, 31, 32] more recent references are [140, 73].

3.7 POPULATION DYNAMICS

Population growth is a complex dynamic process that involliesinteraction of
one or more species with their environment and the largesystem. The dynam-
ics of population groups are interesting and important imyndifferent areas of
social and environmental policy. There are examples whewespecies have been
introduced into new habitats, sometimes with disastrosslt® There are also
been attempts to control population growth both througlertiees and through
legislation. In this section we describe some of the modelsdan be used to un-
derstand how populations evolve with time and as a functfdher environment.

Logistic Growth Model

Let x the population of a species at timeA simple model is to assume that the
birth and death rates are proportional to the total popafihis gives the linear
model dx

Fri bx—dx=(b—d)x=rx, x>0, (3.28)

where birth ratd and death ratd are parameters. The model gives an exponential
increase ib > d or an exponential decreasebik d. A more realistic model is to
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assume that the birth rate decreases when the populatiarges IThe following
modification of the model (3.28) has this property:
X xa-%), x>0 (3.29)
dt X =7 '
wherex is thecarrying capacityof the environment. The model (3.29) is called
thelogistic growthmodel.

Predator-Prey Models

A more sophisticated model of population dynamics incluttheseffects of com-
peting populations, where one species may feed on anothisrsitumtion, referred

to as thepredator-prey problenmwas already introduced in Example 2.3, where we
developed a discrete time model that captured some of therésaof historical
records of lynx and hare populations.

In this section, we replace the difference equation modsd tisere with a more
sophisticated differential equation model. L&ft) represent the number of hares
(prey) andL(t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

H H HL
aH <1—> A Heo

K) 1+aHT
dt +aHT, (3.30)
d—L—rL 1—L L>0
dt kH =

In the first equationr, represents the growth rate of the hanés,epresents the
maximum population of hares (in the absence of lynxasgpresents the inter-
action term that describes how the hares are diminished @sctéidn of the lynx
population, andy, depends is a time constant for prey consumption. In the skecon
equationr| represents the growth rate of the lynxes &mepresents the fraction
of hares versus lynxes at equilibrium. Note that both the laad lynx dynamics
include terms that resemble the logistic growth model (8.29

Of particular interest are the values at which the poputatelues remain con-
stant, calledequilibrium points The equilibrium points for this system can be
determined by setting the right hand side of the above emusito zero. Letting
He andLe represent the equilibrium state, from the second equatmhave

Le - kHe

Substituting this into the first equation, we must solve

He akH?
Ho(1— )&% o
' e( K) TranT, 0
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Figure 3.20: Simulation of the predator-prey system. The figure on the left shows-a sim
ulation of the two populations as a function of time. The figure on the righvsibe
populations plotted against each other, starting from different valuéegfopulation. The
oscillation seen in both figures is an example of a “limit cycle”. The paranvetaes used

for the simulations werg, = 0.02,K = 500,a= 0.03,T, =5, =0.01,k=0.2.

Multiplying through by the denominator, we get

0=He- <rh (1— T) (1+aHTh) — akHe)

= He- <rh§Th He2 + (ak+ rh/K — rhaTh)He — I‘h> .
This gives one solution df = 0 and a second that can be solved analytically or
numerically.

Figure 3.20 shows a simulation of the dynamics starting frasataof popula-
tion values near the nonzero equilibrium values. We sedah#tis choice of pa-
rameters, the simulation predicts an oscillatory popatatiount for each species,
reminiscent of the data shown in Figure 2.6 (page 41).

Fisheries Management

The dynamics of a commercial fishery can be described by thewfwly simple

model
ax

Fi
wherex is the total biomassf (x) the growth rate anti(x,u) the harvesting rate.

The logistic function (3.29) is a simple model for the growdterand the harvesting
can be modeled by

f(x) —h(x,u), (3.31)

h(x,u) = axu (3.32)

where the control variable is the harvesting effort, analis a constant. The rate

of revenue is
g(x,u) = bh(x,u) — cu, (3.33)
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whereb andc are constants representing the price of fish and the cost afdishi
Using equations (3.32) and (3.33) we find that the rate of nexém

g(x,u) = (abx—c)u.

In a situation where there are many fishermen and no concetind@nvironment,
it is economic to fish as long abx > c and there will then be an equilibrium
where the biomass is c
Xoo = P
ab

which is the equilibrium with unrestricted fishing.

Assume that the population is initially at equilibrium>d0) = x.. The rev-
enue rate with unrestricted fishing is th@bx. — c)u, which can be very large.
The fishing effort then naturally increases until the equiilibr (3.34), where the
revenue rate is zero.

We can contrast unrestricted fishing with the situation foingle fishery. A
typical case is when a country has all fishing rights in a larga.an such a case it
is natural to maximize the rate efistainable revenuelhis can be accomplished
by adding the constraint that the biomasis: equation (3.31) is constant, which
implies that

(3.34)

f(x) = h(x,u).
Solving this equation fou gives
_ _ )
u=ug(x) = "

Inserting the value afl into equation (3.33) gives the following rate of revenue

9(x) = bh(x ug) — cug(x) = (b— = ) F(x)

c X r (3.35)
= rx(b— 5() (1— Z): Z (—abx2+ (c+ abx)x— cxc>.
The rate of revenue has a maximum
r(c—abx)?
=— 3.36
ro dabx, (3.36)
for
_Xx, C
Xo = 5 + 2ab’ (3.37)

Figure 3.21 shows a simulation of a fishery. The system is ilyitial equi-
librium with x = 100. Fishing begins with constant harvesting nate 3 at time
t = 0. The initial revenue rate is large, but it drops rapidly as glpulation de-
creases. At timé = 12 the revenue rate is practically zero. The fishing policy is
changed to a sustainable strategy at ttmel5. This is accomplished by using a
proportional-integral (PI) controller where the refereiscthe optimal sustainable
population sizey = 55 given by equation (3.37). The feedback stops harvesting
for a period but the biomass increases rapidly. At tiree28 the harvesting rate
increases rapidly and a sustainable steady state is reacheshort time.
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Figure 3.21: Simulation of a fishery. The curves show total biomadsarvesting raterand
revenue ratg as a function of timeé. The fishery is modeled by equations (3.31), (3.32),
(3.33) with parameterg. = 100,a= 0.1, b =1 andc = 1. Initially fishing is unrestricted at
rateu = 3. Attimet = 15 fishing is changed to harvesting at a sustainable rate, accomplished
by a PI controller with parameteks= 0.5 andk; = 0.5.

Volume | of the two volume set by J. D. Murray [151] give a braaderage of
population dynamics.

EXERCISES

3.1 Consider the cruise control example described in SectionBild a simula-
tion that recreates the response to a hill shown in Figure @&8tshow the effects
of increasing and decreasing the mass of the car by 25%. gedes controller
(using trial and error is fine) so that it returns to within 10%ile desired speed
within 3 seconds of encountering the beginning of the hill.

3.2 Show that the dynamics of a bicycle frame given by equatioh) (8an be
written in state space form as

d (x1] (0 mghJd X1 1
- )
bl bl )

where the inputi is the torque applied to the handle bars and the outgsithe
title angle¢. What do the states, andx, represent?

3.3 Combine the bicycle model given by equation (3.5) and theehifad steering
kinematics in Example 2.8 to obtain a model that describegpdltie of the center
of mass of the bicycle.
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3.4 Consider the op amp circuit shown below: Show that the dynsutan be

V2

Ri | Ra Ro

G Vo Cy V3
[ 1.

written in state space form as

Vi

1y 1
dx_ | RCG RG wt | RiC |
i | R1 1 .
Ra R2C2 RoCo

y= (O 1] X
whereu = vi andy = v3. (Hint: Usev, andvs as your state variables.)

3.5 The op amp circuit shown below is an implementation of an lzgoil. Show

€Ca Ry Cl

that the dynamics can be written in state space form as
R4

dx 0 R1RsCy
dt 1 ’
-0
RC1

where the state variables represents the voltages acesaphacitors; = v; and
X2 = V.

3.6 Analyze congestion control dynamics with RED.

3.7 A schematic diagram an AFM where the vertical scanner is afigdze with
preloading is shown below Show that the dynamics can be writte

d221 le d2| dl

— — 4+ (ki +k)zg=mp—— — +kal.

(M +mp) e +(c1+¢C2) at + (k1 +k2)z1 M o +C2 g The

Are there there parameters values which makes the dynaitisuparly simple.
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3.8 (Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model
d
Vbdf(:o = (¢ —Cp) +Qiv
dg C
V— = _ _ .
gt a(c—a) Qmam + Qgi
whereV, = 48 | andV, = 0.6 | are the effective distribution volumes of body wa-
ter and liver waterc, and ¢ are the concentrations of alcohol in the compart-
ments,gy anddg; are the injection rates for intravenously and gastroimtabin-
take,q = 1.5 L/min is the total hepatic blood flovgnax = 2.75 mmol/min and
co = 0.1 mmol. Simulate the system and compute the concentratitreiblood

for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (State variables in compartment models) Consider the cdmpat model de-
scribed by equation (3.26). Let andx, be the total mass of the drug in the
compartments. Show that the system can be described by tag@aqu

dx _ (—ko—ki ko Co
dt_[ ki —kz]x+[0 !

y= (o 1/v2] X.

Compare the this equation with the (3.26) where the stateblas were con-
centrations. Mass is called axtensive variablend concentration is called an
intensive variable

(3.39)

3.10 (Population dynamics) Consider the model for logistic glogiten by equa-
tion (3.29). Show that the maximum growth rate occurs whensike of the
population is half of the steady state value.

3.11 (Population dynamics) Verify the curves in Figure 3.20 by tingga program
that integrates the differential equations.






